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In recent years, the convolution neural network has been the most widely used deep
learning algorithm in the field of plant disease diagnosis and has performed well in
classification. However, in practice, there are still some specific issues that have not
been paid adequate attention to. For instance, the same pathogen may cause similar
or different symptoms when infecting plant leaves, while the same pathogen may cause
similar or disparate symptoms on different parts of the plant. Therefore, questions come
up naturally: should the images showing different symptoms of the same disease be in
one class or two separate classes in the image database? Also, how will the different
classification methods affect the results of image recognition? In this study, taking rice
leaf blast and neck blast caused by Magnaporthe oryzae, and rice sheath blight caused
by Rhizoctonia solani as examples, three experiments were designed to explore how
database configuration affects recognition accuracy in recognizing different symptoms
of the same disease on the same plant part, similar symptoms of the same disease on
different parts, and different symptoms on different parts. The results suggested that
when the symptoms of the same disease were the same or similar, no matter whether
they were on the same plant part or not, training combined classes of these images
can get better performance than training them separately. When the difference between
symptoms was obvious, the classification was relatively easy, and both separate training
and combined training could achieve relatively high recognition accuracy. The results
also, to a certain extent, indicated that the greater the number of images in the training
data set, the higher the average classification accuracy.

Keywords: deep learning, convolutional neural network, rice diseases, image recognition, crop disease dataset,
model fitting

INTRODUCTION

Rice production is facing many threats, especially many diseases caused by fungi, bacteria, and
environmental factors (Zhang et al., 2018). Timely and accurate diagnosis of rice diseases is
critical to the management of these diseases. Traditionally, disease diagnosis was mainly done by
experienced personnel based on visible symptoms and laboratory identification (Sethy et al., 2020).
However, experienced personnel are in short supply at grass-roots plant protection stations
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in China and many other developing countries. Besides, the
identification of crop diseases using laboratory technology
is often laborious and time-consuming (Feng et al., 2020).
Therefore, efforts have been made to develop alternative
techniques, including image recognition based on machine
learning for its timely feedback and low cost (Coulibaly et al.,
2019; Abade et al., 2021; Bari et al., 2021).

Early automatic diagnoses of crop diseases were mainly done
via image recognition based on traditional machine learning
(Li et al., 2020). Many traditional machine learning algorithms,
including self-organizing maps (Phadikar and Sil, 2008), back
propagation neural network (Xiao et al., 2018), Naive Bayes
(Islam et al., 2018), K-means clustering (Ghyar and Birajdar,
2017), and support vector machine (Yao et al., 2009), have
been applied to the recognition of rice disease images. These
algorithms achieved classification accuracy ranging from 92 to
97.2% in these studies, but the small training dataset and the
huge feature extraction engineering have been two huge obstacles
to the practical application of traditional machine learning
algorithms in the field of rice diseases recognition (DeChant et al.,
2017; Lu J. et al., 2017).

Deep learning, with the advantages of automatic feature
extraction and efficient processing of big data, triggered a boom
of research on image recognition these years (Min et al., 2017).
Among many deep learning algorithms, the convolutional neural
network (CNN) is most widely used in the field of computer
vision (Voulodimos et al., 2018). The CNN automatically learns
the features of the image through convolution and pooling
operations, mimicking the processes of image recognition by the
cerebral perception cortex (Yamins and DiCarlo, 2016), which
suggested that CNN could perform like the human visual nerves
in some way (Cadieu et al., 2014).

Recently, many researchers all over the world have also paid
attention to apply deep learning, especially CNN, in the diagnosis
of rice diseases. Some researchers trained existing CNN models
with rice disease images (Ghosal and Sarkar, 2020; Deng et al.,
2021; Krishnamoorthy et al., 2021), some built their own CNN
models (Lu Y. et al., 2017), and some modified the classical CNN
models such as DenseNet by adding inception module (Chen
et al., 2020). Lightweight models, such as simple CNN in which
model parameters were greatly reduced without precision loss,
have also been developed for application with mobile devices
(Rahman et al., 2020). As CNN is excellent in extracting features,
Liang et al. (2019) also used a traditional SVM classifier for
subsequent image classification based on image features extracted
by CNN from images of rice leaf blast and achieved a significantly
better classification accuracy by combining SVM with CNN
than by combining SVM with two traditional feature extraction
methods, namely, LBPH and Haar-WT.

The existing research results suggested that deep learning-
based image recognition has become more and more mature and
achieved high performance in the recognition of rice diseases,
both in accuracy and efficiency. Therefore, instead of building
new models or improving algorithms, more attention has been
paid to solve specific and practical issues in training existing
models by some researchers recently. For example, Mohanty et al.
(2016) found that the image type used in model training and

the image allocation ratio between the training set and test set
would have effects on the diagnosis accuracy of the resulted
model. Picon et al. (2019) proved that training a model for multi-
crops performed slightly better than developing specific models
for individual crops. Lee et al. (2020) proved that if a model
was trained with datasets containing plant diseases that were
not associated with a specific crop, the model would be more
suitable for a wider range of uses, especially for images obtained
in different fields and images from unseen crops.

Similarly, automatic diagnosis of rice diseases has encountered
some practical problems because of the high complexity of rice
disease symptoms under field conditions. For example, similar
or different symptoms can develop at different stages, under
different weather conditions, or on different plant parts. Previous
studies on the diagnosis of rice diseases concentrated on the
recognition of typical symptoms of different rice diseases, but
rarely addressed how the images of different symptoms caused
by the same disease should be tagged in the construction of the
training dataset. Should they be divided into different classes
or combined into a single class? How will the different data
configurations affect the accuracy of models? This has become
an urgent problem to be solved before the automatic disease
diagnosis can really be applied to field conditions.

Therefore, taking rice blast and rice sheath blight as examples
in this study, experiments were conducted to explore how the
split or merged disease classes in the configuration of training
databases affect the recognition accuracy of the model. The
specific objectives of this study were as follows:

(1) To select an appropriate model from 5 common CNN
models for the subsequent investigation;

(2) To evaluate the effects of three training data configuration
methods on the performance of CNN models during the
training and test processes;

(3) To identify where the misclassifications lie via constructing
a normalized confusion matrix for each method; and

(4) To explore the possible causes for misclassification by
visualizing the recognition process.

MATERIALS AND METHODS

Choosing Crop Diseases and
Construction of Datasets
Collection of Disease Images
Images of healthy rice leaves (HRL), and rice leaves or sheaths
with symptoms of the three common diseases, rice blast (RB), rice
brown spots (RBS), and rice sheath blight (RSB) were collected
mainly from experimental rice fields in Panjin and Dandong
cities of Liaoning Province, China. In addition, images were
also collected from the greenhouse on the campus of China
Agricultural University (CAU), from CAU experimental fields in
Haidian District, Beijing, and from commercial fields in Wuyuan
County of Jiangxi Province and in Lu’an City of Anhui Province.
These images were photographed using smartphones or cameras
following three rules: (1) avoid overexposure caused by direct
sunlight; (2) ensure that the targeted lesion was in the center
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of the picture; and (3) avoid different disease symptoms in
a single picture.

The rice leaves, necks, heads, and whole plants with no visible
symptoms were photographed and regarded as healthy rice
plants. For rice leaf blast, images of chronic (RLBC), and acute
(RLBA) leaf lesions were collected in this study at the early growth
stage of rice because of their importance and prevalence under
field conditions, while the other two less common symptom
types, namely, white spot and brown spot, were not included
in this study. According to Kato (2001), the chronic type leaf
symptoms were defined as spindle-shaped leaf lesions with a
yellow outside halo, a brown inner ring, and a gray white center
(Figure 1A), while acute type symptoms were defined as the leaf
lesions that are nearly round or oval in shape, which often become
irregular, and look like water stains with a layer of dark green
mold on the surface (Figure 1B). Besides, images of rice neck
blast (RNB), the most economically important symptom of rice
blast, were also collected at the late growth stages of rice in this
study. According to Kumar et al. (1992), neck blast was defined
as the symptoms that appeared around the neck of rice panicles
as light brown spots at the initial stage and then gradually expand
up and down, leading to a white gray color of the whole rice ear,
and sometimes the death of whole ear (Figure 1C).

Since rice brown spot caused by Bipolalaris oryzae has a
similar shape and yellow halo to those of rice blast leaf lesions,
images of rice leaves with brown spots were collected and used to
test the recognition accuracy of the outcome models. According
to Quintana et al. (2017), the infected leaves with sesame-like oval
dark brown spots surrounded by yellow halos were considered as
typical symptoms of rice brown spot (Figure 1D).

Another important disease, rice sheath blight caused by
Rhizoctonia solani, which can cause similar symptoms on
leaves (RSBL) and sheaths (RSBS), was also included in this
study to illustrate how the classification of similar symptoms
on different plant parts caused by the same pathogen would
affect the accuracy of recognition. According to Lee and Rush
(1983), the typical symptoms of this disease are cloud-shaped
lesions on the leaf sheaths and leaves, with brown to dark
brown edges and grayish green to grayish white middle parts
(Figures 1E,F).

Preprocessing of Images
As CNN requires squared input images, in order to avoid image
deformation caused by the forced compression of non-squared
images during input, the automatic clipping method was used
to cut each image into a square, with the side length equal to
the length of the short side of the original image and using
the original image center as the clipping center. The clipped
images were then compressed to 500 × 500 pixels. Subsequently,
normalization was applied on each image by dividing all pixel
values with 255 to accelerate the convergence of models during
the subsequent training procedure.

As the number of acquired images in some classes was
inadequate for model training and validation, more images in
these classes were generated to meet the requirement by image
augmentation (Table 1). The methods used in augmentation
included flip, translocation, rotation, and zoom (Francois, 2018).

Experimental Scheme
Three experiments were designed to investigate the effects of
dataset configuration on rice disease images recognition. In
each experiment, two symptoms of one disease were selected
for training and testing together with the other three diseases.
In experiment 1, training datasets with separate and combined
classes of RLBC and RLBA were compared. In experiment 2,
training datasets with separate and combined classes of RLBC
and RNB were compared. In experiment 3, training datasets with
separate and combined classes of RSBL and RSBS were compared.

In each experiment, a method using two separated classes
and two methods with one combined classes were compared.
Considering that the imbalance of data may affect the training
results, two methods were used in the construction of the
combined class, directly combining all the images of two classes
into one class, and randomly selecting half images from each class
and combining them into one class.

Construction of Datasets
Images of each class were randomly numbered after
preprocessing, with a unique ID for each image. For example,
the first image of RSB was named “RSB (0).” For each class, the
first 500 or 1,000 images were used in training and validation
datasets as required, and the images 1,001–1,099 were used to
build test sets.

There were three independent datasets for each experiment.
In experiment 1, 1,000 images of each class were divided into
training set and validation set according to a ratio of 8:2 for
method A. In method B, 1,000 images of RLBC and RLBA
were directly merged into one class, with twice as many images
as the other classes. In method C, 500 images were randomly
taken from RLBC and RLBA, respectively, to form a combined
class. The same ratio of 8:2 was used dividing image data into
constructing training and validation sets in both methods B and
C. In addition to the 1,000 images, other 100 images of each class
were randomly selected to form a 500-image test set. These 500
images were used to test all three methods A, B, and C, but classes
of RLBC and RLBA would be merged into one class for testing
methods B and C. In the same way, training, validation, and
test datasets were constructed in experiment 2 and experiment
3 (Table 2).

Hardware and Software
Keras/Tensorflow backend framework based on Anaconda3
platform was used in this study (version: keras 2.2.4, tensorflow
1.15.0), and the training and validation processes were coded
using Python 3.7 programming language. The computer was
equipped with 32 g memory module and GTX 1080Ti graphics
card. The computer operation system was the 64-bit Windows
10 professional edition. The programs were all run on a
single graphic processing unit (GPU) because the training
speed on GPU is much faster than that on the central
processing unit (CPU).

Training Parameter Setting
Instead of starting from scratch, transfer learning was
applied in all model training experiments to saving
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FIGURE 1 | Sample images of healthy rice leaves and rice diseases. (A) Chronic lesions of rice leaf blast, (B) acute lesions of rice leaf blast, (C) rice neck blast, (D)
rice brown spots, (E) rice sheath blight on leaves, (F) rice sheath blight on sheaths, and (G) healthy rice leaves.

TABLE 1 | The number of images within each disease class obtained in this study.

Rice blast Rice sheath blight

Leaf Neck Leaf Sheath

Acute (RLBA) Chronic (RLBC) (RNB) (RSBL) (RSBS) Rice brown spots (RBS) Healthy rice leaves (HRL) Total

Initial number 1,146 1,186 599 1,193 598 1,143 1,146 7,011

Number after augmentation 1,146 1,186 1,198 1,193 1,196 1,143 1,146 8,208

TABLE 2 | The number of images in each disease class in training experiments using different methods.

Experiment 1 Experiment 2 Experiment 3

Disease classes Method A Method Bb Method C Method J Method K Method L Method X Method Y Method Z

HRLa 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

RBS 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

RLBA 1,000 / / / / / /

RLBC 1,000 1,000 1,000 1,000 1,000

1, 000

1, 000


500

500


RNB / / / 1,000 / / /

1, 000

1, 000


500

500


RSBL 1,000 1,000 1,000 1,000 1,000 1,000 1,000

RSBS / / / / / / 1,000

1, 000

1, 000


500

500


aHRL, healthy rice leaves; RBS, rice brown spot; RLBA, rice leaf blast-acute lesions; RLBC, rice leaf blast-chronic lesions; RNB, rice neck blast; RSBL, rice sheath blight
on leaves; RSBS, rice sheath blight on sheaths.
bThe images from the two classes within the braces were combined into one single class for training.

training time by carrying the weights from the training
on ImageNet dataset (Russakovsky et al., 2015). The
learning rate was set as 0.001, and the training was run

for 50 epochs with a momentum of 0.9, an optimization
function of stochastic gradient descent (SGD), and a
mini-batch size of 32.
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Model Selection
Different algorithms have their own purposes or specific
application scenarios when designing or modifying. For example,
a multi-stream residual network (MResLSTM) was designed for
dynamic hand movement recognition (Yang et al., 2021), and
a modified YOLO v3 algorithm was applied to detect helmet
wearing by construction personnel (Huang et al., 2021). At
present, however, there is no widely used model for the diagnosis
of rice diseases, so we conducted a preliminary experiment
to select from five representative CNN models for subsequent
experiments on the construction of datasets.

The VGG series (Simonyan and Zisserman, 2014), first
developed by the VGG group of Oxford University, were CNN
models with stacked 3 × 3 convolution kernels for extracting
complex features with a manageable number of parameters.
Considering the moderate size of our disease data, VGG16 (16
layers) was selected as the representative of this model series.
Compared with the VGG series, some CNN models used more
network layers to extract higher dimension features and took
different approaches to handle the gradient dispersion problem
associated with deeper networks (Gao et al., 2019). Inception
v3 was chosen as a candidate model in this study for its deep
depths and its inception module, which uses convolution kernels
of different sizes in the same layer to realize feature fusion of
different scales and batch normalization to speed up the learning
rate (Szegedy et al., 2015). ResNet50 (50 layers) was included as
a representative of ResNet series, in which a residual module was
introduced for a shortcut connection in the network allowing the
original input information to be directly transmitted to the later
layer (He et al., 2015). In addition, MobileNet v2 (Howard et al.,
2017) and NASNetMobile (Zoph et al., 2018), two representatives
of the current lightweight models in the application scenarios
of mobile terminals or embedded devices, were also selected
for their relatively excellent performance and small number of
parameters (Wang et al., 2020).

A pre-experiment was conducted to compare the
performances of the five CNN models in recognition of the
three rice leaf diseases and healthy rice leaves (Figure 1G). The
1,000 training images from each of the five classes, namely,
RLBC, RLBA, RBS, RSBL, and HRL, were divided into a training
dataset and a validation dataset according to the ratio of 8:2. The
models were trained for 50 epochs using the transfer learning
method, and the initial weights of five models were all set as
the shared weights from training on ImageNet as described in
the “Training parameter setting” section. The size of models,
speed of training (in seconds per epoch), the highest validation
accuracy, the final validation accuracy, the average validation
accuracy, and standard deviation of validation accuracy were
used to evaluate the models.

Experiments and Statistical Analysis
Subsequently, 3 experiments were done using the best model
selected from the pre-experiment. Due to the random input order
of mini-batches, the results of training could vary at each run.
To estimate this variation and assess the reliability of the results,
each of the three experiments was repeated three times. The final

validation accuracy, final validation loss, test accuracy, and test
loss were analyzed using the GLM procedure in SAS (version
9. 4, SAS Institute Inc., Cary, NC, United States) to determine
whether the effects of the training dataset configuration were
statistically significant.

Over the 50 epochs of the training processes, the average
validation accuracy and average validation loss of three
repeated experiments were calculated every four epochs. As
the performance of each method fluctuated over epochs
in the training process, to better express the whole trend
during the process, regression was performed to fit a negative
exponential decay model to the average validation accuracy and
an exponential decay model to average validation loss over
the training processes for each method using the non-linear
regression procedure in SAS (Version 9.4, SAS Institute Inc.,
Cary, NC, United States).

For validation accuracy, the following model was used:

A = Amax − (Amax − A0) e(−ra·x)

where A was the validation accuracy and x was the epoch
number in training, while Amax, A0, and ra were parameters to
be estimated in model fitting. Amax reflects the highest validation
accuracy that the method can reach, A0 reflects the initial
validation accuracy, and ra can reflect the increase rate of A or
improvement rate of validation accuracy over epochs.

For validation loss, the following model was used in
regression:

L = Lmin + e(−rl·x+b)

where L was the validation loss and x was the epoch number in
training, while Lmin, rl, and b were parameters to be estimated
during model fitting. Lmin represents the lowest validation loss
rate obtained by this method after unlimited epochs, Lmin +

e(−rl+b) reflects the initial validation loss at epoch #1, and rl is
related to the decline rate of validation loss.

After model fitting, the parameters were compared between
different methods using Student’s t-test (Steel and Torrie, 1980)
to characterize the disparity of the three methods in the
training process.

Normalized Confusion Matrix
Confusion matrix, which was widely used in the evaluation
of classification accuracy in many areas, was constructed for
comparison of different training dataset configuration methods
based on test results. As the image numbers of the classes
to be tested in this study varied among different training
dataset configuration methods, to better reflect their difference
in classification accuracy, the normalized confusion matrix was
used. For any classification with c classes, the confusion matrix
consisted of c rows × c columns, and the element in the i-th row
and j-th column was calculated by dividing the number of images
that belonged to the i class and were classified into the j class with
the total number of images in the row.

Heatmap
To understand which parts of the input image, such as the lesion
edge, the center, or other areas, had contributed more to the
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automatic classification by the models, for each representative
image with a high frequency of misclassification in recognition,
a heatmap of class activation was generated using the GRAD-
CAM algorithm (Selvaraju et al., 2020), in which the pixels that
contributed heavily to the final classification will be presented
as yellow to red colors and those that contributed less will be
presented in green to purple colors. The heatmap generated this
way serves as a tool for visualization of the feature extraction
process of deep neural network.

RESULTS

Performance of the Five Models in
Pre-experiments
The results from the pre-experiment demonstrated that the
five CNN models performed differently in the classification of
these images (Table 3). VGG16 and Inception v3 all achieved
a validation accuracy higher than 99%, but ResNet50 had the
highest average validation accuracy and a smaller standard
deviation among these models, suggesting that its convergence
speed was the fastest and its performance was the most
stable. Considering ResNet50’s excellent performance in training,
including good speed (38 s/epoch), the highest final validation
accuracy, the highest average validation accuracy, and the
smallest standard deviation, it was selected for the subsequent
training experiments.

Experiment 1: Different Symptoms of the
Same Disease on the Same Part
The results from experiment 1 revealed that the training curves of
validation accuracy and validation loss using method A differed
from those using methods B and C (Figures 2A,B). Method A
consistently had lower validation accuracy and higher validation
loss than methods B and C did during the whole training process
over 50 epochs (Figures 2A,B). Differences also existed between
method B and method C in the early epochs of the training
process, but the difference gradually decreased to an ignorable
level with the increase of training epochs. Regardless of methods
used in training dataset configuration, the trends of validation
accuracy over training epochs could be fitted well to the negative

exponential decay model (Table 4A) and those of validation loss
fitted well to the exponential decay model (Table 4B). The t-test
indicated that the highest accuracy (Amax) obtained using method
A was lower than those using the other two methods, while the
lowest validation loss (Lmin) using method A was significantly
greater than those using methods B and C (Tables 4A,B). The
growth rate ra of validation accuracy and the decline rate rl of
validation loss were significantly faster for method B than for the
other two methods.

The ANOVA and multiple mean comparison revealed that on
both validation and test datasets, the validation accuracy and test
accuracy obtained using method A were significantly lower than
those obtained using methods B and C, and the validation loss
and test loss obtained using method A were significantly greater
than those obtained using methods B and C (Table 5).

The confusion matrix of test results using method A revealed
that the class with the lowest accuracy was RLBC, and the main
classification errors came from the misclassification of RLBC
images into RLBA by the model (Figure 3A). When combining
the two classes into one for training, the test accuracy ranged
from 96 to 99% in every class with little variation among
classes (Figures 3B,C). To understand why the misclassifications
occurred, the original images of these misclassified RLBC images
were visually examined again. It was found that although the leaf
lesions in these images were nearly spindle shaped, the edges
and corners were not obvious enough. When there were many
lesions on leaves, they connected into pieces that were more like
water stains, and the surfaces of some lesions were even gray
green, which were typical symptoms of RLBA at the early stage
of developing into RLBC (Kumar et al., 1992).

Experiment 2: Different Symptoms of the
Same Disease at Different Parts
The validation accuracy obtained using method K was highest
among the three methods at the beginning of the training
processes, and the lowest accuracy was gained using method L,
but the accuracy increase rates ra were higher for methods L
(0.6564) and J (0.5377) than for method K (0.2800), and as a
result, the three methods differed very less in accuracy after 20
training epochs (Figure 2C and Table 4A), and the maximum
accuracy gained after 50 epochs varied from 0.9935 to 0.9940,

TABLE 3 | Performance of five CNN models in the classification of rice disease images.

CNN models Seconds/epoch Highest validation accuracya Final validation accuracyb Average validation accuracyc Standard deviation of
validation accuracyd

VGG16 36 0.9900 0.9890 0.8758 0.2473

Inception v3 60 0.9980 0.9920 0.9803 0.4020

ResNet50 38 0.9940 0.9920 0.9851 0.0107

MobileNet v2 37 0.9830 0.9520 0.7138 0.2199

NASNetMobile 57 0.9870 0.9870 0.9693 0.0352

aThe highest validation accuracy achieved within the first 50 epochs.
bThe final validation accuracy after 50 epochs.
cThe average validation accuracy over the first 50 epochs.
dThe standard deviation of validation accuracy over the first 50 epochs, which reflects the convergence rate of five models.
The training results of the selected model ResNet50 were shown in bold.
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FIGURE 2 | The validation accuracy and validation loss during the training processes in experiments 1, 2, and 3. (The points in the figures were means from three
repeated runs, and the lines represented the fitted models of validation accuracy and validation loss.) Method A: Training with two separate classes, namely, acute
type of rice leaf blast (RLBA) and chronic type of rice leaf blast (RLBC). Method B: Combining RLBA and RLBC as one class for training and the total number of
images in the combined class was two times as those in the other three classes. Method C: Combining RLBA and RLBC as one class for training and the total
number of images in the combined class was equal to those in the other three classes. Method J: Training with two separate classes of RLBC and rice neck blast
(RNB). Method K: Combining RLBC and RNB as one class for training and the total number of images in the combined class was two times as those in the other
three classes. Method L: Combining RLBC and RNB as one class for training and the total number of images in the combined class was equal to those in the other
three classes. Method X: Training with two separate classes of rice sheath blight on leaves (RSBL) and rice sheath blight on sheath (RSBS). Method Y: Combining
RSBL and RSBS as one class for training and the total number of images in the combined class was two times as those in the other three classes. Method Z:
Combining RSBL and RSBS as one class for training and the total number of images in the combined class was equal to those in the other three classes.

showing no significant difference among the three methods
(Table 4A). On the contrary, the validation loss using method L
was the highest among the three methods early in the training,
but it declined quickly as the training progressed and ended the

training with a loss value that was very close to the other two
methods (Figure 2D and Table 5).

Interestingly, although the accuracy using methods J, K, and
L differed slightly (insignificantly) on validation data, the test

Frontiers in Plant Science | www.frontiersin.org 7 July 2022 | Volume 13 | Article 910878

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-910878 June 30, 2022 Time: 13:11 # 8

Zhou et al. Rice Diseases Image Recognition

TABLE 4A | Parameters and determinant coefficients of models [A = Amax − (Amax − A0) e−ra ·x ] fitted to the validation accuracy over training epochs in 3 experiments
using different methods.

Experiment-method A0 Amax ra R2

1-method A 0.9191 ± 0.0047b 0.9878 ± 0.0011b 0.2154 ± 0.0289b 0.977

1-method B 0.9319 ± 0.0050b 0.9949 ± 0.0005a 0.4896 ± 0.0667a 0.985

1-method C 0.9489 ± 0.0028a 0.9939 ± 0.0007a 0.2077 ± 0.0254b 0.985

2-method J 0.9507 ± 0.0035b 0.9940 ± 0.0003a 0.5377 ± 0.0718a 0.991

2-method K 0.9603 ± 0.0014a 0.9937 ± 0.0003a 0.2800 ± 0.0230b 0.992

2-method L 0.9223 ± 0.0099c 0.9935 ± 0.0005a 0.6564 ± 0.1332a 0.992

3-method X 0.9520 ± 0.0037a 0.9881 ± 0.0006b 0.3206 ± 0.0629b 0.960

3-method Y 0.9510 ± 0.0015a 0.9944 ± 0.0002a 0.4244 ± 0.0260b 0.997

3-method Z 0.9340 ± 0.0053b 0.9881 ± 0.0003b 0.6274 ± 0.0921a 0.992

R2: Degree of coincidence between test data and fitting function. The closer the value of R2 is to 1, the higher the degree of coincidence is.
Within each experiment, the fitted value followed by different letters in the same column differed significantly at confidence level p = 0.05.

TABLE 4B | Parameters and determinant coefficients of models [L = Lmin + e(−rl ·x+b)] fitted to the validation loss over training epochs in 3 experiments using
different methods.

Experiment-method Lmin rl b R2

1-method A 0.0382 ± 0.0030a –0.2020 ± 0.0242b –1.6449 ± 0.0591a 0.980

1-method B 0.0156 ± 0.0016b –0.6331 ± 0.1274a –1.4649 ± 0.1325a 0.985

1-method C 0.0165 ± 0.0009b –0.2226 ± 0.0126b –1.9856 ± 0.0281b 0.991

2-method J 0.0246 ± 0.0006a –0.6433 ± 0.0788a –1.9319 ± 0.0816b 0.996

2-method K 0.0206 ± 0.0005b –0.3797 ± 0.0360b –2.1610 ± 0.0499c 0.991

2-method L 0.0189 ± 0.0005b –0.5632 ± 0.0353a –1.6410 ± 0.0382a 0.991

3-method X 0.0587 ± 0.0019a –0.5010 ± 0.1536a –2.1412 ± 0.1754ab 0.948

3-method Y 0.0181 ± 0.0004c –0.4453 ± 0.0216a –2.0777 ± 0.0266b 0.998

3-method Z 0.0339 ± 0.0009b –0.5686 ± 0.0682a –1.7911 ± 0.0734a 0.994

Within each experiment, the fitted value followed by different letters in the same column differed significantly at confidence level p = 0.05.

accuracy obtained using method L was significantly lower, and
the test loss was significantly greater than those obtained using
method J and method K (Table 5).

The confusion matrix for method J in experiment 2 revealed
that the model can distinguish RNB from other classes well,
and the accuracy of RLBC was the lowest among the five
classes, with majority of misclassification errors between RLBC
and RSBL, but its recognition accuracy of RNB was relatively

TABLE 5 | The accuracy and loss obtained with validation and test datasets in
three experiments using different methods.

Experiment-method Val_acc Val_loss Test_acc Test_loss

1-Method A 0.9831b 0.0530a 0.9573b 0.1680a

1-Method B 0.9928a 0.0211b 0.9767a 0.0685b

1-Method C 0.9912a 0.0254b 0.9727a 0.0957b

2-Method J 0.9928a 0.0282a 0.9593a 0.1223c

2-Method K 0.9918a 0.0251a 0.9547a 0.1586b

2-Method L 0.9919a 0.0236a 0.9420b 0.1884a

3-Method X 0.9867b 0.0610a 0.9400a 0.2174a

3-Method Y 0.9927a 0.0225c 0.9593a 0.1060a

3-Method Z 0.9871b 0.0376b 0.9527a 0.1263a

Each of the values in the table was the mean from 3 repeated runs. Within each
experiment, the means followed by different letters in the same column differed
significantly at confidence level p = 0.05.

high (Figure 3D). When a combined class of RNB with RLBC
was used in methods K and L, the accuracy of the combined
RNB/RLBC class was between those of the two separate classes
(Figures 3E,F). It was also noted that considerable errors existed
in misclassifying RSBL into RLBC or combined class of RLBC
with RNB regardless of the methods used (Figures 3D–F). This
revealed that the identification of different plant parts is an
indispensable part of classification by CNN models, and this
identification could help to distinguish diseases on different plant
parts, but similar symptoms on the same plant parts could not
use this information and therefore become a more difficult task.
It was also very interesting to note that method L had lower
accuracy on combined RLBC/RNB class than method K. This
might have been because method K had been trained with more
images of the combined class than method L.

Experiment 3: Similar Symptoms of the
Same Disease at Different Parts
The initial validation accuracy of method Y was the highest
among the three methods, and with the increase in training
epochs, its validation accuracy remained highest all way to the
end (Figure 2E). The results from t-test on model parameters
Amax and ra revealed that the highest validation accuracy Amax
from method Y was significantly higher than those from the other
two methods, but no significant difference in ra was detected
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FIGURE 3 | The normalized confusion matrix for the test results from experiments 1, 2, and 3. Method A (A): Training with two separate classes, namely, acute type
of rice leaf blast (RLBA) and chronic type of rice leaf blast (RLBC). Method B (B): Combining RLBA and RLBC as one class for training and the total number of
images in the combined class was two times as those in the other three classes. Method C (C): Combining RLBA and RLBC as one class for training and the total
number of images in the combined class was equal to those in the other three classes. Method J (D): Training with two separate classes of RLBC and rice neck
blast (RNB). Method K (E): Combining RLBC and RNB as one class for training and the total number of images in the combined class was two times as those in the
other three classes. Method L (F): Combining RLBC and RNB as one class for training and the total number of images in the combined class was equal to those in
the other three classes. Method X (G): Training with two separate classes of rice sheath blight on leaves (RSBL) and rice sheath blight on sheath (RSBS). Method Y
(H): Combining RSBL and RSBS as one class for training and the total number of images in the combined class was two times as those in the other three classes.
Method Z (I): Combining RSBL and RSBS as one class for training and the total number of images in the combined class was equal to those in the other three
classes.

between method Y and method Z (Table 4A). The validation
loss curves obtained with three methods displayed trends reverse
to validation accuracy, in that no significant difference in the
decline rate rl of validation loss was detected among three
methods (Figure 2F), but method Y had the lowest validation
loss among the three methods, and method X had the highest
validation loss.

The test results showed that the average test accuracy of
method Y was much higher than that of method X and slightly

higher than that of method Z (Table 5), although the ANOVA
detected no significant difference between the three methods
(see Supplementary Material). The confusion matrix of the
test results illustrated that the model trained with method X
misclassified 4% RLBC images as RSBL and 9% RSBL images as
RLBC (Figure 3G). When the model was trained using method
Y, with a combined class of RSBL&RSBS, its accuracy was greatly
improved that it misclassified 6% of RLBC images into the
combined class, but only misclassified 2% RSBL&RSBS images
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into RLBC (Figure 3H). Similar results were gained with method
Z (Figure 3I). Once again, classifying between RLBC and RSBL
was a difficult task, and the accuracy for the combined class was
higher for method Y than for method Z, where more combined
class images were used in training for method Y than method Z.

To further explore the reasons why differentiating RLBC
and RSBL was difficult and easy to be misclassified for the
outcome models, heatmaps of RLBC samples correctly classified,
RLBC images misclassified as RSBL, RSBL samples correctly
classified, and RSBL images misclassified as RLBC were compared
(Figure 4). For those correctly classified RLBC, the areas with hot
color were concentrated around the disease lesions, suggesting
an excellent feature extraction by the model (Figures 4.1–4.4).
However, it was observed that in most of the misclassified
RLBC samples, the hot loci were not well overlapped with the
disease lesions, suggesting the model didn’t extract important
lesion features for decision-making, interfered either by other leaf
damages (Figures 4.5,4.6) or field background (Figures 4.7,4.8).
The existence of RLBC that directly led to the test results
of the three methods of experiment 3 was not significantly

different. Unlike RLBC, for all RSBL images, regardless of
whether correctly classified or misclassified, the classification
areas were mainly concentrated on the disease lesion area
(Figures 4.9–4.16). It can be seen that compared with the typical
symptoms of RSBL, in most of the misclassified samples, lesions
were relatively small, had gray center areas, and were surrounded
by brown halos, which was, to a certain degree, similar to the
atypical RLBC, except for the subtle difference in lesion shapes
(Figures 4.15,4.16). This may be one of the reasons why more
rice sheath blight images were identified as RLBC than RBS.

DISCUSSION AND CONCLUSION

In this study, we explored some specific problems encountered in
dataset configuration for automatic recognition of rice diseases.
The results from this study demonstrated that whether a
combined class or several separated classes should be used
depend on the similarity of these classes. For example, our results
from experiment 1 demonstrated that using a combined class

FIGURE 4 | Heatmaps generated based on the classification by models trained with methods X for some rice leaf blast samples and rice sheath blight samples.
(1–4) The samples of chronic type of rice leaf blast (RLBC) that were correctly recognized as RLBC; (5–8) The samples of RLBC that were mistakenly recognized as
RSB. (9–12) The samples of rice sheath blight (RSB) that were correctly recognized as RSB. (13–16) The samples of RSB that were mistakenly recognized as RLBC.
The red part has the highest contribution to the final prediction results. On the contrary, the purple part has the lowest contribution to the final prediction results of an
image).
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for RLBA and RLBC, two very similar symptoms on rice leaves,
could achieve better recognition performance (higher accuracy
and lower loss) than using two separate classes. A possible
explanation might be that similar lesions sometimes are difficult
to differentiate even for human experts because acute lesions
often gradually develop into chronic lesions in the later stage
(Kumar et al., 1992). This was also supported by the high
misclassification rate between these two classes by method A
using separate classes, but relatively low misclassification rates
between any of these two classes and other class by method A.
Similarly, for RSBL and RSBS in experiment 3, using a combined
class in the training dataset could achieve a better performance
than using two separate classes. A possible explanation is that
using two separate classes of RSBL and RSBS will require the
model to differentiate the similar cloud-shaped lesions on leaves
and on sheaths and therefore will increase the possibility for
the model to make mistakes in recognition of the background
plant parts. However, using a combined class and using separate
classes for RLBC and RNB had no significant impact on the
performance of resulted models in experiment 2 where two
symptoms were on different plant parts. A possible explanation
for this was that with information from areas surrounding
lesions, it is relatively easy for CNN model to differentiate
two different symptoms, and thus, using a combined class or
two separated classes didn’t have any significant impact on the
final recognition as illustrated among methods J, K, and L in
experiment 2 of this study.

The results from this study illustrated that a large number of
images were required for training to achieve a high and repeatable
recognition accuracy. As revealed in experiment 2, method L,
in which the model was trained with half as many images of
RLBC/RNB class as in methods J and K, although gained very
high validation accuracy, performed significantly worse than
methods J and K when tested with unseen images. So, for deep
learning model, how many images are required to achieve best
recognition effect? Is the more the number of images, the better
the result will be? So far, few experts have explored this issue,
and the number of images used in the existing literature varied
from dozens to thousands. Rangarajan et al. (2018) discussed the
influence of different number of images on the accuracy of the
model, but the total number of images was small, and a scientific
validation process has not been established yet. More in-depth
studies are needed to answer this question in the future.

Through this study, we further prove the excellent ability
of CNN in feature extraction. Based on the results of three
experiments, it can be seen that the main features affecting the
decision-making of rice disease classification models came from
the disease lesion area, then from the area of plant organs, and
finally from the image background. This is also consistent with
the logic of human beings when classifying crop diseases. It can
be seen from the heatmaps that for most samples, whether by
correctly classified or by misclassified, the main feature areas
that affect the model decision-making were still concentrated
on the lesion area, and the areas were covered with red or
yellow. The nearby areas of rice organs were also yellow, while
the less important background areas were covered with blue or
purple. The results of experiment 3 showed that when the disease

lesions of RSB were similar, even if they existed on different
organs, there would be confusion between RSBL and RSBS to
some extent, indicating that the main distinguishing features
still came from the lesion. At the same time, the results of
experiment 2 showed that when the symptoms and organs were
different, the model could extract more favorable information
except the features of disease lesions, and that is why it can
well distinguish the two classes when separately training RLBC
and RNB. Does this mean that the image background is not
important? Studies have shown that although the targets on the
simple indoor background image and the complex field image
were the same, the models trained by the two image sets could
not be universal (Ferentinos, 2018). From the heatmaps of RLBC
images misclassified as RSBL, it can be seen that although the
error rate was low, the main factor causing the wrong model
decision was the feature extraction of the field background. This
also showed that the recognition of the background played an
auxiliary role for the model. Therefore, it is very important to
collect disease images under different conditions to improve the
generalization ability of the models.

The results of three experiments showed that if the data
configuration scheme was correct, the overall accuracy could
be effectively improved. In experiment 1, combining the two
similar leaf symptoms of rice and training, the validation
accuracy was improved from 0.9831 to 0.9928, and the test
accuracy was improved from 0.9573 to 0.9767, which was
statistically significant at the confidence level of 0.05. Similarly,
in experiment 3, the average accuracy of two symptoms of
rice sheath blight was improved to 0.9700 from 0.9250 by
using a combined class for similar symptoms on different
plant parts. However, the results of experiment 2 revealed
that for disparate symptoms on different plant parts, training
with one combined class or two separate classes makes no
difference, and the amount of data is a key factor affecting
the overall accuracy. The average test accuracy of method L
with a smaller data set was significantly lower (at a confidence
level of 0.05) than that of the other two methods with
larger datasets.

This study proposed a database configuration scheme among
different symptoms of the same rice disease. Similar problems
are often encountered in the diagnosis of other crop diseases
(Barbedo, 2016). If our goal is to achieve a high overall
classification accuracy, the findings from this study provide a
reference. However, if the purpose is to differentiate multiple
similar disease symptoms on different plant parts or at different
stages, even if the symptoms are similar, they should be
separately trained. Hopefully, the findings from this study
can inspire researchers to put more efforts in automatic crop
disease identification and think about the problems of disease
identification from more different perspectives.
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