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With a growing world population and increasing frequency of climate disturbance events, 
we are in dire need of methods to improve plant productivity, resilience, and resistance 
to both abiotic and biotic stressors, both for agriculture and conservation efforts. 
Microorganisms play an essential role in supporting plant growth, environmental response, 
and susceptibility to disease. However, understanding the specific mechanisms by which 
microbes interact with each other and with plants to influence plant phenotypes is a major 
challenge due to the complexity of natural communities, simultaneous competition and 
cooperation effects, signalling interactions, and environmental impacts. Synthetic 
communities are a major asset in reducing the complexity of these systems by simplifying 
to dominant components and isolating specific variables for controlled experiments, yet 
there still remains a large gap in our understanding of plant microbiome interactions. This 
perspectives article presents a brief review discussing ways in which metabolic modelling 
can be used in combination with synthetic communities to continue progress toward 
understanding the complexity of plant-microbe-environment interactions. We highlight 
the utility of metabolic models as applied to a community setting, identify different 
applications for both flux balance and elementary flux mode simulation approaches, 
emphasize the importance of ecological theory in guiding data interpretation, and provide 
ideas for how the integration of metabolic modelling techniques with big data may bridge 
the gap between simplified synthetic communities and the complexity of natural plant-
microbe systems.

Keywords: synthetic communities, plant microbiome, plant microbial interactions, metabolic modelling, flux 
balance analysis, elementary flux mode analysis

INTRODUCTION

Plants have evolved intricate signalling networks sensing and responding to environmental 
stimuli. In recent years, the complex network of interactions existing between plants, microorganisms, 
and their environment has been recognized as an important factor impacting plant health and 
productivity (Timm et  al., 2018; Kumar and Verma, 2019; Harman et  al., 2021). Plants rely 
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on microbes for biologically available forms of essential nutrients 
(Richardson et  al., 2009); beneficial microbes also aid in 
protecting against pathogens and pests and are involved in 
plant response to environmental conditions such as heat and 
drought (Bhattacharyya et  al., 2016; Liu et  al., 2020).

The numerous multi-directional interactions that occur among 
plants, colonizing microorganisms, and environmental variables 
create difficulty in determining cause-and-effect relationships. 
For example, soil contains thousands of different microbial 
taxa (Lennon et  al., 2012), a subset of which are recruited 
for colonization by plant secretion of root exudates (e.g., Lebeis 
et  al., 2015); in addition to chemical signalling factors from 
roots, environmental factors such as soil chemical properties, 
pH, moisture content, and temperature also affect microbial 
colonization (Andrew et al., 2012; Islam et al., 2020b), influencing 
both microbe-microbe and plant-microbe interactions. Synthetic 
communities provide a reductionist approach to help constrain 
biological factors, examining a limited number of microbial 
species with key roles in the community to better understand 
driving forces and their overall effect on the productivity and 
resilience of plant-microbe systems (Vorholt et al., 2017). In 
the last decade, synthetic communities have become widely 
applied in a variety of contexts including agriculture (De Roy 
et  al., 2014; De Souza et  al., 2020; Sgobba and Wendisch, 
2020), recognizing their value in experimental hypothesis testing.

Even with the tools provided by synthetic communities, an 
accurate understanding of multi-species, cross-domain 
interactions is still complicated by the complexity of each 
individual member’s metabolic network. Metabolic modelling 
provides mathematical predictions of metabolic routes used 
by an organism under different biological and environmental 
constraints and can thus help quantify the function of individual 
members and identify potential roles in community interaction 
on a metabolic level (Bosi et  al., 2017). This technique 
complements experimental findings with a computational aspect 
that can aid in elucidating interactions that may elude solely 
experimental approaches. This perspectives article provides 
insight into how metabolic modelling can be  integrated with 
experiments, using ecological theories to mine the complexities 
of plant-microbe-environment interactions and illuminate 
underpinning rules that lead to increased productivity and 
robustness in these systems.

OVERVIEW OF SYNTHETIC 
COMMUNITIES IN PLANT SYSTEMS

Synthetic communities have been developed for a variety of 
plants to provide more tractable systems for controlled lab-scale 
experiments. Microbes have been isolated and cultured from 
several different plant species of interest, including the model 
plants Arabidopsis thaliana and Lotus japonicus, and agriculturally 
important species such as rice, maize, tomato, potato, clover, 
and sugarcane (Liu et al., 2019; Wippel et al., 2021), identifying 
key functional microbial taxa that may influence plant-microbe 
interactions. Synthetic microbial communities have been 
developed for both rhizosphere and phyllosphere communities 

in several species: most notably Arabidopsis, as well as maize, 
sorghum, and duckweed, among others, with varying levels 
of phylogenetic representation (Table  1). Varied approaches 
have been taken for designing synthetic communities with the 
ultimate goal of developing a community representative of the 
function and interactions of a natural, complex microbiome 
(e.g., Timm et  al., 2016; Wang et  al., 2021). Co-occurrence 

TABLE 1 | Highlighted synthetic microbial communities and community 
metabolic models.

Development of select synthetic microbial communities

Species
Number of 
members

Bacterial phyla 
represented

Reference

Arabidopsis 
phyllosphere

62 9 Carlström et al., 
2019

Arabidopsis 
rhizosphere

185 4 Finkel et al., 2019

Maize 7 3 Niu et al., 2017
Sorghum 36 4 Chai et al., 2021
Duckweed 6 2 Ishizawa et al., 

2020

Select microbial community metabolic models

Environment Findings Reference

Sulfate-reducing bacterial 
community

Illuminated the important 
role of hydrogen in 
syntrophic exchange 
between sulfate reducer 
and methanogen

Stolyar et al., 2007

International Space 
Station microbiome

Investigated potential 
interactions of dominant 
Klebsiella pneumoniae – 
mutualistic interactions with 
other bacteria and negative 
interactions with fungi

Kumar et al., 2021

Washington lake 
environmental 
communities

Demonstrated differential 
responses by two major 
methanotrophic species to 
environmental factors 
(carbon, oxygen, nitrogen 
levels)

Islam et al., 2020a

Human gut microbiome Demonstrated the spatial 
organization and response 
of microbial community 
members based on oxygen 
availability in wound 
colonization

Chan et al., 2019

Synthetic microbiome 
colonizing the mouse gut

Utilized metabolomics data 
in combination with models 
to determine type and 
directionality of 
interactions, and 
demonstrated change in 
community composition as 
a function of nutritional 
environment

Weiss et al., 2021

Select synthetic microbial communities have been developed for a number of plant 
species, encompassing an array of different bacterial phyla. Select recent studies using 
microbial community models have uncovered new functionalities and interactions 
previously unknown by experimental means.
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network analyses are commonly used to identify core functional 
microbiomes – a reduced subset of microbial species that 
captures the main metabolic processes performed by a community 
(Toju et  al., 2020), but other methods recognize the inherent 
complexity of non-equilibrium microbe-environment interactions 
and incorporate time-series data with empirical methods (Deyle 
et  al., 2016; Suzuki et  al., 2017). Metabolic modelling provides 
a theoretical approach to complement the experimental process 
of first selecting and building a synthetic community, as well 
as predicting physiological properties of the community.

WHAT IS METABOLIC MODELLING?

A metabolic model is a mathematical representation of the 
stoichiometries of metabolic reactions occurring within an 
organism, ranging in complexity from prokaryotes to eukaryotes. 
Models are generated from genomic data using databases such 
as KEGG, MetaCyc, JGI IMG/M, RAST, and BRENDA to 
identify genes and associated metabolic reactions, collect 
metabolite stoichiometries for each reaction, and compile the 
information into a metabolite-reaction stoichiometry matrix 
via software tools such as KBase, Python, or CellNetAnalyzer 
(von Kamp et  al., 2017; Arkin et  al., 2018; Medlock et  al., 
2020). The process of building a metabolic model is a type 
of experiment in itself, as model accuracy is influenced by 
genome completeness, quality of genomic data and annotations 
(which can result in missing genes, reactions, or pathways), 
and availability of experimental data (such as biomass 
composition and maintenance energy requirements). The outcome 
of metabolic model construction is a hypothesis that can be used 
to predict physiological response under different environmental  
circumstances.

Simulation methods vary in their mathematical approach 
to solving the system of linear equations produced by the 
metabolite-reaction stoichiometric matrix, but all assume a 
steady state environment (Sv = 0, where S is the stoichiometric 
matrix and v is the flux vector). This system of equations is 
typically underdetermined due to a greater number of 
participating metabolites than number of reactions (Klamt 
et al., 2002); therefore, infinitely many flux solutions may satisfy 
the system. Elementary flux mode analysis and flux balance 
analysis are two of the most commonly employed simulation 
approaches and differ in computational intensity and scope of 
the solutions obtained, providing different advantages for plant 
microbiome applications.

Elementary flux mode analysis is a computationally intensive 
approach that enumerates all possible minimal pathways that 
balance the stoichiometric matrix (i.e., if a single reaction were 
removed from a minimal flux vector, the route through the 
network would be incomplete). This approach has been likened 
to finding the most efficient path when navigating a subway 
network (Zanghellini et  al., 2013). From the entire set of 
elementary flux modes, any possible metabolism of the organism 
can be  described by a linear combination of the elementary 
flux modes, serving as a comprehensive and unbiased examination 
of the organism’s physiological potential. The number of modes 

calculated for a given model depends on the model structure 
(reaction connectivity and reversibility, exchange reactions, etc.); 
but computational expense typically limits applications to small 
networks, though recent algorithm developments have enabled 
computation of 12 billion elementary flux modes (Buchner 
and Zanghellini, 2021). For complex communities, feasibility 
may be improved by performing elementary flux mode analysis 
for each species model separately, individually analyzing results 
for biologically and ecologically relevant pathways (e.g., Beck 
et  al., 2017). The curated results can then be  transferred into 
a less expensive optimization method (like flux balance analysis 
described below), similar to the hybrid analysis method 
demonstrated in Hunt et  al. (2018), to enhance simulation 
tractability for plant-microbe systems.

Alternatively, flux balance analysis is a less computationally 
intensive approach using a linear optimization strategy to solve 
the stoichiometric matrix. By applying constraints to cellular 
uptake and secretion reactions along with an objective criterion 
(typically maximization of biomass production), the metabolic 
network is optimized under a restricted space. While this method 
is more easily applied to large networks, it presents bias toward 
the researcher-determined objective criterion, and it often does 
not provide a unique solution as more than one flux vector 
may achieve the same optimized objective value due to network 
redundancy. Flux balance analysis provides great utility in 
specifying uptake and secretion rates of nutrients and metabolic 
byproducts and can be  used to test hypotheses of metabolite 
exchange in silico, which is key to elucidating plant-microbe 
and microbe-microbe interactions. Several algorithmic variations 
have extended this approach to examine more complex cellular 
environments, allowing consideration of other constraints on 
metabolism that are also useful to plant systems, such as cellular 
volume and biosynthetic costs of enzyme assembly (Mori et al., 
2016), intracellular heterogeneity (Damiani et al., 2017), balance 
of resource usage (Goelzer and Fromion, 2011), and dynamic 
growth and integration with consumer-resource models 
(Mahadevan et  al., 2002; Gowda et  al., 2022).

How Can Metabolic Modelling Be Applied 
to Understand Multi-Organism 
Interactions?
While metabolic modelling was initially employed for singular 
species, increased availability of genomic data and development 
of more efficient computational algorithms has enabled 
application to community models. Stolyar et  al. (2007) were 
the first to extend flux balance analysis to a multispecies context, 
using a multi-compartment flux balance model to predict 
metabolite exchange between the sulfate reducer Desulfovibrio 
vulgaris and the methanogen Methanococcus maripaludis, thereby 
highlighting the important role of hydrogen in syntrophy 
between the two microbes. Since this pioneering study, metabolic 
models have been used to investigate potential interactions 
within several different microbial community contexts, with a 
few recent key studies highlighted in Table  1.

Plants present a unique challenge for the construction of 
high-quality metabolic models due to large eukaryotic genomes, 
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multiple differentiated tissues, and redundancy associated with 
polyploidy in many plant genomes. As more genomic data is 
collected, current efforts to improve databases, annotations, 
and primary and secondary pathways (e.g., PlantSEED; Seaver 
et  al., 2018) provide automated platforms as a starting point 
for plant-specific modelling. To date, metabolic models have 
been developed for specialized tissue types of several different 
plant species, including soybean seed (Moreira et  al., 2019), 
rapeseed (Pilalis et  al., 2011), rice (Chatterjee and Kundu, 
2015), potato (Botero et  al., 2018), and maize (Saha et  al., 
2011). Integration of multiple compartments within a metabolic 
model has also allowed reconstruction of multi-tissue models 
for more accurate representation of plant metabolism (Shaw 
and Cheung, 2020); for example, one of the most comprehensive 
plant models developed thus far has encompassed six different 
key tissues for Arabidopsis to more accurately predict whole-
plant physiological responses (Gomes de Oliveira Dal’Molin 
et al., 2015). Additionally, multi-scale models (e.g., incorporation 
of gene regulation or phenomic data) can improve accuracy 
and provide experimental validation, aiding in understanding 
physiological effects of factors such as genome redundancy 
and circadian rhythm (Jez et  al., 2021; Krantz et  al., 2021).

Despite these advances in modelling applications for both 
plants and microorganisms, we  found no studies investigating 
plant-microbe interactions with a community metabolic model 
approach (i.e., integrating both plant and microbial models 
into the same simulation). Recent algal-bacterial community 
models are moving in this direction to study more complex 
phototroph-heterotroph and eukaryote-prokaryote interactions 
(Dittami et  al., 2014; Gomez et  al., 2021). Furthermore, there 
still exists a large gap between modelling, lab-scale experimental 
results, and field-scale results, offering abundant opportunity 
for advances in this area. The sections below outline four key 
areas in which modelling could be  used to enhance plant 
microbiome studies harnessing the utility of synthetic 
communities, followed by overall challenges and opportunities 
moving forward.

Disentangling Multi-Directional 
Microbe–Microbe Interactions
Interspecies interactions can take a variety of forms, e.g., mutualistic, 
commensal, antagonistic, parasitic (Holland and DeAngelis, 2009). 
Often, interactions are based on metabolite exchange which may 
be  the basis for either an obligate or facultative relationship 
(Zelezniak et  al., 2015; Beck et  al., 2016). Even in simplified 
synthetic communities with few members, interactions are still 
complex and multifaceted. Interactions can sometimes be  teased 
apart with carefully designed experiments; however, experimental 
measurements are not always able to distinguish the specific 
donor and recipient of metabolite exchanges. Modelling therefore 
allows for in silico testing of a multitude of possible unidirectional 
and bidirectional interactions within a community in a more 
rapid time frame. For example, a systematic approach for dissecting 
community interactions may involve first selecting specific pairs 
of organisms and predicting potential metabolite exchange-based 
interactions through a dual member model. Comparing the 

pairwise interaction predictions with simulations of a larger 
community will then aid in understanding how interactions 
could change with additional community member(s) (Figure 1).

Modelling Plant-Specific Tissues and 
Community Assembly Processes
Rhizosphere and phyllosphere communities are complex 
assemblages of many species of organisms with the host plant, 
including not only bacteria but also archaea, fungi, and protozoa. 
The mechanism of community assembly is a major research 
question, including the effect of environmental stimuli on the 
assembly process, e.g., soil quality, nutrient availability, 
temperature, moisture, and presence of other organisms like 
pests and pathogens. Recruitment of microorganisms to a tissue 
involves metabolite exudation by the plant, but the ways in 
which plant-microbe and microbe-microbe interactions impact 
this process are currently poorly understood. Integration of 
plant and microbial metabolic models in a dynamic format 
(e.g., use of dynamic flux balance algorithms to investigate 
time-resolved interaction effects) will aid in better understanding 
and predicting the assembly process, particularly in understanding 
what drives colonization differences among plant species as 
well as how pathogens may disrupt the colonization process.

Interaction Effects Resulting From Abiotic 
and Biotic Stresses
Beyond initial community assembly, environmental stresses are 
also known to have profound impacts on plant physiological 
responses. The literature is filled with examples demonstrating 
effects on growth and productivity by factors such as drought, 
temperature, and nutrient limitation (Cramer et al., 2011; Fahad 
et  al., 2017). However, research has focused primarily on plant 
molecular and physiological responses, whereas many of these 
responses are mediated by plant-microbe and microbe-microbe 
interactions. Our understanding of how interactions change 
under different environmental stressors can benefit from 
modelling investigations, which can test a particular environment 
as part of the research question. For example, in flux balance 
analysis, substrate availability or uptake can be  restricted 
according to the desired environmental scenario. Elementary 
flux mode analysis commonly examines pathway efficiency, and 
under nutrient limitations, cells are typically presumed to use 
the limited nutrient more efficiently relative to other substrates, 
guiding the simulation analysis. Careful design of simulation 
environments can be  used in conjunction with greenhouse or 
laboratory experiments to gain a better understanding of how 
environmental pressures impact plant-microbe systems via 
community interaction effects. Biotic stressors can be investigated 
similarly (e.g., expanding a community model to include a  
pathogen).

Incorporating Community Ecology Theory 
in Metabolic Modelling
Metabolic modelling uses genomic data combined with 
biochemical reactions governed by steady state conservation 
of mass to predict metabolite flux through a cell. However, 
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this methodology further provides a platform for incorporating 
ecological theory in interpreting simulation results. For example, 
resource competition and allocation theories (Harcombe et  al., 
2014; Bernhardt et  al., 2020) can be  applied to predict how 
an organism might optimize its use of a certain resource, 
followed by comparison with efficient resource utilization 
predicted for competing species or the entire community. 
Similarly, resource ratio theory (de Mazancourt and Schwartz, 
2010) examines tradeoffs between two key nutrients affecting 
growth, which can be  expanded to examine resource usage 
within a community, as well (e.g., influence of microbial 
community composition on plant tissue allocation as observed 
in Henning et  al., 2019). The maximum power principle, an 
alternative theory focused on energy usage, states that 
communities are evolutionarily organized to maximize energy 
consumption from the environment (Lotka, 1922; Sciubba, 
2011). This principle has been less commonly applied in 
microbial communities but has been used to examine competition 
strategies (Cai et  al., 2006; DeLong, 2008) and can provide 
another framework with which to evaluate the efficiency of 
community organization. Integrating these different community 
ecology theories can aid in elucidating the balance between 
competitive and cooperative interactions.

Key Challenges in Plant Microbiome 
Modelling
Community models present a unique challenge as compared 
to individual species models when designing model simulations, 
specifically with regard to determining the optimization criterion 
that best represents the community objective in a natural 
system, as accurately modelling the overall community “goal” 
can be  challenging. Typically for single species models, growth 
rate is used as the optimization criterion to determine a 
metabolic route that promotes maximum biomass formation, 
which may or may not be  reflective of actual cellular targets, 
depending upon the environment. Many natural environments 
are nutrient-poor and may not promote growth at the highest 
capacity; desirable metabolic routes may instead optimize for 
efficient use of a limiting resource like nitrogen or for efficient 
energy production. Many current community modelling 
configurations optimize the overall community growth rate 
(Zomorrodi and Maranas, 2012). According to ecological 
principles, however, communities may not always be  operating 
to achieve the maximum total biomass; thus, the objectives 
relevant to the specific scenario must be  carefully decided 
upon when designing a model simulation. Objectives should 
be  based on ecological principles and should account for the 
conditions or treatments being investigated.

Experimental validation of model predictions is essential 
due to the complexity of microbial communities and the 
underdetermined nature of individual metabolic networks which 
allows multiple possible solutions. With the broader availability 
of omics technologies and the ability to generate large data 
sets at lower costs, it is now possible to obtain multiple layers 
of data to complement modelling studies. Actualization of 

FIGURE 1 | Schematic illustrating proposed metabolic modelling 
workflow with synthetic communities as input. The natural microbiome is a 
complex environment and is simplified to a synthetic community with a 
tractable number of microorganisms via experimental isolation techniques 
and/or metagenomics methods. Genomes for this limited number of 
microorganisms are used to construct metabolic models for each species, 
which can then be used with pathway simulation tools (flux balance 
analysis, FBA; elementary flux mode analysis, EFMA) to predict both 
pairwise and community interactions to observe changes due to additional 
community members and determine patterns of interaction. In the 
example shown, the blue microbe secretes a compound that is beneficial 
to both the red and green microbes and stabilizes their original negative 
pairwise interaction. Complementarily, culturing experiments can be used 
to examine the responses of microbial communities (both in planta and in 
vitro) to environmental variables such as limited nutrients or water stress. 
Collecting molecular data under specific experimental conditions provides 
data to integrate with modelling predictions, which can be interpreted with 
the aid of relevant ecological theory, such as resource ratio theory, 
resource allocation theory, or the maximum power principle. This process 
leads to iterative refinement of both models and experimental design, 
ultimately contributing to broader outcomes relevant to agricultural 
practice, such as the design of microbial inoculants to promote plant 
growth and resilience, an improved understanding of plant-microbe 
response to the environment under changing climate conditions, and the 
implementation of field-scale trials to further test interaction principles in 
the natural environment.
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genomic potential can be  examined at many levels – e.g., 
metatranscriptomics (Bashiardes et  al., 2016), metaproteomics 
(Kleiner, 2019; Salvato et  al., 2021), metabolomics, and plant 
phenomics. These different expression levels are important for 
understanding experimentally how the intersection of multiple 
metabolic networks affects the plant, as using one data type 
alone may yield very different predictions (Blazier and Papin, 
2012; Payne, 2015). A key area of algorithm development is 
the incorporation of omics data within a metabolic network 
to influence optimization results to more accurately reflect and 
predict the outcome of a particular experimental scenario (e.g., 
Jungreuthmayer et  al., 2013; Gerstl et  al., 2015; Tian and 
Reed, 2018).

CONCLUSION AND OUTLOOK

The above narrative addresses the current state of metabolic 
modelling as applied specifically to plant-microbe-environment 
interactions, detailing some of the key challenges in expanding 
modelling applications to these complex systems. Merging 
computational and experimental approaches will improve our 
limited understanding of multi-faceted plant-microbe-
environment relationships (Figure  1). Advances will enable 
agricultural improvements, such as development of microbial 
inoculants to promote plant growth or resilience in the face 
of increasing global climate events. With these efforts, maintaining 
quality standards for modelling across the scientific community 
(Carey et  al., 2020; Lieven et  al., 2020) will continue to 
be  essential when extending models and algorithms to more 
complex plant-microbe systems.

Envisioned future applications (Figure  1) involve starting 
from a relatively small synthetic microbial community (e.g., 
less than 10 members), developing a genome-enabled model 
for each member, validating individual models with experimental 
data (as much as possible), and investigating in silico pairwise 
interactions between species. Successively larger community 

models can be  constructed by including additional member(s) 
and comparing with the previous pairwise models to observe 
how predictions change as more members are added. Laboratory 
and greenhouse experiments testing different community 
compositions, environmental factors, or other variables of interest 
can be  used to verify and refine the community model, with 
the ultimate goal of moving to more complex systems (e.g., 
field-scale validation in agricultural settings). With continued 
effort and progress, the general principles and pattern of 
interactions uncovered through this systematic process is 
anticipated to be transferable to other plant systems; the microbes 
involved in the interactions may be  different but likely follow 
similar governing interaction rules and can be used to engineer 
agricultural solutions in many different crops.
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