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Biological invasions have become one of the greatest threats to global biodiversity
and ecosystem conservation. Most previous studies have revealed how successful
invasive species adapt to new environments and climate change through phenotypic
and genetic evolution. Some researchers suggested that understanding unsuccessful
or less successful biological invasions might be important for understanding the
relationships between invasion adaptability and climate factors. We compared the
sexual reproduction ability, genetic diversity, and gene × environment interaction in two
intentionally introduced alien species in China (Spartina anglica and Spartina alterniflora)
based on restriction site-associated DNA (RAD) sequencing. After more than 50 years,
the distribution of S. alterniflora has rapidly expanded, while S. anglica has experienced
extreme dieback. A total of 212,939 single nucleotide polymorphisms (SNPs) for the
two Spartina species were used for analysis. The multilocus genotype (MLG) analysis
revealed that clonal reproduction was the prevalent mode of reproduction in both
species, indicating that a change in the mode of reproduction was not the key factor
enabling successful invasion by Spartina. All genetic diversity indicators (He, Ho, π)
in S. alterniflora populations were at least two times higher than those in S. anglica
populations, respectively (p < 0.001). Furthermore, the population genetic structure
and stronger patterns of climate-associated loci provided support for rapid adaptive
evolution in the populations of S. alterniflora in China. Altogether, our results highlight
the importance of genetic diversity and local adaptation, which were driven by multiple
source populations, in increasing the invasiveness of S. alterniflora.

Keywords: Spartina alterniflora, biological invasions, RAD, genetic paradox, environmental adaptation

INTRODUCTION

Biological invasions have become one of the greatest threats to global biodiversity and ecosystem
conservation (Clavero and García-Berthou, 2005; Simberloff et al., 2013; Early et al., 2016).
Understanding the mechanisms of invasion would contribute to methodologies for its prevention
and control. In recent years, many researchers have explored invasion mechanisms by examining
the genetic backgrounds of invasive alien species, especially the links between genetic diversity,
bottlenecks, founder events, adaptive evolution, and invasion success (Dlugosch and Parker,
2008; Prentis et al., 2008; Estoup et al., 2016). Although the genetic diversity of invasive
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populations may be reduced due to founder events and genetic
bottlenecks, most successful invasive species can overcome
these negative effects through multiple introductions, phenotypic
plasticity, asexual reproduction and hybridization. For instance,
Ambrosia artemisiifolia invaded European, Australian and
Chinese areas with high levels of genetic diversity due to
multiple introductions (Genton et al., 2005; Gaudeul et al.,
2011; van Boheemen et al., 2017; Li et al., 2019b). Phenotypic
plasticity rather than genetic adaptation helps Alternanthera
philoxeroides (Geng et al., 2007; Roman and Darling, 2007)
and Spartina densiflora (Castillo et al., 2018) colonize a wide
range of habitats. Some populations of Eichhornia crassipes
in China can successfully invade without genetic variation
via clonal reproduction in the introduced range (Ren et al.,
2005; Roman and Darling, 2007). Spartina anglica successfully
invaded the British Isles (Raybould et al., 1991) through
interspecies hybridization. Therefore, disadvantages associated
with founder events might be overstated (Estoup et al., 2016),
and genetic diversity does not necessarily predict invasion success
(Roman and Darling, 2007).

Some researchers hypothesized that understanding
unsuccessful or less successful biological invasions is also
important for determining the role of genetic diversity and
bottlenecks in invasion success (Fridley et al., 2007; Roman and
Darling, 2007; Zenni and Nuñez, 2013). Comparing genetic
and environmental characteristics between successful and
unsuccessful populations can also help reveal mechanisms
producing fitness variations in different environments, which
are valuable in studies of genotype-by-environment interactions
in the introduced range (Lee, 2002). Wellband et al. (2017)
showed that allelic diversity reduction was associated with
lower invasion success by comparing highly successful and less
successful invasive species of gobies and tunicates. Following
this study, the authors used functional genetic markers to test
the link between genetic selection and the invasion success of
two pairs of invasive goby species. They proposed that increased
evolutionary potential in invaded ranges may be associated with
invasion success (Wellband et al., 2018). However, studies on
unsuccessful or less successful invasions of different biological
groups remain limited.

Spartina anglica and Spartina alterniflora are perennial grasses
native to British estuaries and the Atlantic and Gulf Coast
estuaries of North America, respectively. S. anglica originated
by natural chromosome doubling of an infertile hybrid (S.
×townsendii) between the European native species S. maritima
and the alien species S. alterniflora (Groves and Groves, 1880).
The new fertile dodecaploid species has rapidly expanded in
salt marshes in several European countries (Gray and Raybould,
1991). As S. anglica and S. alterniflora are “ecological engineers,”
their histories of introduction in China were recorded in detail.
While S. anglica populations expanded rapidly on the European
continent, they experienced dieback in coastal China. The species
was introduced to China from England in 1963 (Chung, 1993),
with planting sites as far as Dongow, Liaoning, in the north, and
Hepu, Guangxi, in the south and a total planting area of almost
36,000 ha in 1981. S. alterniflora was introduced to China later
from North Carolina, Georgia, and Florida of North America in

1979 (Chung, 1993). However, after more than 50 years, there
were only three sites with S. anglica in Jiangsu and Zhejiang
in 2000, with the area shrunken to 50 ha, whereas the area of
S. alterniflora had expanded to 112,000 ha, as reported by An et al.
(2007).

Most studies have proposed that the coexistence of various
intraspecific hybrids, and mixtures of the three ecotypes sampled
from their native ranges is the main reason for the wide spread of
S. alterniflora (Xia et al., 2015), even though the genetic diversity
of populations in China was lower than that in native populations
(Deng et al., 2007; Xia et al., 2015; Bernik et al., 2016). Such
genetic admixture within or between species in the invaded range
may allow them to adapt to local conditions via increases in
heterozygote frequency and the production of novel genotypes
(Ellstrand and Schierenbeck, 2006; Schierenbeck and Ellstrand,
2008; Rius and Darling, 2014). On the basis of chloroplast
sequence analysis and reciprocal transplant experiments, Qiao
et al. (2019) reported that genetic admixture has facilitated
the evolution of super competitive genotypes of S. alterniflora
in China and that the super competitive genotypes could
overcome the negative correlation between plant height and
shoot regeneration in the invasive range. In addition, some
studies have indicated that a lack of nitrogen in soil (Li et al.,
2007), high plant density (Li et al., 2009), and unsuitable soil
texture (Liu et al., 2016a) can cause dieback in S. anglica. One
important reason for the failure of S. anglica in China is weak
sexual propagation, while S. alterniflora had a strong capacity
for both sexual and asexual reproduction (Chung, 1985; Xu and
Zhuo, 1985; Xiao et al., 2011). Li et al. (2008) studied the breeding
system of the species in one field site and a greenhouse, and the
results implied that protogyny, poor pollen quality, and abnormal
pollen grains and pollen tubes were the main causes of low seed
production in S. anglica in coastal China. However, no studies
have compared the genetic characteristics and genotype-by-
environment interactions of the successful invader S. alterniflora
and the less successful invader S. anglica.

Moreover, the distribution areas of S. anglica have become
unclear in recent years. As reported by An et al. (2007), there were
no populations of Spartina in Liaoning. Based on geographical
information systems (GISs), global positioning systems (GPSs),
and on-site investigations in 2007, Zuo et al. (2012) found 1 ha
of S. anglica in Liaoning, 10 ha in Hebei, 3 ha in Shandong,
1 ha in Jiangsu, and 1 ha in Guangdong. The authors found
that populations of S. alterniflora were also distributed in these
provinces and occupied larger areas than S. anglica. Zhang et al.
(2017) also reported one population of S. alterniflora in Liaoning
but no S. anglica. In 2019, we found and identified S. anglica in
Dandong and Huludao cities of Liaoning Province. We chose
four populations of S. alterniflora, which are distributed from
north to south in China, for comparison with the two populations
of S. anglica. We used restriction site-associated DNA (RAD)
sequencing (Baird et al., 2008) to improve the resolution to detect
finer-scale spatial patterns of genetic structure and diversity.
This sequencing method allows concurrent single nucleotide
polymorphism (SNP) identification and genotyping via high-
throughput sequencing of flanking regions of restriction enzyme
digestion sites dispersed throughout the genome. Here, we

Frontiers in Plant Science | www.frontiersin.org 2 May 2022 | Volume 13 | Article 909429

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-909429 May 24, 2022 Time: 15:23 # 3

Li et al. Two Spartina Species in China

addressed three main questions: (1) Did low sexual reproduction
cause the dieback of S. anglica in coastal China? (2) Does the
successful invasive species S. alterniflora have higher genetic
diversity than the less successful invasive species S. anglica?
(3) Do the highly successful invasive species S. alterniflora and
less successful invasive species S. anglica differ in their levels
of genetic adaptation? We also expected to provide evidence to
clarify the role of genetic diversity in the colonization or invasion
failure of species.

MATERIALS AND METHODS

Sample Collection and Species
Confirmation
We collected leaf samples from 88 individuals of Spartina from
six sites (14–15 leaf samples per site) along the coastline of
China in October 2018 (Supplementary Figure 1). From north
to south, the six populations were distributed in Dandong (DD),
Huludao (HLD), Tanggu (TG), Cixi (CX), Quanzhou (QZ),
and Fangchenggang (FCG). Information on the numbers of
individuals and locations of populations is listed in Table 1.
Within each population, the distance between each pair of
sampled individuals was approximately 10 m. We also obtained
three pieces of soil samples from each site, and the depth of the
soil samples was 0–25 cm.

According to the manufacturer’s instructions, genomic DNA
was extracted from the leaves using the EasyPure Plant
Genomic DNA Kit (Beijing TransGen Biotech Co., Ltd., Beijing,
China). Based on the published nrITS sequences of 145 species
of Spartina available from GenBank,1 nrITS (KM010334 of
S. anglica and KM010330 of S. alterniflora) was used to identify
S. anglica and S. alterniflora (Peterson et al., 2014). We confirmed
that the HLD and DD populations were S. anglica and the
other four populations were all S. alterniflora through multiple
sequence alignment and neighbor joining (NJ) tree construction
with 1,000 bootstrap by MAFFT v. 7 (Katoh et al., 2019;
Supplementary Figure 2).

Sequencing and Genotyping
All RAD libraries were created using 200 ng of genomic
DNA from samples of Spartina. This DNA was double-digested
with EcoRI and Mse l (New England Biolab, Beverly, MA,
United States) and ligated to two-end adapters, allowing the
resulting amplified fragments to bind to Illumina flow cells and
uniquely identify the individual. All libraries with insert sizes
of 300–500 bp were isolated by gel extraction and sequenced
on the Illumina XTen platform using 150 nt paired-end reads
(Jierui Biotech, Guangzhou, China). A total of ∼260 GB of data
was obtained from Illumina sequencing of 88 samples from six
populations. The data for each sample were split and filtered
using the process_radtags module of Stacks 2.3e (Catchen et al.,
2011). We removed reads with low quality, missing the restriction
site or linked with incorrect barcodes. We combined each end
of the retained reads from each sample. Here, we set two as

1www.ncbi.nlm.nih.gov/genbank

the minimum depth of coverage (m) required to create a stack
and three as the maximum distance (in nucleotides) allowed
between stacks (M) within an individual. We then used the
cstacks module in Stacks to build the catalogs for all these
individuals, with two as the maximum number of mismatches
allowed between individuals (n). We finally used the cstacks,
ustacks, and populations modules in Stacks to obtain SNPs. We
obtained the loci using the following limits in the populations
module: 0.01 as the minor allele frequency, 75% as the percentage
of individuals sharing the locus within the population, and
appearance of the locus in all populations. Linkage disequilibrium
(LD) between each pair was tested using VCFTOOLS v.0.1.15
(Danecek et al., 2011), and one marker was excluded from each
pair with R2 > 0.8. The LD-excluded VCF data were further
divided into S. anglica and S. alterniflora subsets for subsequent
analysis by Tassel 5 (Bradbury et al., 2007), and the three
datasets were converted into file formats necessary for analyses
using PLINK v.1.9 (Purcell et al., 2007) and PGDSPIDER 2.0.9.0
(Lischer and Excoffier, 2012).

Environmental Data
To test for correlations between genetic and environmental
variables of Spartina in China, we required environmental
data at the sampling locations. We extracted the standard
nineteen bioclimatic variables (Supplementary Table 1) from the
WORLDCLIM dataset (Version 2; period 1970–2000) (Hijmans
et al., 2005) for the set of georeferenced locations of available
localities using DIVA-GIS software (Hijmans et al., 2004). The
total organic nitrogen (TN) and total phosphorus (TP) of the
soil samples were determined using the Kjeldahl method and
the molybdenum-antimony antispectrophotometric method at
Bowu Company, Beijing. Soil electrical conductivity (EC) was
detected by a New Digital DDS-307 Conductivity-Salinity Meter
Tester in a mixture of 1:5 soil:distilled water as an index of soil
salinity (S). The average TN, TP, and S values of three samples
and the standard nineteen bioclimatic variables at each site were
all used as environmental variables (Supplementary Table 1).

Genetic Diversity and Clone Detection
Genetic diversity indices including the percentage of
polymorphic loci (%poly), average nucleotide diversity (π),
average observed heterozygosity per locus (Ho), and average
expected heterozygosity per locus (He) were calculated using
populations in Stacks version 2.3 based on the raw dataset
(Catchen et al., 2011). Then, we used analysis of variation
(ANOVA) to test for a difference in genetic diversity between
S. anglica and S. alterniflora using the R 4.1.2 function “aov”
(Chambers et al., 2017). The Tukey’s multiple comparisons test
(TukeyHSD) was used for multiple comparisons (Yandell, 2017).

We referred to several analysis results to evaluate the
reproductive systems of six populations. First, we calculated the
average Wright’s inbreeding coefficient (FIS) using populations
in Stacks version 2.3. The inbreeding coefficient (FIS) was often
used to quantify the partial asexual reproduction population
(Stoeckel and Masson, 2014). Negative FIS values may reflect
excess heterozygosity associated with reproduction via clonality
(Pantoja et al., 2017).
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TABLE 1 | Location information, number of sampled individuals, and genotypic diversity in populations of Spartina anglica and Spartina alterniflora.

Species Pop Collection
location

Lon. (◦E) Lat. (◦N) N G G/N H λ E IA rd

Spartina anglica DD Dandong, Liaoning 124.209◦ 39.872◦ 15 15 1.000 2.708 0.933 1.000 7.132 0.001

HLD Huludao, Liaoning 120.962◦ 40.799◦ 15 6 0.400 1.173 0.533 0.512 22.653* 0.005*

Total - - - 30 21 0.700 2.634 0.867 0.503 32.076* 0.005*

Spartina alterniflora TG Tanggu, Tianjin 117.713◦ 38.958◦ 14 14 1.000 2.639 0.929 1.000 140.806 0.009

CX Cixi, Zhejiang 121.263◦ 30.369◦ 15 13 0.867 2.523 0.916 0.945 75.422* 0.006*

QZ Quanzhou, Fujian 118.667◦ 24.922◦ 14 4 0.286 0.895 0.459 0.586 3077.454* 0.337*

FCG Fangchenggang,
Guangxi

108.213◦ 21.510◦ 15 1 0.070 0.000 0.000 NA 147.187* 0.037*

Total - - - 58 32 0.552 2.891 0.892 0.484 833.676* 0.044*

N is the number of samples, G is the number of MLGs, G/N is the number of MLGs divided by the number of individuals analyzed, H is the Shannon–Wiener index of
diversity, λ is Simpson’s complement index of genotypic diversity, E is evenness, IA is the index of association, rd is the standardized index of association, and ∗ indicates
significant p-values (p = 0.001, permutations = 1,000).

Second, the genetic clones of S. anglica and S. alterniflora
subsets were calculated using the package “poppr v. 2.9.3” based
on the putatively neutral dataset (Kamvar et al., 2014, 2015),
which can identify multilocus genotypes (MLGs) in clonal,
partially clonal, and/or sexual reproduction populations. Clonal
membership to the same genet can be inferred through a shared
MLG among multiple individuals within a population. The true
number of MLGs was determined by the “mlg.filter” function
with a Nei’s distance (Nei, 1978) threshold determined using
the cutoff_predictor tool, which finds a gap in the distance
distribution. We investigated additional evidence of clonal
reproduction through the “poppr” function (Kamvar et al., 2014,
2015). Since this function cannot work with a large dataset, we
used two stricter datasets that restricted data analysis to one
random SNP per locus (8,314 SNPs for S. anglica and 21,029
SNPs for S. alterniflora) to calculate the index of association (IA),
the standardized index of association (rd), and their p-values
(Supplementary Table 2). We also ensured that the MLGs
obtained from strict datasets were consistent with the MLGs
obtained from non-strict datasets. The IA index determines
individual’s recombination, which indicates panmixia, using the
ratio of observed-to-expected variance in the number of loci
(Agapow and Burt, 2001). The rd index is a modification of
IA that removes sample size bias (Agapow and Burt, 2001).
Clone correction was allowed, and the p-values of IA and rd
were obtained with 999 permutations. We also constructed an
unweighted pair group method with arithmetic mean (UPGMA)
tree of all individuals, and minimum spanning networks (MSNs)
of each MLG based on distance matrices.

We used “poppr” to calculate the clonal diversity of each
population, including the Shannon–Wiener index (H) (Shannon,
1948), Simpson’s index (λ) (Simpson, 1949), and evenness (E).
The parameter G/N was also estimated, and while it could be
biased, it is frequently used (Saleh et al., 2012; Pantoja et al., 2017;
Tsujimoto et al., 2020). G represents the number of MLGs and N
is the number of samples.

Population Structure
To infer the genetic structure of Spartina populations, we
used ADMIXTURE version 1.3.0 (Alexander et al., 2009; Zhou

et al., 2011) to estimate individual ancestries with the combined
datasets of the two species and subsets of each species. We
designated K = 1 to K = 9 as ancestral modes, and the most likely
number of K given the populations was estimated according
to the lowest cross-validation error (Alexander et al., 2009).
We created an output file for the most likely number of K
and visualized the results in the R environment. Discriminant
analysis of principal components (DAPC) (Jombart et al., 2010)
was performed using the R package “adegenet.” This method is
more appropriate than others for the analysis of invasive species
because it does not make any assumptions about migration-drift
equilibrium (Jombart et al., 2010). The number of clusters was
assessed for both species and their combined dataset, ranging
from 1 to 10. The optimal number of clusters was identified
based on the Bayesian information criterion (BIC), as suggested
by Jombart et al. (2010). We used the function find.clusters to
transform the original data into principal components (PCs),
retaining 100 PCs in the analysis. Discriminant analysis was
performed using 50 PCs (>90% of variance explained), and one,
four or five eigenvalues were retained and examined. The optimal
number of PCs to be retained in the final analysis was identified
by the optim.a.score function with twenty independent runs.

Moreover, a redundancy analysis (RDA) within the “vegan”
package (v.2.5–7) (Oksanen et al., 2021) in R 4.1.2 was used to
assess whether environmental variables influenced the genetic
differentiation of S. alterniflora. A principal component analysis
(PCA) was performed by TASSEL 5 (Glaubitz et al., 2014).
Variance inflation factors (VIF) were excluded through the
“vif.cca” function of “vegan” package (Oksanen et al., 2021).
The important environmental variables were chosen by the
“forward.sel” function of the “adespatial” package (Dray et al.,
2018). Then we used the “rdacca.hp” package to estimate the
percentage contribution of explained variation to each or the total
important environmental variables among the genetic groups,
and the significance of the RDA results was tested with a global
permutation (999 permutations) (Lai et al., 2022).

Outlier Detection
The outlier loci were detected using two population
differentiation (PD) analysis methods and two environment
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association (EA) analyses. The first PD method was implemented
in ARLEQUIN (Excoffier et al., 2005), which identifies outliers
by comparing genetic diversity and differentiation between
populations. Both infinite island and hierarchical demographic
models of this approach were used to estimate outliers, and we
only chose the outliers identified by both models. The second
PD method we used was in the “PCAdapt” package in R 4.1.2,
which detects outlier loci based on principal component analysis
(PCA). This approach overcomes the limitation of the traditional
“outlier test” approach, which assumes an unrealistic island
model of migration between populations. SNP with qvalue less
than 0.01 was considered as an outlier (Capblancq et al., 2018).

For EA analysis, BAYENV identified outliers based on a
correlation matrix of loci using SNPs, and 22 environmental
variables and two geographical variables (longitude and latitude).
A batch file estimated the BayesFactor with 100,000 MCMC
steps. Regarding interpretation (Jeffreys, 1961), a BayesFactor
more than 10 indicated strong supportive evidence for an
association between an environmental parameter and a locus
(Cullingham et al., 2014). Second, we used latent factor mixed
models (LFMMs) implemented in the LEA package in R 4.1.2
(Frichot and François, 2015) to detect outliers correlated with
climatic variables. The implementation of the LFMM is based on
least-squares estimates (Caye et al., 2019). The prcomp function
determines the number of latent factors (K). A fitted model was
then used to perform association testing based on the ridge_lfmm
function after ridge estimation. Finally, any obtained p-values
were transformed into qvalues. The qvalues less than a cutoff of
0.01 were indicative of candidate loci. A Benjamini and Hochberg
(1995) false discovery rate (FDR) correction of 5% was applied
to p-values using the qvalue package in R (Storey et al., 2015).
Binomial tests were used to assess differences in the number of
outliers in the two species obtained by the four methods.

Single Nucleotide Polymorphism
Annotation
To gain insights into the potential adaptive significance of
outlier loci, we obtained the flanking sequence of outlier loci
identified by at least two methods from the RAD library.
Functional annotation was performed using the online Basic
Local Alignment Search Tool (BLAST) database. We searched
the Genbank database using BLASTn with >60% sequence
similarity. If the sequence was related to a protein, we further
searched for its molecular function from UniProt2 and identified
its related functions in plants according to literature. Then, we
calculated correlations between allele frequencies of outlier loci
and climate variables to identify putative genes associated with
local adaptation.

RESULTS

Genome Sequencing
A total of 1680,866,670 paired-end (PE) reads (read
length = 150 bp, 252.13 Gbp) were obtained from the ddRAD

2https://www.uniprot.org/

TABLE 2 | Diversity indices of each sampled population of Spartina anglica and
Spartina alterniflora.

Species Pop %poly π HO He FIS PA

Spartina anglica DD 0.484 0.035 0.042 0.034 −0.010 0.049

HLD 0.474 0.035 0.052 0.034 −0.031 0.049

Spartina alterniflora TG 2.143 0.151 0.121 0.145 0.090 0.220

CX 1.555 0.120 0.110 0.115 0.029 0.073

QZ 1.179 0.096 0.113 0.093 −0.020 0.057

FCG 0.667 0.068 0.114 0.066 −0.089 0.049

%poly is the percentage of polymorphic loci, π is average nucleotide diversity, Ho is
observed heterozygosity, He is expected heterozygosity, FIS is Wright’s inbreeding
coefficient, and PA is the frequency of private alleles.

library constructed for 30 individuals of S. anglica and 58
individuals of S. alterniflora. We obtained a total of 1674,211,878
reads (read length = 135 bp, 226.02 Gbp) after demultiplexing
and removing reads of low quality. The number of reads for the
samples varied from 3,632,316 to 52,525,600, with the average
number of reads per sample being 19,025,135. Our analysis
with ustacks showed that the number of ddRAD tags recovered
from these samples varied from 248,767 to 1,385,706. Using
cstacks, we obtained 4,664,866 loci from the 30 S. anglica and 58
S. alterniflora samples. After the initial filtering steps, 212,939
SNPs were retained, followed by removing sites showing linkage
disequilibrium, and 169,522 SNPs were retained for all samples.
Based on the dataset with 169,522 SNPs, a total of 90,671 SNPs
were identified in the S. alterniflora subset, and 10,542 SNPs
were identified in the S. anglica subset, with a minimum allele
frequency of 0.01 (Supplementary Table 2).

Mode of Reproduction
Using the clonal threshold of 0.124 identified by cutoff_predictor,
we found 32 MLGs among 58 individuals of S. alterniflora
(Supplementary Figure 3B), while 21 MLGs among 30
individuals of S. anglica were found with a threshold of
0.163 (Table 1 and Supplementary Figure 3D). Table 1 also
shows genotypic (MLG) diversity calculated separately for each
population. The FCG population of S. alterniflora had the lowest
genotypic diversity, with a single MLG identified among 15
sampled individuals (G:N = 0.067). Other populations with
low genotypic diversity were QZ (S. alterniflora) and HLD
(S. anglica), which had G:N ratios of 28.6 and 40%, respectively.
In contrast, populations DD (S. anglica) and TG (S. alterniflora)
had G:N ratios of 100% (Table 1).

Both indices of association, IA and rd, demonstrated that the
population of genotypes was significantly different (p = 0.001)
from the expected products of panmixia for populations HLD
(S. anglica), CX, QZ, and FCG (S. alterniflora) (Table 1
and Supplementary Figure 4), indicating clonal reproduction
as the prevalent mode of reproduction at these sites. The
p-values of IA and rd were not significant (p = 1) only for
populations DD (S. anglica) and TG (S. alterniflora) (Table 1 and
Supplementary Figure 4), indicating that the null hypothesis of
sexual reproduction could not be rejected for these populations.
The inbreeding coefficients (FIS) of all S. anglica populations (DD
and HLD) and the QZ and FCG populations of S. alterniflora
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FIGURE 1 | Minimum spanning networks (MSNs) of unique multilocus genotypes (MLGs) in populations of Spartina alterniflora (A) and Spartina anglica (B) collected
from six fields in China. Each node represents a multilocus genotype (MLG), with size depending on the number of individuals with the MLG. The distance between
the nodes represents the genetic distance between MLGs. Sampled fields are denoted by color, and the size of sample nodes represents either one or two isolates.

were negative, showing a clear trend of heterozygote excess
(Table 2). In addition, the minimum spanning networks (MSNs)
based on Euclidean distances of the clone-corrected datasets
showed no sign of reticulation (Figure 1). MLG 54 at the center
of the S. alterniflora network consisted of only one individual
from the TG population, and MLGs 26 and 30, which consisted
of 10 individuals from the TG population and all individuals
from the FCG population, were near the center (Figure 1A). Ten
individuals of HLD belonging to MLG 16 were at the center of
the S. anglica network, and other MLGs were found in only one
individual (Figure 1B).

Genetic Diversity
There was higher genetic diversity in S. alterniflora populations
than in S. anglica populations in terms of nucleotide diversity
(π, 0.035 vs. 0.068-0.151, p < 0.001), observed heterozygosity
(Ho, 0.042–0.052 vs. 0.110–0.121, p < 0.001) and expected
heterozygosity (He, 0.034 vs. 0.145-0.066, p < 0.001) (Table 2 and
Figures 2A–C). TukeyHSD also revealed significant differences
among the six populations (p < 0.001), except He and π between
HLD and DD (p = 0.976, 0.988), Ho between FCG and QZ
(p = 0.699, Figures 2D–F and Supplementary Table 3). The TG
population had the highest frequency of private alleles (21.98%),
while the DD and FCG populations had the lowest frequencies
(4.85 and 4.91%, respectively) (Table 2).

Genetic Structure
Five genetic clusters (K = 5) were identified using ADMIXTURE
based on the lowest cross-validation error (Supplementary
Figure 5). The two Spartina species were clearly separated
(Figure 3). All populations of S. alterniflora were divided
into four clusters, and only four individuals of QZ belonged
to the red cluster (Figures 3A,B). The two populations of

S. anglica did not separate from each other (Figures 3A,B).
DAPC performed on SNP datasets showed clear genetic structure
in S. alterniflora populations but not in S. anglica (Figure 3C
and Supplementary Figures 5B–D). All four populations
of S. alterniflora were also separated from each other, and
individuals of the FCG population were most distanced from
other populations’ individuals (Figure 3D and Supplementary
Figure 5C). The two populations of S. anglica were not separated
based on the subdataset (Supplementary Figure 5). A UPGMA
tree showed that individuals of S. alterniflora and S. anglica were
divided into two major clusters with high bootstrap support.
Individuals of four populations of S. alterniflora also separated
into four subclusters with 100% bootstrap support (Figure 3E).
The genetic distances among S. anglica individuals did not show
clear separation (Figure 3E).

Three important environmental variables were kept through
forward selection in the RDA analysis, including the minimum
temperature of the coldest month (BIO6), the mean temperature
of the wettest quarter (BIO8), and the precipitation of the
warmest quarter (BIO18), which were significantly associated
with genetic variation among populations of S. alterniflora
(p = 0.001). The total explained variation was 0.784, and
the precipitation of the warmest quarter (BIO18; 38.58%
explained variation, p = 0.001) was the most important predictor
(Supplementary Figure 6 and Supplementary Table 4).

Identification of Outliers and Analysis of
Their Clines
A total of 7,868 and 238 outliers were identified in S. alterniflora
and S. anglica, respectively, using four methods (Supplementary
Figure 7). For the S. alterniflora subset, the two PD methods
identified 4,791 outliers (4,145 from PCAdapt and 1,005 from
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FIGURE 2 | Comparison of expected heterozygosity (He), observed heterozygosity (Ho), and nucleotide diversity (π) between Spartina anglica and S. alterniflora
(A–C) by the one-way ANOVA analysis, and among their populations (D–F) by Tukey’s multiple comparisons test. ***In panels (A–C) indicates p < 0.001. In panels
(D–F), the bars represent differences in mean levels of genetic diversity indicators (He, Ho, π) between populations, p-values of black bars were less than 0.001,
while those of red bars were more than 0.05.
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FIGURE 3 | The genetic structure analysis of populations of Spartina anglica and Spartina alterniflora based on ADMIXTURE simulations, DAPC and UPGMA.
(A) Map of collection sites for six populations. The pie chart shows the population cluster identified using ADMIXTURE when K = 5; (B) The ancestry composition of
each individual of six populations. Each individual is represented by a vertical bar; (C) Scatter plots based on DAPC of all populations of Spartina, and (D)
populations of S. alterniflora. Differently colored dots represent the individuals of different populations, and the insets indicate the eigenvalues from DAPC, with dark
bars representing axes 1 and 2 of the plots. (E) Cluster analysis based on the genetic distance of six populations using a UPGMA tree with bootstrap support.

ARLEQUIN), and the two EA methods identified 3,619 outliers
(889 from BAYENV and 2,769 from LFMM). Only one outlier
was identified by all four methods, 91 outliers were identified by
three methods, and 848 outliers were identified by two methods
(Supplementary Figure 7). For the S. anglica subset, the two
PD methods identified 148 outliers (177 from PCAdapt and 93
from ARLEQUIN), and the two EA methods identified 31 outliers
(12 from BAYENV and 19 from LFMM). None of the outliers
were identified by all four methods, and only three outliers
were identified by three methods; 60 outliers were identified
by two methods (Supplementary Figure 7). The proportion
of outliers obtained by the four methods was statistically

different between the two species based on binomial tests (for
PCAdapt, BAYENV and LFMM, p < 0.001; for ARLEQUIN,
p < 0.05).

Functional annotation was not successful for any outlier loci
of S. anglica. Fifteen loci obtained from the S. alterniflora subset
were annotated (Supplementary Table 5). All of them were
identified by at least two methods (11 from ARLEQUIN, 13
from PCAdapt, five from LFMM, and one from BAYENV).
Two-thirds of the annotated outlier loci (10 outlier loci)
were obtained with the two PD methods, while only one
was obtained with the two EA methods. We identified 12
adjacent genes with a range of functions that were associated
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FIGURE 4 | The outlier loci of Spartina alterniflora associated with climate variables based on the LFMM method. (A) Manhattan plots show the significance level for
SNP associations with bioclimatic variables (BIO 16 and BIO18), the dark red points represent S10345_125, the dark blue points represent S199915_79, and the
dashed line represents qvalue = 0.01. (B,C) Correlations between allele frequency and climate variables for S10345_125 and S199915_79 in populations of
S. alterniflora. The colors of the pie chart on maps represent allele frequencies levels of S10345_125 (left half pie chart) and S199915_79 (right half pie chart).

with plant growth and development, and four genes were
associated with abiotic stress and pathogen attack. Based on
the LFMM method, two (S10345, S199915) and four (S10345,
S107946, S125087, S190589) genes identified were associated
with precipitation (BIO11, 12, 13, 16, 18) and temperature
(BIO1, 3, 4, 6, 7, 8, 9), respectively (Supplementary Table 6).
The locus S199915 was identified by both EA methods, and
was associated with precipitation and the TN content by the
LFMM method, while it was associated with precipitation
and temperature by BAYENV method. However, we only
found strong associations between precipitation (Bio13, Bio16,
and Bio18) and allele frequencies of two SNPs (S10345_125

and S199915_79), respectively (p < 0.05, Figure 4 and
Supplementary Figure 8).

DISCUSSION

Our study confirmed that there are two species of Spartina along
the coast of China. We compared the genetic backgrounds of the
two species that were intentionally introduced to China decades
ago. We used genome wide SNPs to analyze differences in modes
of reproduction, genetic diversity, and gene × environment
correlations between the two species in an effort to explain the
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reasons behind their differential invasion success. These analyses
point to that high genetic diversity and genetic adaptation
in response to the environment might promote S. alterniflora
spreading on the coast of China.

Both High Clonality and Sexual
Reproduction Were Revealed in the Two
Spartina Species
Strong evidence of high clonal reproduction, such as a low
number of genotypes, significant IA and rd (p < 0.001), and
negative FIS, was found in populations of both S. alterniflora
(FCG and QZ) and S. anglica (HLD). No reticulation of the
minimum spanning networks (Figure 1) also provided an
evidence of clonal spread (Maurice et al., 2019). However, sexual
reproduction cannot be ignored in either species; population
DD of S. anglica and population TG of S. alterniflora showed
an extremely high G:N ratio. Although a slightly negative FIS
(−0.010) was found in population DD of S. anglica, we still
suspected that sexual reproduction rather than clonality was the
main mode of reproduction in this population in consideration
of the high number of genotypes, non-significant IA and rd,
and lack of a large excess of heterozygotes. Negative FIS was
usually interpreted as a signal of clonal reproduction in previous
studies (Balloux et al., 2003; Halkett et al., 2005), while it
was recently considered unreliable for evaluating reproduction.
Both non-negative and negative FIS values can be frequently
found in partially clonal populations, and the dynamics of FIS
in (partially) clonal populations might be impacted by genetic
drift (Reichel et al., 2016). Therefore, we focused more on the
number of genotypes and the indices of association (IA and
rd) when evaluating the mode of reproduction. Inconsistencies
in FIS, IA, and rd were also found in population CX, which
might be a partially clonal population with significant indices
of association but a non-negative FIS (0.029). The results of
reproduction analysis based on molecular genetic information in
our study did not support the finding of previous studies that
S. anglica mainly relies on asexual reproduction for population
regeneration (Li et al., 2008). This may be due to population
DD of S. anglica being located at a northern latitude (N 39.87◦)
with a lower annual mean temperature (9.3◦C) and maximum
temperature (28.88◦C), while the population site in the study
of Li et al. (2008) was located along the coast of the Yellow
Sea in China (N 33.7◦), with a higher annual mean temperature
(15.0–15.6◦C) and maximum temperature (39.0◦C). The native
distribution of S. anglica is in cool regions (the first record
was in Lymington, Hampshire, England) (Gray and Raybould,
1991), and high temperatures might limit its seed production
through less effective pollination or pollen germination (Li et al.,
2008). Lower genotype diversities were found in populations
FCG and QZ (latitudes below N 25◦) than in TG and CX
(latitudes above N 30◦) (Table 1). This result was consistent
with those of previous studies showing that sexual reproduction
differed among populations of S. alterniflora in China and seed
production decreased at low latitudes (Liu et al., 2016b).

High clonality is common in some notorious invasive alien
species (Liu et al., 2006), such as Pueraria montana var. lobata

(Bentley and Mauricio, 2016), Eichhornia crassipes (Barrett et al.,
2008), Pistia stratiotes, and Eichhornia crassipes (Wang et al.,
2016). In addition, most of these species are also capable of sexual
propagation (Eckert, 2002) and plastic in their two methods of
reproduction (Liu et al., 2006). Although low sexual reproduction
may limit the local adaptation of alien species during an
invasion due to little opportunity for genetic recombination,
clonal reproduction can allow alien species to quickly establish
populations regardless of whether the founder group sizes are
small (Barrett et al., 2008). Our study revealed that the two
Spartina species adopted both clonal and sexual reproduction
strategies and might adjust seed production across latitudes.
Therefore, the method of reproduction was not considered a
major constraint on the dieback of S. anglica in China, even if
this species may experience a reduced ability to produce seeds in
low-latitude regions.

The Effect of High Genetic Diversity on
Invasion Cannot Be Ignored
The newly introduced species suffered from bottlenecks, followed
by reduced fitness and evolutionary potential, yet they often
become invasive, and this dilemma was called the genetic paradox
of invasion (Roman and Darling, 2007; Estoup et al., 2016). The
genetic paradox of invasions has been thoroughly discussed by
researchers in recent decades (Frankham, 2005; Stapley et al.,
2015; Estoup et al., 2016; Schrieber and Lachmuth, 2017), and
its importance among genetic mechanisms of invasions may be
overestimated (Estoup et al., 2016). Many invaders do not exhibit
the genetic paradox phenomenon because they have no loss of
genetic diversity and no significant adaptive challenge in the
invaded area compared to their native areas (Bossdorf et al., 2005;
Roman and Darling, 2007). Some studies have already found
that a negative founder effect with low genetic diversity can be
overcome by high phenotypic variability, which can help Spartina
species establish well in new environments (Castillo et al., 2018;
Li et al., 2019a). In this study, the average nucleotide diversity (π)
and observed heterozygosity (Ho) of each population reflected
lower genetic diversity of the failed invader S. anglica (π: 0.035,
Ho: 0.042–0.052) relative to the successful invader S. alterniflora.
(π: 0.068–0.151, Ho: 0.110–0.121). Even though population
FCG had extremely low genotype diversity, its genetic diversity
was significantly higher than that in populations of S. anglica
(p < 0.001, Figures 2D–F and Supplementary Table 3). This
also suggests that differences in reproduction cannot explain the
difference in genetic diversity observed here for S. anglica and
S. alterniflora. Both species were intentionally introduced into
China only once; the difference was that S. anglica came from
a single source, while S. alterniflora came from multiple sources
(Chung, 1993). The diverse genetic backgrounds resulting from
multiple sources of S. alterniflora provided an opportunity
for interbreeding and genetic recombination through sexual
reproduction, whereas this was not possible for S. anglica with
a single genetic source. Most previous studies also revealed
that outcrossing of plants from the locations of origin (North
Carolina, Georgia, and Florida in the US) of S. alterniflora
generated a genetic admixture, and genetic variation remained
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high compared to those in the native populations (Bernik et al.,
2016; Qiao et al., 2019; Xia et al., 2020). Moreover, only the
TG and CX populations had higher expected heterozygosity (He,
0.145 and 0.115) than observed heterozygosity (Ho, 0.121 and
0.110), which may have been a reflection of earlier population
bottlenecks (Rengefors et al., 2021), whereas, other populations
did not show evidence of bottlenecks. Therefore, neither of the
two Spartina species in China showed the genetic paradox of
invasion. The low genetic diversity limiting population expansion
of S. anglica might be due to inbreeding depression and loss
of adaptive potential (Wellband et al., 2017, 2018). Significant
differences in the levels of genetic diversity of successful and
unsuccessful invasive species were consistent with those in
a study of four aquatic invasive species (gobies and oysters)
(Wellband et al., 2017). We also agree with the conclusion that
the limitation of invasions via genetic diversity is species specific
(Wellband et al., 2017).

Unlike most previous studies of S. alterniflora in China
(Xia et al., 2015; Bernik et al., 2016; Qiao et al., 2019), ours
revealed high genetic differentiation and low genetic admixture of
populations based on structure analysis and DAPC, while the two
populations of S. anglica in China could not be separated from
each other. The findings of the current study do not support the
previous findings of Wellband et al. (2017), who demonstrated
greater divergence among populations of less-successful invasive
species than among highly successful invasive species due to less
gene flow among populations of the former. Population genetic
structure in S. alterniflora in China was also found in the study
of Xia et al. (2020), and they speculated that genetic divergence
was mainly due to the low natural gene flow among populations.
However, we believe that the existing genetic divergence is more
likely a product of rapid adaptation, as Qiao et al. (2019) proved
in their study. The significant association between environmental
variables and genetic structure in this study also suggests that
temperature (BIO6, 8) and precipitation (BIO18) are important
drivers of genetic variation within S. alterniflora (Supplementary
Figure 6). Therefore, high genetic variation promoted rapid
genetic differentiation under environmental selection pressures
is the possible explanation for why S. alterniflora in our study
showed population genetic structure. Another reason is that
RADseq technique afforded numerous SNPs with much more
genetic information than other markers.

Genomic Signature Provides Support for
Local Adaptation of Spartina alterniflora
in China
Rapid local adaptation of invasive alien species usually includes
two aspects: phenotypic plasticity and genetic evolution
(Wellband and Heath, 2017; VanWallendael et al., 2018; Cao
et al., 2021). Early studies on rapid adaptive evolution were
mostly based on phenotypic changes between generations
through common garden experiments or reciprocal transplant
experiments (Turner et al., 2014; Ochocki and Miller, 2017).
Recently, large genome-wide variation provided a more thorough
understanding of the relationship between adaptive evolution
and climate at the gene level (Zenni et al., 2014; Bay et al.,

2018; Wellband et al., 2018). Based on the genomic scan, the
performance of outlier test methods has been evaluated and
used to provide evidence for local adaptive evolution in several
studies (Nielsen et al., 2018; Gallego-Garcia et al., 2019; Cao
et al., 2021). For example, Bay et al. (2018) identified the genomic
regions which adapted across contemporary climate gradients in
populations of yellow warbler (Setophaga petechia) by LFMM.
To reveal signatures of adaptation within two montane bumble
bee species, Jackson et al. (2020) detect outliers through several
EA methods, including LFMM, Bayenv2, and RDA. All of these
methods could lead to false positives and negatives, and it is
hard to identify which outlier loci are false positives (Lotterhos
and Whitlock, 2014), We try to avoid missing true positive
outliers and adopt a cautious screening attitude to avoid false
positives, the same as previous studies did (Cullingham et al.,
2014; Wellband et al., 2018; Cao et al., 2021).

Although cross-validation with multiple methods may
increase the confidence of true positive outliers (Cullingham
et al., 2014), we still consider the outlier loci, which can be
successfully annotated and have significant correlations with
environment variables, to be more reliable. As significant larger
number of outliers in populations of S. alterniflora than in S.
anglica, some of which were successfully annotated, provided
evidence for rapid local adaptation in this study. It supports
hypothesis of previous studies that rapid adaptive evolution is a
key mechanism driving successful invasion of S. alterniflora along
the coast of China through reciprocal transplant experiments
(Qiao et al., 2019). Previous authors speculated that genetic
admixture might promote the formation of super invasive
genotypes with high competitive abilities (Qiao et al., 2019).
We also cannot ignore the genetic admixture in our study; even
though we chose four large geographically distant populations,
genetic admixture was still found in population QZ. Therefore,
a single introduction but with multiple sources could promote
the adaptation of S. alterniflora to different environments in
China even with the short time lag of invasion (Facon et al.,
2006). Rapid adaptive evolution can promote phenotypic trait
shifts to increase the fitness of alien species when they face new
environments (Suarez and Tsutsui, 2008; Molina-Montenegro
et al., 2018).

Previous studies revealed high phenotypic variation in
S. alterniflora in China and proved the occurrence of latitudinal
clines in vegetative and sexual traits of populations, especially
a linear increase in seed set, which was the result of rapid
evolution, through garden experiments at multiple latitudes
(Liu et al., 2017, 2020). Moreover, some studies have also
proven that seed traits are critical for dispersal syndromes and
mechanisms allowing plants to cope with environmental stress
(Baskin and Baskin, 1998; Moles et al., 2005), and adaptive
evolution in an invasive plant can enhance the probability of
seedling survival by increasing the thickness of the seed coat
(Molina-Montenegro et al., 2018). Interestingly, the function of
locus S50498 (Supplementary Table 5) in our study was related
to grain size and shape in rice (Huang et al., 2017). In addition,
we also found that locus S135470 (Supplementary Table 5)
might play a crucial role in organelle biogenesis and seedling
establishment (Rigas et al., 2009).
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We further revealed two SNPs of locus S10345 and S199915
were strongly associated with precipitation variables. The
highest allele frequencies at these SNPs both occurred in the
Fangchengang city of Guangxi province, areas of the low latitude
and high rainfall (Figure 4). The SNP on locus S10345 was related
to diacylglycerol kinase 2 that belongs to the diacylglycerol kinase
family (DGKs). DGKs phosphorylate diacylglycerol (DAG) to
produce phosphatidic acid (PA), which is required for plant
development and responses to both biotic and abiotic stress (Tan
et al., 2018; Kue Foka et al., 2020), such as drought (Li et al.,
2015), cold (Ruelland et al., 2002), and pathogen attack (Zhang
and Xiao, 2015). The SNP on locus S199915 was the H + -
pyrophosphatase gene, which is related to vacuolar membrane
solute transport (Graus et al., 2018). Previous studies also proved
up-regulation of this gene can enhance resistance to salt and
drought stress in plants (Park et al., 2005; Brini et al., 2007).
Nevertheless, there are clear limitations in this study to further
confirm the role of these two genes in the adaptation of S.
alterniflora to the environment, and we believe that these loci are
worthy of further research and validation.

To conclude, we explored aspects of invasiveness from an
evolutionary perspective through a genomic comparison of
S. alterniflora and S. anglica, which have been introduced to
China for several decades. Our results suggest that low sexual
reproduction was not the reason for the dieback of S. anglica
in coastal China. This further implies that the high genetic
diversity caused by multiple introduction sources of S. alterniflora
in China plays a role in the success of invasion. Moreover,
comparisons of invading species and non-invasive related species
might be more helpful for understanding the genetic paradox.
Due to the limitations of the sampling strategy in our study (we
only found two populations of S. anglica in China), we cannot
directly demonstrate that rapid adaptive evolution was one of
the main factors which promoted the success of S. alterniflora
invasion. However, the evidence of the correlation between
gene and environment of S. alterniflora revealed in this study
might provide genetic support for previous research conclusion.
Additionally, annotated outlier loci are worthwhile of further
study in consideration that the functional protein-coding genes
obtained from four populations of S. alterniflora might be critical
for understanding processes influencing the range expansion of
invasive species.
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