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Federated learning is a distributed machine learning framework that enables distributed

nodes with computation and storage capabilities to train a global model while keeping

distributed-stored data locally. This process can promote the efficiency of modeling while

preserving data privacy. Therefore, federated learning can be widely applied in distributed

conjoint analysis scenarios, such as smart plant protection systems, in which widely

networked IoT devices are used to monitor the critical data of plant production to improve

crop production. However, the data collected by different IoT devices can be dependent

and identically distributed (non-IID), causing the challenge of statistical heterogeneity.

Studies have also shown that statistical heterogeneity can lead to a marked decline

in the efficiency of federated learning, making it challenging to apply in practice. To

promote the efficiency of federated learning in statistical heterogeneity scenarios, an

adaptive client selection algorithm for federated learning in statistical heterogeneous

scenarios called ACSFed is proposed in this paper. ACSFed can dynamically calculate

the possibility of clients being selected to train the model for each communication round

based on their local statistical heterogeneity and previous training performance instead

of randomly selected clients, and clients with heavier statistical heterogeneity or bad

training performance would be more likely selected to participate in the later training.

This client selection strategy can enable the federated model to learn the global statistical

knowledge faster and thereby promote the convergence of the federated model. Multiple

experiments on public benchmark datasets demonstrate these improvements in the

efficiency of the models in heterogeneous settings.

Keywords: distributed conjoint analysis, federated learning, adaptive client selection, statistical heterogeneity,

machine learning

INTRODUCTION

With the rapid development of computation and storage capabilities, IoT devices are now widely
applied in multiple areas, such as health monitors, smart homes, and smart plant protection
systems. These devices are used to collect critical data during operation and provide a statistical
foundation for services, such as health prediction, house management, or the direction of plant
production. However, the broad deployment of these devices will lead to the expansion of the
data scale and the general growth in the demand for privacy preservation of sensitive data, and
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the traditional centralized machine/deep learning mode that
collects all data in a central node to train a statistical model has
difficulty meeting demand. Specifically, transmitting distributed-
stored data to a central node and training a model on that scale
of data can lead to long computation and communication times.
In addition, privacy leakage of sensitive data may occur during
transmission. Therefore, federated learning (Konečný et al.,
2015; McMahan et al., 2017a,b), a distributed machine learning
framework that involves a central server and multiple distributed
nodes, is proposed in this study to address the challenges that face
centralized frameworks. Federated learning enables distributed
nodes with computation and storage capabilities, such as mobile
phones, IoT devices, and laptops, to train statistical models
using local data for each communication round. Only the model
parameters are transmitted to a central server. The central server

TABLE 1 | Details of the dataset.

Dataset Category Size Description

(length, width, channel)

MNIST 10 28 × 28 × 1 Hand-writing number image

Fashion MNIST 10 28 × 28 × 1 Wearing image

CIFAR 10 10 32 × 32 × 3 Common things image

FIGURE 1 | Training loss on MNIST in 2-class non-IID scenario.

then aggregates these local models to generate the new federated
model for the next communication round. Federated learning
can provide more efficient construction of the global model
and privacy of data because it decentralizes the computation
among distributed clients and keeps the distributed-stored
data locally.

However, in practical scenarios, the differences in device
type, geographical location of deployment, and other factors
will make the collected data non-IID, resulting in the challenge
of statistical heterogeneity. Statistical heterogeneity is known
to negatively impact multiple aspects of federated learning
compared with IID data, like performance, efficiency, data
privacy, etc. Non-IID data can have various features or label
distributions, which causes marked differences between local
models and thus leads to unstable convergence and low efficiency
during federated model training. To address the influence of
statistical heterogeneity on the efficiency of federated learning,
many studies have investigated three aspects of this topic:
restricting model divergence, decreasing communication cost,
and customized client selection methods. Regarding restricting
model divergence, some studies have focused on improving
data quality, such as data sharing (Zhao et al., 2018) and data
enhancement (Jeong et al., 2018).

On the contrary, other studies have investigated model
training by modifying the model aggregation method (McMahan
et al., 2017a), customizing the loss function (Li et al., 2020),
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and combining enhancement methods, including reinforcement
learning (Pang et al., 2020; Wang et al., 2020) and knowledge
distillation (Li and Wang, 2019), with federated learning.
The relation between statistical heterogeneity and the Earth’s
mover distance (EMD) is presented in Zhao et al. (2018). The
EMD is essentially used to measure the distance between two
distributions. Experimental results indicate that EMD could be
an ideal index of statistical heterogeneity by calculating the EMD
between the local data distribution on a client and the global
data distribution. There is also some constructive work regarding
decreasing communication costs, such as model compression
(Sattler et al., 2019) and dynamic computing of the rounds of
local updates (Wang et al., 2019). Regarding the customized
client selection method, recent studies have proposed creatively
customized methods (Nishio and Yonetani, 2019; Wang et al.,
2020; Shen et al., 2022; Zhang et al., 2022; Zhao et al., 2022)
to accelerate the convergence of federated learning and thereby
promote efficiency. Moreover, Xiong et al. (2021) carried out an
innovative exploration of privacy protection in FL with non-IID
data and proposed a differential-privacy-based algorithm called
2DP-FL, which has advantages in privacy protection, learning
convergence, and model accuracy.

In this study, we propose an adaptive client selection
algorithm for federated learning called ACSFed based on
the finding of correlations between EMD and statistical
heterogeneity in Zhao et al. (2018). In ACSFed, the index
measuring the data and training quality of each client, called

cumulative model strength, is calculated based on each client’s
EMD and previous training performance. Then, a probability
matrix representing the probability of each client being selected
in each communication round is maintained and dynamically
updated based on the cumulative model strength of each client.
ACSFed can fully consider the data and previous training quality
of each client to update the probability matrix so that clients with
strong statistical heterogeneity or poor training performance will
be more likely to be selected for training, thereby enabling the
federated model to learn the unknown information or knowledge
with poor learning performance much faster. After the federated
model has learned sufficient knowledge of the global data, the
convergence of the federated model speeds up markedly, and

multiple experiments have shown that ACSFed can converge

faster than FedAvg. The primary contributions of this paper can

be summarized as follows:

1. An index measuring the statistical heterogeneity and previous

training performance of a client called cumulative model

strength is first proposed.
2. An adaptive client selection algorithm called ACSFed for

federated learning based on cumulative model strength is
proposed in this study. The probability of a client being
selected to train the statistical model is dynamically updated.

3. Through ACSFed, the performance of federated learning in
statistical heterogeneity scenarios can be promoted compared
with current methods.

FIGURE 2 | Test accuracy on MNIST in 2-class non-IID scenario.
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The remainder of this paper is organized as follows. Section
Related Work describes the background of federated learning
research in statistical heterogeneity scenarios. Section Problem
Definition describes the problem that current methods face
in statistical heterogeneity scenarios. Then, Section Method
describes the structure and principles of the proposed approach.
The theoretical analysis and experimental results are both shown
in Section Evaluation. Finally, the conclusions of this study are
provided in Section Conclusion.

RELATED WORK

Federated learning was first introduced by McMahan et al.
(2017b). Its baseline algorithm is the federated stochastic gradient
descent (FedSGD), enabling each client to execute a round
of SGD locally and upload the model to a central server for
aggregation. Although FedSGD can solve the challenges of
privacy leakage of sensitive data and achieve the same accuracy
of centralized model training when the data are IID, frequent
model uploading and distribution have markedly increased the
communication burden, resulting in the problem of efficiency.

In 2017, an improved algorithm called FedAvg (McMahan
et al., 2017a) was proposed and allowed clients to synchronously
execute several rounds of SGD before uploading the model
to a central server for model aggregation, which efficiently
decreases the communication rounds and thus promotes the

efficiency of federated learning. The convergence of FedAvg is
theoretically proven in Li et al. (2019), and experiments on public
benchmark datasets also demonstrate that FedAvg has ideal
convergence and robustness. However, Zhao et al. (2018) found
that the performance and efficiency of FedAvg markedly shrink
as statistical heterogeneity increases. Moreover, the relation
between the EMD of statistical heterogeneity has been identified
and implies that EMD can act as an ideal index of statistical
heterogeneity. Further, Zhang et al. (2020) has used EMD to
measure the degree of statistical heterogeneity and proposed a
personalized federated learning model training algorithm, which
outperforms existing alternatives. The results of Zhao et al. (2018)
and Zhang et al. (2020) have proved that EMD can effectively
measure statistical heterogeneity and can be applied to promote
the performance and efficiency of federated learning.

Focusing on promoting the efficiency of federated learning,
Wang et al. (2019) introduced adaptive federated learning
that can dynamically compute the rounds of local updates for
each client in resource-constrained edge computing systems.
Compared with methods where the communication step is fixed,
faster convergence can be achieved. Similarly, Huang et al. (2020)
proposed an adaptive enhancement method called LoAdaBoost,
which optimizes the first half of the local update rounds,
and only those clients with low performance would continue
training. This strategy can markedly reduce the expectation
of local training rounds for each client, thereby promoting
the efficiency of federated learning. In addition, considering

FIGURE 3 | Training loss on MNIST in the 1-class non-IID scenario.
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communication costs, Konečný et al. (2016) markedly reduces
communication costs via model compression, decreasing the
uploaded model’s size.

Similarly, Sattler et al. (2019) proposed a compression
framework called sparse ternary compression (STC), which
extends the existing compression technique by enabling
downstream compression and internalization and optimal
Golomb encoding of the weight updates. Moreover, Cai and
Zheng (2018) considers energy conservation and privacy
preservation and proposes an energy-efficient mechanism for
data transmission. Besides energy conservation and privacy
preservation (Cai and He, 2019; Cai et al., 2019), also consider
data utility, and, respectively, proposed two mechanisms that
can further preserve the results while protecting privacy.
Additionally, Asad et al. (2020) introduced an algorithm
combined with model compression and parameter encryption,
effectively reducing communication overhead while protecting
model security. Besides directly reducing communication costs,
the efficiency of federated learning could also be improved
by resource optimization. For example, Nishio et al. (2013),
Sardellitti et al. (2015), and Yu et al. (2016) minimized the
computation time and resource consumption based on the
joint optimization of heterogeneous data, computation, and
communication resources. In contrast, Nishio and Yonetani
(2019) maximized the efficiency of federated model training
through client selection based on resources, network conditions,

and computation capability, and experiments have proven
efficiency enhancement. However, these methods might
markedly increase the computational burden in the distributed
nodes, depending on the environment settings of federated
learning, making the applicability of these methods not ideal.

In addition to improving the efficiency of federated learning
by reducing communication cost and resource use, there
are also methods that design client selection strategies to
promote efficiency. For example, Chen et al. (2020) proposed
an approximation algorithm that effectively improves efficiency
and reduces the communication complexity by selecting some
clients and allowing them to upload their updates in each
round of training. Still, this method lacks the consideration of
statistical heterogeneity. In 2022, Shen et al. (2022) proposed a
novel stratified client selection scheme that develops stratification
based on clients’ local data distribution to derive approximate
homogeneous strata for better selection in each stratum and
can reduce the variance of the selected subset of clients
for the pursuit of better convergence and higher accuracy.
Experimental results show that their approach allows for better
performance than existing methods and is compatible with
prevalent federated learning algorithms. Similarly, Zhao et al.
(2022) proposed FedNorm, a client selection framework that
finds the clients that provide essential information in each round
of model training and reduces energy cost by decreasing the
number of participating clients. Evaluation results demonstrate

FIGURE 4 | Test accuracy on MNIST in the 1-class non-IID scenario.
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that those algorithms outperform existing federated learning
client selection methods in various statistical heterogeneity
scenarios. In addition, there is also the idea of combining
reinforcement learning with client selection. For example, Wang
et al. (2020) proposed Favor. This experience-driven control
framework intelligently chooses the client devices to participate
in each round of federated learning to counterbalance the
bias introduced by non-IID data and speed up convergence.
However, that method requires specific experience to obtain ideal
performance. Inspired by Multi-Agent Reinforcement Learning
(MARL) in solving complex control problems, Zhang et al. (2022)
presented FedMarl, aMARL-based federated learning framework
that performs efficient run-time client selection. Experiments
have shown that FedMarl can promote model accuracy with
much lower processing latency and communication costs.
However, FedMarl might increase the computational burden
in the nodes, making it unsuitable for computation-ability-
constrained scenarios. Additionally, Cho et al. (2020) found that
selecting clients with higher local loss can improve convergence
speed, and they proposed a client selection algorithm called
Power-of-Choice based on their discovery. Compared with the
random client selection algorithm, the convergence speed of the
Power-of-Choice algorithm is significantly improved. Similarly,
Zhang et al. (2021) utilizes weight divergence to identify the
non-IID degree of clients, and proposes an efficient federated
learning algorithm called CSFedAvg, which speeds up the

training by selecting clients with less non-IID data to train the
model more frequently. Although the speed of convergence and
training accuracy is improved by applying CSFedAvg, it does not
guarantee to cover all clients, resulting in the lack of completeness
of the global data used for training.

Thus, although current studies have investigated
improving the performance of federated learning in
statistical heterogeneity scenarios, problems of higher
computing and communication burdens and difficulties
in practical application exist in recent research. Therefore,
an improved method that can suppress or solve the above
issues while retaining or improving performance must
be studied.

PROBLEM DEFINITION

This paper proposes an adaptive client selection algorithm
for federated learning in statistical heterogeneity scenarios.
Federated learning is a distributed machine learning framework
in which a set C = {1, 2, ...,K} of K distributed clients owns a set
of local data sampled from the global datasetDwith M categories
in total. The resulting statistical model is asynchronously trained
with the same structure using local data. The optimization of
federated learning is to train a suitable global parameter vector
ω, which can minimize the total loss of the distributed clients and

FIGURE 5 | Training loss on fashion MNIST in 2-class non-IID scenario.
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can be quantified as follows:

minimize
ω

Ff (ω) =
∑K

i=1
|Di|
|D|

fi(ω,Di) (1)

In IID scenarios, the local optimization object of any client
is an unbiased estimate of the centralized optimization object
Fc(ω) because the data distribution of these clients is the
same as the global data distribution P. Therefore, instead of
enabling all clients to participate in training, only a portion
of clients can be selected randomly with a specific fraction
to execute local updates in the model training of federated
learning. This strategy can promote the efficiency of federated
learning because it can markedly decrease the load and number
of network transmissions.

However, fi(ω,Di) could be an arbitrary approximation to
Fc(ω) when data across the clients is non-IID, which Pi can
be markedly different P, leading to the deviation between the
federated model and centralized-trained model and a marked
decrease in the performance of the federated model. The
convergence of the global model can be unstable due to the
non-IID data because it is difficult for the model to learn the
knowledge of the global data distribution by randomly selecting
clients to participate in training. Therefore, we use ACSFed to
solve the problem mentioned above. The goal of ACSFed is to
make clients with heavy statistical heterogeneity and poor model

performance selected with a larger possibility in the early training
rounds, thereby enabling the global model to learn unknown data
information as quickly as possible and providing more stable,
faster convergence than random client selection. The theory and
design of ACSFed are described in the next section.

METHOD

Definition of Cumulative Model Strength
In this section, the structure and principles of ACSFed will be
shown in detail. In ACSFed, a probability matrix representing
the probability of each client being selected is maintained and
dynamically updated after each communication round. The
updated probability is based on an index called the cumulative
model strength of each client, which was first proposed by this
study and considered the statistical heterogeneity and previous
training performance. The calculation of cumulative model
strength is defined as follows:

h
(i)
t ← ρ · h(i)t−1 +

1 − ρ

EMDi
∗||Lossi||22

, i = 1, 2, ....,N (2)

where h
(i)
t and h

(i)
t−1 represent the cumulative model strength

of the client i at the current and the previous communication
rounds, respectively; Lossi denotes the training loss; ρ represents

FIGURE 6 | Test accuracy on fashion MNIST in 2-class non-IID scenario.
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the attenuation coefficient; EMDi is the index of statistical
heterogeneity on the client i, and N is the total number of clients.
Therefore, a client’s latest cumulative model strength depends
on its history cumulative model strength and current training
status. This calculation method uses an exponential-weighted
average. It is widely applied in the optimization algorithms of
deep learning, such as RSMProp (Tieleman and Hinton, 2012),
which considers the history and current gradient information
to adjust the learning rate of deep learning dynamically. In
the exponential-weighted average, the attenuation coefficient
ρ controls the acceptance ratio of history information. EMDi

is used to measure the degree of statistical heterogeneity in
the client i by calculating the distance between the local data
distribution qi and the global data distribution p. Specifically, it
is calculated as follows:

EMDi(p, qi) = inf
γ ˜

∏

(p,qi)
E(x,y)˜γ [||x− y||2] (3)

where
∏

(p, qi) is the set of all possible joint distributions that
combine the distributions p and qi. Then, for a specific joint
distribution γ belonging to

∏

(p, qi), a sample pair x and y
can be sampled, and their distance can be calculated, thereby
calculating E(x,y)˜γ [||x − y||2], which is the expectation of the
distance between sample pairs under the joint distribution γ .
Finally, the minimum expected value of the sample pair over all

possible joint distributions is determined to be the EMD between
distributions p and qi.

At the beginning of training, the cumulative model strength
of each client is 0, and the values in the probability matrix
are initialized to 1

N , indicating randomly selecting clients. After
every communication round, clients participating in the training
update the values of cumulative model strength and then send
them to the central server.

Adaptive Probability Updating Method
In the central server, a set Ht is maintained, which contains the
latest cumulative model strength of each client and is defined
as follows:

Ht = {h(1)t , h
(2)
t , ..., h

(N)
t } (4)

Only the cumulative model strength values of clients
participating in the training are updated, while the rest remain
unchanged. Then, the central server updates the probability
matrix based on Ht which is:

matrix_prob = matrix_porb+
EMD∗||Loss||22√

Ht + ε
(5)

FIGURE 7 | Training loss on fashion MNIST in the 1-class non-IID scenario.
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where ε is applied to avoid the situation in which the
denominator is 0. As shown in Formula (10), the client with a
larger cumulative model strength will have a smaller probability
of being selected again because the model’s performance on the
client is sufficient. The probability of a client being selected
can markedly increase when its cumulative model strength is 0,
indicating that it has not participated in previous training and
should be more likely to be chosen in the following training
epoch. Finally, normalization is applied to ensure that the sum of
all possible values in the matrix is equal to 1 and is calculated as:

matrix_prob =
matrix_porb

∑N
i=1matrix_porbi

(6)

where matrix_porbi is the client’s probability i, and then the
clients participating in the following training epoch are selected
based on the normalized probability matrix. Based on the theory
and design demonstrated above, the process of ACSF is shown in
Algorithm 1.

After introducing the theory and design of the ACSFed
algorithm, the theoretical analysis of ACSFed regarding the
convergence of federated learning in statistical heterogeneity
scenarios is performed and is described in the next section.

Analysis of the Convergence of ACSFed
In this section, the theoretical analysis of FedAvg and ACSFed
in statistical heterogeneity scenarios is performed. In statistical
heterogeneity scenarios, the data across the distributed clients
is non-IID. Assuming that the data distribution of the client
i is Pi when the data distribution across the clients is IID
(Pi = P), the expectation of the local optimization object in
any client is an unbiased estimate of the centralized optimization
object Fc(ω):

EDi˜Pi [fi(ω,Di)] = Fc(ω)

=
1

|D|
∑M

m=1
P(y = m) · Ex|y=m[l(ω, x)] (7)

Then, we calculate the expectation of the global
federated learning optimization object Ff (ω)
as follows:

E[Ff (ω)] = E[
∑K

i=1
|Di|
|D| ·

1
|Di| l(ω,Di)]

= 1
|D|E[

∑K
i=1 l(ω,Di)] = 1

|D| l(ω,D)

= Fc(ω)

(8)

Equation (8) shows that the expectation of federated learning
optimizing object Ff (ω) is equal to centralized optimization

FIGURE 8 | Test accuracy on fashion MNIST in the 1-class non-IID scenario.
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FIGURE 9 | Test accuracy on CIFAR 10 in the 1-class non-IID scenario.

object Fc(ω) when data across the clients is IID. Therefore,
instead of enabling all clients to participate in training, only
a portion of clients can be selected randomly with a specific
fraction to execute local updates in the model training of
federated learning because the local optimization object of any
client is an unbiased estimate of Fc(ω). However, fi(ω,Di)
could be an arbitrary approximation to Fc(ω) when Pi is
different from P, leading to the deviation between the federated
model and centralized-trained mode, and E[Ff (ω)] is no longer
equal to Fc(ω). The convergence of the global model can
be unstable due to the non-IID data because it is difficult
for the model to learn the knowledge of the global data
distribution by randomly selecting clients to participate in
training. Therefore, statistical heterogeneity must be considered
when selecting clients to participate in model training every
communication round. The previous training performance
should also be regarded to make the model learn the global
knowledge faster. Specifically, the client with heavier statistical
heterogeneity and poor training performance should be more
likely to be selected to accelerate the convergence federated
model, and this client choosing strategy is based on the research
of Cho et al. (2020), which gives the theory of convergence of
federated learning:
Theorem 5.1: The expectation of the difference between the
training parameter and the convergence parameter is shown

below, and the smaller it is, the faster convergence will
be achieved:

E(Ff (ωt)− F∗
f
) ≤ 1

T+γ
[ 4L(32τ

2G2+σ 2/m)
3µ2 _ρ

+ 8L2Ŵ
µ2 + Lγ ||ω0−ω∗||2

2 ]+ ξ · (
∼
ρ
_
ρ
− 1)

(9)

where Ŵ is the difference between centralized optimization object
and federated optimization object; γ , µ are parameters that
control the learning rate; and the critical factor is

_
ρ , which is

called Selection Skew, and it is defined as follows:

ρ1min
ωt

ES(π)
[

1
m

∑

k∈S(π)
(

fk(ωt ,Dk)− f ∗
k

)]

Ff (ωt)−
∑K

k=1 pkf
∗
k

(10)

where S(π) is the client selection strategy and assumes the
strategy would select m clients to participate in the training;
f ∗
k
is the final local optimizing object representing the training

has converged and ωt is the model parameter to be evaluated
during training.

Then as can be concluded in Theorem 5.1, the larger
_
ρ is, the smaller the expectation of the difference between
the training parameter and convergence parameter, indicating
that faster convergence will be achieved. The client selection
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FIGURE 10 | Comparison results between ACSFed and FedProx on fashion MNIST.

strategy of ACFed would more likely choose clients with
heavier statistical heterogeneity, worse training performance, or
untrained operation; therefore, the fk(ωt ,Dk) of each client will
be much bigger than simply random selection, and thereby
the

_
ρ will be bigger. Since the strategy of ACSFed will

make
_
ρ bigger than the strategy that randomly selects clients,

according to Theorem 5.1, faster convergence will be obtained by
ACSFed. After the theoretical analysis of ACSFed, performance
experiments will be introduced in Section Evaluation.

EVALUATION

In this section, the results of the experiments are reported.
Three public benchmark datasets are used for evaluation:MNIST,
Fashion MNIST, and CIFAR 10, and the details of these datasets
are shown in Table 1.

As shown in Table 1, the three datasets are all images, and
MNIST and Fashion MNIST are grayscale images (with only one
channel), while CIFAR 10 is a color image (with three channels).
In terms of the models used to learn features and classification,
a seven-layer convolutional neural network (CNN) is used in
MNIST and Fashion MNIST, while a nine-layer CNN is used
in CIFAR 10. For the baseline algorithm, FedAvg, which selects
clients randomly in each communication round, is chosen for the

performance comparison. Two statistical heterogeneity scenarios
are set in the experiment, including a 2-class non-IID scenario
(each client has two categories of images) and a 1-class non-
IID scenario (each client has only one category of images). To
determine the best attenuation coefficient ρ, several experiments
are performed using different ρ. For the evaluation, two factors
are selected (accuracy reduction and convergence time), and the
results are shown in the following experimental figures and table.

As shown in Figures 1, 2, ACSFed with attenuation coefficient
ρ = 0.7 (blue curve) can achieve lower training loss and higher
test accuracy than FedAvg on MNIST in the 2-class non-IID
scenario. The trend of the curves in the two figures indicates that
the ACSFed training loss decreases faster, and its test accuracy
rises faster than FedAvg when ρ= 0.7.

Figures 3, 4 show the performance of ACSFed and FedAvg on
MNIST in the 1-class non-IID scenario, which has much stronger
statistical heterogeneity than the 2-class non-IID scenario; thus,
the curves fluctuate markedly. Although the stronger statistical
heterogeneity makes it difficult to train the global model, ACSFed
ρ = 0.7 can have lower training loss and higher test accuracy
than FedAvg.

In addition, the curves of ACSFed will fluctuate much more
violently than FedAvg in the earlier communication round due to
the client selection strategy of ACSFed that untrained clients and
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Algorithm 1 : Adaptive client selection enabling federated learning (ACSFed). K

clients are selected from N clients with fraction c; η is the learning rate, P is the

probability matrix; H is the cumulative model strength matrix.

Central Server:

Initialize model ω0, P and H

K ← max(c · N, 1)
while t in total communication rounds do:

if t=0:
client_set = {randomly selected K clients}

else:

client_set = {select K clients based on probability matrix P}

for each client i in client_set parallel do:

Transmit ωt to client i

Receive ωi
t+1, ||lossi ||22, emdi from client i

end for

Hi ← f (||lossi||22, emdi )
P← g(P,H)

end while

Distributed Client:

Receive model ωt from the central server

Calculate emdi based on local data distribution

Initialize loss list lossi = {}
2← {split local data into batches with size B}

for local epoch 1,2,…, E do:

for θ ∈ 2 do:

Add training loss toloss

ωt ← ωt-η∇g(ωt, θ )

end for

end for

ωi
t+1 ← ωt

Calculate||lossi ||22
Transmit ωi

t+1 ||lossi ||22 and emdi to Central Server

clients with stronger statistical heterogeneity or worse training
performance are more likely to be selected, which can feed
the model with much more unknown knowledge compared
with selecting clients randomly in earlier communication round.
However, the ACSFed’s loss curve will decrease faster. Its
training accuracy curve will increase faster than FedAvg after an
earlier communication round as the global model of ACSFed
already learned relatively more knowledge than FedAvg in
earlier training.

Similar results in two statistical heterogeneity scenarios can
be obtained on Fashion MNIST. In the 2-class non-IID scenario,
which is shown by Figures 5, 6, ACSFed with ρ=0.6 finally
achieves a lower training loss and a higher test accuracy than
FedAvg. In addition, the client selection strategy will also make
the convergence of ACSFed weaker than FedAvg in earlier
training rounds. Still, the performance of ACSFed will exceed
FedAvg after certain training rounds.

However, because Fashion MNIST is more complex than
MNIST, ACSFed will take much more time to learn sufficient
knowledge about the data in the 1-class non-IID scenario
compared to the 2-class non-IID. Results are shown in Figures 7,

TABLE 2 | Training performance of ACSFed and FedAvg.

Dataset Method ToA@0.6

(2/1 class non-IID)

ToA@0.8

(2/1 class non-IID)

MNIST ACSFed 3/25 6/72

FedAvg 5/27 9/NULL

Fashion MNIST ACSFed 5/108 32/946

FedAvg 8/107 35/NULL

– – ToA@0.3

(2/1 class non-IID)

ToA@0.5

(2/1 class non-IID)

CIFAR 10 ACSFed 12/381 235/NULL

FedAvg 20/674 927/NULL

8, where ACSFed with ρ=0.8achieves better performance than
FedAvg. In the first 800 rounds of training, the training loss and
test accuracy curves of ACSFed fluctuate much more violently
than FedAvg. Still, then, a lower loss and higher accuracy than
FedAvg is achieved rapidly after 800 rounds of training.

Finally, Figure 9 shows the results on CIFAR10 in 2-class and
1-class non-IID scenarios, which indicate that ACSFed ρ=0.7
has better performance than FedAvg in two types of statistical
scenarios. Moreover, as lite-structured CNN is deployed in the
experiment, the accuracy of CIFAR 10 in both scenarios is
relatively low. (Complex networks can obtain ideal performance,
such as ResNet 18 or ResNet 50, however, these networks are not
suitable for a resource-constrained experimental environment.).

Moreover, the comparison result between ACSFed and
FedProx is illustrated in Figure 10. It can be concluded that
ACSFed can obtain nearly the same promotion in the efficiency of
federated learning in both two kinds of statistical heterogeneous
scenarios. However, the computational complexity of ACSFed is
much smaller than FedProx, as only two types of float digital
calculations are added in ACSFed. At the same time, FedProx
needs to optimize the divergence between the local model and
the global model in the loss function. Therefore, ACSFed can
obtain the same performance as FedProx while adding less
computational complexity.

Finally, based on these experimental results, themore complex
the data are and the stronger statistical heterogeneity is, the more
time ACSFed will take to fluctuate in both loss and accuracy;
we refer to this time as the fluctuation period, which is due
to the client selection strategy of ACSFed. Specifically, the loss
and accuracy curve of ACSFed fluctuates more violently than
FedAvg in the fluctuation period, indicating that the model keeps
learning unknown knowledge. Then, the performance of ACSFed
can exceed FedAvg rapidly after the fluctuation period because
the model has already learned sufficient knowledge about the
non-IID data.

In addition, the ToA@x (the epoch to reach the accuracy
of x) of ACSFed and FedAvg are recorded to demonstrate the
improvement in training efficiency more clearly, and results are
shown in Table 2, where NULL means that the model cannot
achieve a certain accuracy after training.

Based on Table 2, ACSFed can achieve a certain accuracy
(60 and 80%) more quickly than FedAvg in 1- and 2-class
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non-IID. In particular, FedAvg cannot achieve an accuracy of
80% in the 1-class non-IID scenario on the three datasets.
In comparison, ACSFed can still achieve 80% after a certain
communication round of training on MNIST and Fashion
MNIST, indicating that the implementation of ACSFed can
promote the performance of federated learning in statistical
heterogeneity scenarios.

CONCLUSION

Federated learning will play an essential role in the future as
the computation capability of remote edge devices increases and
local data privacy increases. However, statistical heterogeneity
can markedly affect the efficiency of federated learning
methods and lead to unstable convergence. In this study, we
proposed an adaptive client selection algorithm for federated
learning called ACSFed to promote the performance of
federated learning. Experiments on three different datasets
demonstrate the improved performance of ACSFed compared
to the current federated learning method. Additionally, ACSFed
adds little computation and communication burden because
updating the probability matrix of clients is simple. However,
there is still the possibility of promoting the performance
of federated learning in statistical heterogeneity scenarios
by combining ACSFed with methods that focus on global
model aggregation. The challenge of model protection still

exists, and further research is required to address this
and related challenges to apply federated learning methods
more effectively.
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