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The phyllosphere, the aboveground part of a plant, is a harsh environment with diverse 
abiotic and biotic stresses, including oscillating nutrient availability and temperature as 
well as exposure to UV radiation. Microbial colonization of this dynamic environment 
requires specific adaptive traits, including tolerance to fluctuating temperatures, the 
production of secondary metabolites and pigments to successfully compete with other 
microorganisms and to withstand abiotic stresses. Here, we  isolated 175 yeasts, 
comprising 15 different genera, from the wheat flag leaf and characterized a selection of 
these for various adaptive traits such as substrate utilization, tolerance to different 
temperatures, biofilm formation, and antagonism toward the fungal leaf pathogen Fusarium 
graminearum. Collectively our results revealed that the wheat flag leaf is a rich resource 
of taxonomically and phenotypically diverse yeast genera that exhibit various traits that 
can contribute to survival in the harsh phyllosphere environment.

Keywords: yeast ecology, phyllosphere, (a)biotic stresses, antagonism, culturomics, functional characterization, 
biofilm formation, carbon utilization

INTRODUCTION

The phyllosphere is a reservoir of yet unknown microorganisms with intriguing interactions. 
Microorganisms colonizing the aboveground plant surfaces and tissues, including floral and 
vegetative parts, are referred to as the phyllosphere microbiome. The phyllosphere is considered 
to be  a harsh environment due to the microbial exposure to limited nutrient sources, UV 
radiation, temperature oscillations and toxic compounds (Vorholt, 2012). Phyllosphere 
microorganisms display a wide range of adaptations and antagonistic activities, which are 
gaining interest for sustaining plant health (Legein et  al., 2020; Kavamura et  al., 2021). Among 
the phyllosphere-inhabiting microorganisms, yeasts are found to be  abundant as endo- or 
epiphytes, reaching on average 103–105 colony forming units (CFU) per gram of leaf (Glushakova 
and Chernov, 2007). The majority of studies on the phyllosphere microbiome, so far, focuses 
on bacteria and filamentous fungi, especially plant pathogens. Currently, little is known about 
the diversity and ecological roles of phyllosphere yeasts (Kavamura et  al., 2021).

Previous culture-dependent and independent approaches have shown a predominance of 
the Basidiomycete yeasts Sporobolomyces, Cryptococcus (often reclassified as Papiliotrema) and 
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Pseudozyma (Nasanit et  al., 2015a,c, 2016) in the phyllosphere 
of rice, corn, and sugarcane. Several biotic and abiotic factors 
impact the abundance and diversity of yeasts in the phyllosphere. 
These factors include plant genetics (e.g., plant species, genotype, 
and developmental stage) and environmental conditions such 
as UV radiation, moisture, geographic location and fungicides 
(Sapkota et al., 2015). For example, the abundance of Ascomycete 
yeasts, such as Metschnikowia and Cryptococcus, generally 
increased over time, particularly in nectar yielding flowers 
(Glushakova and Chernov, 2010). Additionally, an increase in 
nutrients found on damaged berries also increased the number 
of yeasts in the phyllosphere (Janakiev et  al., 2019).

The phyllosphere is considered a resource-poor environment, 
thus microorganisms compete for nutrients and space. Nutrients 
leak from leaves or fruits into the environment, mainly consisting 
of carbohydrates such as fructose, glucose and sucrose, and 
also amino acids and methanol (Mercier and Lindow, 2000). 
Yeasts are known for their versatile substrate utilization 
(Żymańczyk-Duda et  al., 2017), they can use different carbon 
sources (e.g., simple sugars, methanol, and methane) as well 
as amino acids and nitrogen sources (e.g., methylamine, 
ammonium salts and nitrate; Moliné et  al., 2010; Chi et  al., 
2015; Shiraishi et  al., 2015), allowing them to expand their 
ecological niche (Deak, 2006).

A key step to elucidate the ecological roles of phyllosphere 
yeasts lies in determining their ability to withstand harsh 
environmental conditions and their interactions with other 
phyllosphere members. A number of mechanisms have been 
proposed to facilitate the adaptations of yeasts to the phyllosphere 
environment. For example, the majority of phyllosphere yeasts 
are present in highly organized multicellular communities called 
biofilms (Váchová and Palková, 2018), which play a role in 
stress resilience. More specifically, biofilm formation has been 
implicated in resistance to fungicides and proposed as a physical 
barrier on plant surface injuries, preventing fungal hyphae from 
entering the plant tissue (Villa et  al., 2017).

Currently, the majority of studies on environmental yeasts 
focusses on their biocontrol potential (Schisler et  al., 2002a, 
2015). Several studies have shown the ability of yeasts to inhibit 
plant pathogens and to protect against post-harvest diseases 
via the production of secondary metabolites, cell-wall-degrading 
enzymes, and so-called killer toxins (Freimoser et  al., 2019). 
The mechanisms underlying these antagonistic activities have 
been identified only for a few species. For example, the production 
of pulcherriminic acid by Metschnikowia pulcherrima has been 
implicated in the growth inhibition of Botrytis cinerea (Sipiczki, 
2020), whereas polymers (e.g., pullulan), volatiles (e.g., ethanol, 
phenylethanol and ethyl acetate) and secondary metabolites 
(e.g., aureobasidins) produced by A. pullulans have been shown 
to inhibit the growth of Alternaria alternata and B. cinerea 
(Contarino et  al., 2019; Yalage Don et  al., 2020; Di Francesco 
et  al., 2021). For the majority of biocontrol yeasts, however, 
the mechanisms underlying the antagonistic activity are still 
unknown (Gore-Lloyd et  al., 2019). Investigations of their 
lifestyles and adaptations to the phyllosphere environment will 
contribute to a better understanding of the interplay between 
yeasts and other phyllosphere members.

The present study aimed at investigating the taxonomic 
diversity of yeasts from wheat flag leaves, i.e., the last leaf 
before the ear emergence. The flag leaf can contribute up to 
40% of the final photosynthetic capacity of wheat plants and 
therefore has a major impact on yield (Sylvester-Bradley et  al., 
1990). For a subset of taxonomically different flag leaf yeasts, 
we assessed their phenotypic and metabolic potential, including 
biofilm formation, substrate utilization spectrum, growth at 
different temperatures and antagonism toward the fungal 
pathogen Fusarium graminearum. Our results provide a first 
step toward characterizing the yeast diversity specifically found 
in wheat flag leaves and serve a foundation for further studies 
on the ecological roles of phyllosphere yeasts.

MATERIALS AND METHODS

Isolation of Yeasts From the Wheat Flag 
Leaf
Yeasts were isolated from the flag leaves of wheat (Triticum 
aestivum) cultivar Elixer. Samples were collected during the 
spring of 2020 at Taastrup, Denmark (55°38′46″N 12°17′53″E) 
on a fungicide untreated field plot. Plants were sampled at 
the flowering stage (growth stage 61–69 according to Zadoks 
code (Zadoks et al., 1974)). Three different methods were used 
to isolate both epiphytic and endophytic yeasts. For the first 
method a washing solution (0.5% Tween80 and 0.9% NaCl) 
was added to a 15 ml-tube with 33 flag leaves. Samples were 
vortexed for 1 min, sonicated for 2 min at 45 kHz, and vortexed 
again for 1 min. Leaves were transferred to a new tube and 
blended. The blended-washed leaves were stored in 15% (v/v) 
glycerol. In the second method, the washing solution was 
centrifuged for 5 min at 5.000 rpm, the supernatant was removed 
and the pellet was stored in 3 ml of 15% glycerol (v/v). The 
third method consisted of blending leaves directly (without 
the washing step) and storing in 15% glycerol (v/v). All samples 
were stored at −80°C.

For the selective isolation of yeasts, glycerol samples were 
10-fold serial diluted (10−1–10−7) with 0.9% NaCl and plated 
on different media. Suspensions were plated on Malt Extract 
Agar (MEA), Potato Dextrose Agar (PDA), Sabouraud Agar 
(SDA), 869 media supplemented with wheat flag leaf extract 
(Eevers et al., 2015) and Yeast Extract Peptone Dextrose (YEPD), 
with and without 10% lactic acid to favor yeast growth. Bacterial 
growth was prevented by adding 50 μl/ml chloramphenicol and 
50 μl/ml tetracycline. Plates were incubated for 5–7 days at 
25°C. At least two of each yeast colony morphologies were 
picked and streaked on fresh plates (at least twice) to obtain 
pure cultures. Isolates were grown in YEPD broth for 2–3 days 
and stored in 15% glycerol (v/v). Isolates which did not grow 
well in liquid were streaked on plates and, after 3–5 days, cells 
were directly resuspended in glycerol. All samples were stored 
at −80°C for long-term storage.

Taxonomic Identification of Yeasts
All 175 yeast isolates were characterized by ITS rRNA gene 
sequencing. PCR amplifications were conducted using the 
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primers ITS1 (5′-TCCGTAGGT GAACCTGCGG-3′) and ITS4 
(5′-TCCTCCGCTT ATTGATATGC-3′), synthesized by 
Integrated DNA Technologies (IDT; White et  al., 1990; Lane, 
1991). Additionally, the selection of 51 isolates was also 
characterized by 28S rRNA gene sequencing (also known as 
D1/D2 sequencing) using the primers LR5 (5′-TCCTGAGG 
GAAACTTCG-3′) and LROR (5′-ACCCGCTG 
AACTTAAGC-3′). DNA template for colony PCR was obtained 
by disrupting the cells by heating in a microwave at 600 W 
for 60 s, followed by vortexing and again microwaving at 
600 W for 60 s in sterile demineralized-water. Samples were 
centrifuged at 5.000 rpm for 5 min and an aliquot of 3 μl 
was used as DNA template. The reaction mixture contained 
Go Taq G2 Hot Start Green Master Mix 2×, 0.4 μm for both 
primers, DNA template and nuclease-free water. The PCR 
conditions in the Thermal cycler were: 95°C for 2 min, 
followed by 30 cycles of 95°C for 1 min, 55°C for 30 s, and 
72°C for 1 min 30 s, with a final extension at 72°C for 5 min 
and stored at 12°C. The presence of the PCR products was 
verified on a 1% agarose gel in TBE buffer. PCR products 
were purified via ethanol precipitation or using a PCR 
purification kit (Zymo Research fungal/bacterial DNA Miniprep 
Kit). Samples were sequenced at BaseClear (Leiden, 
Netherlands) or Macrogen Inc. (Amsterdam, Netherlands) 
using the primer ITS1 and LR5. Taxonomic characterization 
was based on partial internal transcribed spacers (ITS) and 
the D1/D2 domains of the large subunit of 26S rRNA gene 
sequences using the NCBI BLAST database.1 For the 
phylogenetic analysis, sequences were aligned using the 
MUSCLE algorithm in the MEGA software (version 7.0) 
and a phylogenetic tree was constructed using Maximum 
Likelihood method and Tamura-Nei model with a bootstrap 
of 1.000 replications (Kumar et  al., 2016). The tree was 
visualized using iTOL (version 6). ITS and D1/D2 sequences 
are deposited at European Nucleotide Archive (ENA) under 
the project number PRJEB51687.

Culture Conditions
For all in vitro assays, the fungal isolate F. graminearum strain 
8/1 (Miedaner et  al., 2000) was grown on Potato Dextrose 
Agar (PDA, pH 7) plates for 5–7 days at 25°C. Yeast cultures 
were started from glycerol stocks. Isolates were plated on PDA 
plates and incubated at 25°C for 5–10 days. For all in vitro 
assays, a loop of the yeast cells was collected and inoculated 
in 0.9% NaCl. Cells were washed twice by centrifugation at 
5.000 rpm for 5 min. An initial cell density (OD600nm) of 0.1 
was used for all experiments except the Biolog plate, where 
an OD600nm of 0.01 was used. All assays were performed at 
25°C, which was the temperature used for the isolation of 
yeasts, unless stated otherwise.

Metabolic Fingerprinting
The Biolog EcoPlate™ system (Biolog Inc., Hayward, CA, 
United  States of America) were used to analyze differential 

1 https://www.ncbi.nlm.nih.gov/

utilization of carbon sources and thereby providing a metabolic 
fingerprint for each individual strain. Every plate contains 
31 different carbon sources grouped into six categories 
(including amino acids, amines, carbohydrates, carboxylic 
acids miscellaneous, and polymer compounds) and a water 
control in three replicates. Yeast cells, described above, were 
adjusted to OD600nm 0.01 and 100 μl per well was inoculated 
into the Biolog EcoPlate™. Plates were incubated at 25°C 
for 10 days at 180 rpm. Metabolism of specific substrates, 
and consequently growth of the cultures, resulted in a change 
in the tetrazolium dye. Cell density was measured after 2, 
4, 7, and 10 days using a microtiter plate reader (OD590nm), 
minus values were adjusted to zero. The average well color 
development (AWCD) was calculated by dividing the total 
of all values (excluding the water control) by 93. Additionally, 
the AWCD was calculated for each substrate group. 
MetaboAnalyst (Version 5.0) was used to visualize the 
10 day-inoculation data. A heatmap was created following a 
Euclidean distance measure and a ward clustering method 
(Xia et  al., 2009).

Growth at Different Temperatures
Yeast cells were collected as described above. The cell density 
was adjusted to OD600nm 0.1 and 20 μl were added to 180 μl 
PDB pH 7  in a round-bottom microtiter 96-wells plate. Plates 
were sealed with plastic wrap and incubated at different 
temperatures, ranging from 4, 10, 25 to 37°C, at 200 rpm for 
7 days. Cell density was measured after 2, 4, and 7 days using 
a microtiter plate reader (OD600nm).

In vitro Biofilm Formation
Yeast cells were collected from plates and OD600nm was adjusted 
to 0.1 as described above. A total of 20 μl of this suspension 
was added to 180 μl PDB in a flat-bottom microtiter plate. 
Plate was sealed and incubated statically in the dark for 3–4 days 
at 25°C. After incubation, cells were stained by adding 10 μl 
of 0.1% crystal violet to each well of the microtiter plate. 
Plate was incubated at room temperature for 15 min. Cells 
were washed three times with demineralized-water to remove 
platonic cells. After that, cells in biofilm were dissolved in 
200 μl of 96% ethanol and incubated for 5 min. Cell density 
was measured using a microtiter plate reader at OD600nm.

Antifungal Activity via Agar-Diffusible and 
Volatile Compounds
The effect of yeast diffusible compounds on the growth of 
the fungal pathogen F. graminearum was tested using in vitro 
dual culture assay. Yeast isolates and the fungal pathogen 
were previously grown as described above. An aliquot of 
10 μl was streaked on one side of a 9-cm Petri dish (ϕ 9 cm) 
containing PDA at pH 7 (0.5 cm from the edge of the plate). 
Control treatments were inoculated with 10 μl 0.9% NaCl. A 
total of four replicates was prepared. Plates were incubated 
for 24 h at 25°C. After that, a fungal mycelial agar plug  
(ϕ 5 mm) was placed 24 h later at the opposite side of the 
Petri dish. Plates were incubated for 6 days at 25°C until the 
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fungus on the control plates reached the edge of the plate. 
After 6 days, the inhibition zone was determined by measuring 
the area between the fungal hyphae and the yeast colony 
(area treatment) using ImageJ (FIJI). The inhibition percentage 
was calculated as

  

The effect of volatile organic compounds (VOCs) on the 
growth of F. graminearum was investigated using 
two-compartment Petri dishes, which allowed the physical 
separation between the yeast and the fungal isolates. Yeast 
and fungal inocula were prepared as described above. An 
aliquot of 10 μl of the yeast isolates at OD600nm 0.1 was 
inoculated on one of the compartments of the Petri dish 
containing PDA (pH 7) and spread evenly. Control treatments 
were inoculated with 10 μl 0.9% NaCl. A total of four 
replicates were prepared. Plates were incubated for 24 h at 
25°C before inoculation of the fungal pathogen. A mycelium 
agar plug was placed (ϕ 5 mm) on the other compartment 
of the Petri dish. Plates were sealed three times with plastic 
wrap and incubated at 25°C for 4 days. Growth inhibition 
was calculated by measuring the mycelial growth (area 
treatment) after VOC exposure. The inhibition of the four 
replicates was calculated by    

Statistical significance was determined with one-way ANOVA, 
Tukey’s HSD test (p < 0.05).

Scanning Electron Microscopic Analysis
Scanning electron microscopy (JEOL SEM 6400 equipped with 
Image Convert for windows) was used to visualize the influence 
of yeasts on the morphological changes in the fungal hyphae 
of F. graminearum. Samples from the dual culture confrontation 
assay (described above) were fixed with 1.5% glutaraldehyde 
in PBS for 1 h while shaking. Then, samples were dehydrated 
in an increasing percentage of acetone for 20 min each (70, 
80, 90, 96, and 100% EtOH) and critical point dried (Baltec 
CPD-030). Afterward, the samples were sputter coated with 
platina and palladium to a 20-mm-thickness and stored in a 
vacuum until use.

RESULTS

Isolation and Phylogenetic Delineation of 
Phyllosphere Yeasts
A total of 175 yeasts were isolated from the surfaces and 
internal tissues of wheat flag leaves. ITS and D1/D2-amplicon 
sequencing revealed a total of 15 genera, representing 25 
different species (Figures  1, 2; Supplementary Table  S1). 
Isolation on SDA and PDA media yielded the highest diversity 
of isolates, 10 and 9 out of 15 different genera, respectively, 
followed by YEPD (eight genera). The majority of the yeast 
isolates belonged to the phylum Basidiomycota (145 isolates; 

82.9%), including the genera Vishniacozyma (46 isolates; 26.3%), 
Sporobolomyces (42 isolates; 24.0%) and Papiliotrema (19 isolates; 
9.1%). Less frequent genera detected were Pseudozyma, 
Anthracocystis, Dioszegia, and Rhodotorula. Isolates belonging 
to the phylum Ascomycota (30 isolates; 17.1%) included 
Aureobasidium (28 isolates; 16.0%) and Metschnikowia (2 isolates; 
1.1%). For further phenotypic and metabolic characterization, 
we  selected 51 yeast isolates based on their phylogenetic 
delineation, with at least two isolates of the same genus 
(Figures  1, 2; Supplementary Figure  1).

Metabolic Profiling of Phyllosphere Yeasts
To determine the metabolic diversity of the 51 selected 
phyllosphere yeasts, Biolog EcoPlate was used to screen for 
their ability to metabolize 31 nutrient sources of which at 
least 20 are of plant and/or microbial origin. Growth was 
measured spectrophotometrically, i.e., average well color 
development values (Supplementary Table  S2). The results 
showed that isolates classified as Vishniacozyma (F300, F345), 
Aureobasidium (F359, F57) or Papiliotrema (F301) were able 
to utilize various carbon sources, while none of the Sporobolomyces 
and Dioszegia isolates grew on any of the substrates tested 
(Figure 3A). More specifically, Vishniacozyma isolate F345 had 
the broadest substrate utilization spectrum, followed by 
Vishniacozyma isolates F75, F300 and F66. Intriguingly, 
F. graminearum strain 8/1 was able to use 24 out of the 31 
different carbon sources, indicating a broad substrate utilization 
spectrum for this prevalent fungal pathogen of wheat leaves. 
Among the different types of carbon sources tested, carbohydrates 
were the preferred substrates followed by polymers and carboxylic 
acid; none of the 51 yeast isolates were able to use amines 
under the tested conditions. The most frequently metabolized 
carbohydrates were D-Xylose, D-Mannitol and N-Acetyl-D-
Glucosamine, the polymers were Tween 40 and 80, and the 
carboxylic acids were D-Galacturonic acid and D-Glucosaminic 
acid (Figures  3B,C).

Temperature Growth Range of 
Phyllosphere Yeasts
In the phyllosphere environment, yeasts are exposed to substantial 
temperature oscillations. To investigate the temperature range 
for growth, the selected 51 isolates were tested in vitro at 4, 
10, 25 and 37°C. All yeast isolates were able to grow at 25°C, 
although the growth rate ranged considerably between the 
different isolates (Supplementary Table  S3; Supplementary  
Figure  2). Most of the isolates (94%) grew well within 2 days 
of incubation at 25°C, whereas Filobasidium isolate F253 and 
Aureobasidium isolate F63 required up to 7 days of incubation 
at this temperature. When the temperature was reduced to 
10°C, only 27 and 45 isolates were able to grow after 48 and 
96 h, respectively. At 4°C, 13 isolates were able to grow after 
4 days of incubation, and an additional 31 isolates showed 
growth with longer incubation. Isolates F225, F280 and F391 
classified as Cystobasidium were unable to grow at 4°C, but 
grew at 10°C after 7 days. None of the 51 selected yeast isolates 
was able to grow at 37°C.

( ) ( )( ) .area control area treatment area c r100 / ont ol − ∗ 
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Biofilm Formation by Phyllosphere Yeasts
Biofilms play a vital role in stress resilience and can protect 
yeasts against UV radiation and fungicides. Additionally, they 
can form a physical barrier on leaf surfaces, preventing 
penetration of the leaf surface by fungal pathogens. In vitro 
biofilm formation was detected by crystal violet staining of 
liquid cultures after 7 days of growth at 25°C with a threshold 
of OD600nm at 0.05 to prevent any false positives due to background 
signal. A total of 19 yeast isolates (38%) were able to form 
a visible biofilm in at least 2 of the 3 screenings performed 
(Supplementary Figure  3). Biofilm formation was detected 
for all Metschnikowia (F159 and F318) and Papiliotrema (F297, 
F298, F301, F327, F347, F355, and F386) isolates, whereas no 

biofilm formation was detected for Filobasidium, Dioszegia, 
Rhodotorula and Sporobolomyces isolates under the tested  
conditions.

Interactions Between Phyllosphere Yeasts 
and Fusarium graminearum
To investigate the potential of phyllosphere yeasts to inhibit 
the growth of the leaf pathogen F. graminearum, different 
in vitro assays were performed. Dual-confrontation assays 
showed that several yeast isolates inhibited mycelial growth 
of the pathogen through the production of volatile and/or 
diffusible metabolites (Figure 4). Ten of the 51 isolates (19,6%) 

FIGURE 1 | Phylogeny of 175 phyllosphere yeasts isolated from the wheat flag leaf. Phylogeny is based on partial ITS sequences compared to NCBI database. 
Neighbor Joining tree was constructed with MEGA, MUSCLE for alignment. The iTol software was used to visualize and color-code the tree. Isolates indicated with a 
triangle are the 51 yeasts selected for the screening of different phenotypic and metabolic traits. Fusarium graminearum strain CBS 131786 was used as an 
outgroup. Type strains used are described in Supplementary Table S1.
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FIGURE 2 | Phenotypic and taxonomic characterization of the selected yeast isolates. Pictures depict 5 to 10-day-old isolates grown on PDA at 25°C. Partial ITS 
and D1/D2 rRNA gene sequences were compared to the NCBI database for taxonomic identification.
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exhibited significant volatile-mediated antifungal activity. Two 
of these antagonistic yeast isolates (F318 and F159) that were 
classified as Metschnikowia inhibited the fungal growth by 
66 and 56%, respectively. Also isolates classified as 
Aureobasidium, Papiliotrema, Rhodotorula, Sporobolomyces or 

Vishniacozyma were able to inhibit the growth of this fungal 
pathogen via volatiles. Two other Papiliotrema isolates and 
one Metschnikowia isolate also inhibited hyphal growth via 
agar-diffusible metabolites, by 55, 54 and 21%, respectively. 
Altogether, these results indicated that various, taxonomically 

A

B C

FIGURE 3 | Metabolic profiling of the phyllosphere yeasts. (A) Hierarchical cluster and heat-map analyses of nutrient sources utilized by the selected yeast isolates 
performed with MetaboAnalyst. Yeast isolates were inoculated (OD600 = 0.01) in the BIOLOG EcoPlates, incubated for 10 days at 25°C and 180 rpm, growth was 
measured with a plate reader at OD590nm. Columns represent the average of three replicates of each of the 51 isolates. Rows represent the different carbon sources 
(blue: low abundance, red: high abundance). Compounds of plant and/or microbial origin are displayed in bold. (B) Partial least squares-discriminant analysis (PLS-
DA) indicating the importance of each carbon source. (C) The dynamics of the top 5 isolates including F. graminearum with the most diverse metabolic profile per 
carbon type.
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diverse phyllosphere yeasts can inhibit the growth of 
F. graminearum via volatile and diffusible metabolites.

To visualize the interaction between phyllosphere yeasts and 
F. graminearum, scanning electron microscopy showed that 
Metschnikowia isolate F318 and Papiliotrema isolate F386 both 
altered hyphal morphology compared to the control conditions, 
where smooth fungal hyphae were observed for F. graminearum 
(Figure  5). More specifically, direct confrontation between 
Metschnikowia and F. graminearum resulted in the production 
of an extracellular matrix (presumably extracellular polysaccharides 
(EPS)) on the hyphal surface as well as in between the hyphae 
(Figure 5). Confrontation with Papiliotrema resulted in shrunken 
and distorted hyphae (Figure  5).

DISCUSSION

Yeasts are well-known for their biotechnological and medical 
importance, with Candida and Saccharomyces spp. extensively 
explored. Plant-associated yeasts have been described for their 
biocontrol potential, especially in post-harvest disease 
management but knowledge on yeast ecology and the mechanisms 
underlying their interactions with other members of the 
phyllosphere microbiome are still limited. In this study, 
we examined the diversity of culturable yeasts colonizing wheat 
flag leaves, their adaptive traits and ability to inhibit the growth 
of the fungal pathogen F. graminearum (Figure  6).

The Wheat Flag Leaf Harbors a 
Taxonomically Diverse Reservoir of Yeasts
Previous studies have shown that yeasts colonize a wide range 
of natural environments, including soils, oceans, insects and 
plants (Boekhout et  al., 2021). Plant-associated yeasts are 
receiving increased attention in the past two decades, in particular 
those colonizing fruits (Boekhout et  al., 2021). In line with 
previous culture-dependent and independent studies of the 
wheat phyllosphere (Karlsson et  al., 2014; Sapkota et  al., 2015; 
Knorr et  al., 2019), we  found that Basidiomycetes were the 
most frequently isolated yeasts. Among these, yeasts belonging 
to the genera Aureobasidium, Vishniacozyma and Sporobolomyces, 
also found in phyllosphere of other crops, such as rice, sugarcane 
and corn (Nasanit et al., 2015b,c, 2016), were the most abundant. 
Additionally, we  also detected Pseudohyphozyma and 
Pseudotremella species, which were described previously for 
litter and forest soil (Mašínová et  al., 2017) but are rarely 
isolated from the phyllosphere (Elisashvili et  al., 2009; Nguyen 
et  al., 2021).

Here we characterized the yeast isolates based on the variable 
ITS region as well as the 28S domain (also known as  
D1/D2) for better taxonomic delineation. Yeast taxonomy has 
long been based on these phylogenetic markers, but the resolution 

FIGURE 5 | Scanning electron microscopic (SEM) images of the interactions 
between phyllosphere yeasts and the fungal pathogen F. graminearum. Dual 
culture assays of F. graminearum growing alone (top panels) and exposed to 
Metschnikowia (middle panels) and Papiliotrema (bottom panels) isolates. 
Bars represent 10 μm and 1 μm for ×1.000 and ×10.000 magnification 
images, respectively.

A B

FIGURE 4 | Antagonistic activity of phyllosphere yeasts against F. 
graminearum. Each isolate was screened against F. graminearum for the 
production of volatile organic compounds (VOCs) or agar-diffusible 
compounds. (A) Bars represent the standard deviation of the mean growth 
percentage of 4 independent replicates. Statistical differences as compared 
to control (exposed to medium alone) were determined using Student’s t-test 
(p < 0.05) and are indicated with an asterisk (*). (B) Pictures of the antagonistic 
activities by representative isolates made after 4 and 6 days of exposure for 
the volatile and agar-diffusible compounds, respectively.
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is limited due to the highly conserved sequences in these 
regions, especially in basidiomycetous yeasts (Li et  al., 2020). 
Therefore, a large number of yeast species are being reclassified 
(Yurkov et  al., 2021). For example, Cryptococcus species are 
being reclassified as Papiliotrema and Filobasidium, whereas 
Candida species can be  found in multiple teleomorphic taxa 
with different generic names. Hence, the yeasts described here 
will be subjected in the near future to whole genome sequencing 
for improved taxonomic delineation.

Adaptations of Yeasts to the Harsh 
Phyllosphere Environment
The phyllosphere is a heterogeneous environment where 
microorganisms are exposed to different (a)biotic stresses. Here 
we  studied a number of traits that may contribute to the yeast’s 
adaptation to the phyllosphere, including carbon utilization, 
growth at different temperatures, and biofilm formation. Nutrients, 
such as carbon compounds, are important for growth and the 
synthesis of secondary metabolites (Andrews, 1992). A diverse 
metabolic profile can offer an advantage to withstand the harsh 
conditions in the phyllosphere, allowing microorganisms to 

expand their ecological niche by making better use of the available 
carbon sources (Deak, 2006). Here we  showed that the yeasts 
from the wheat flag leaf displayed diverse metabolic profiles 
with varying degradation rates. Vishniacozyma and Aureobasidium 
isolates, both highly abundant on the wheat flag leaf, displayed 
the most diverse substrate utilization profiles. Unexpectedly, 
Sporobolomyces isolates were unable to use any of the carbon 
sources tested under these conditions, despite their frequent 
and high abundances in wheat leaves found in the present and 
previous studies (Bashi and Fokkema, 1977; Sapkota et al., 2017). 
It is likely that Sporobolomyces species colonize the wheat flag 
leaves through the utilization of glucose, fructose or sucrose, 
sugars that are present in the phyllosphere and enable rapid 
colonization (Leveau and Lindow, 2000) and competition with 
leaf pathogens such as Cochliobolus sativus, partly by limiting 
glucose and amino acid availability. Also, Metschnikowia isolates 
have been shown to inhibit the post-harvest pathogen 
Colletotrichum gloeosporioides through competition for glucose 
and fructose (Tian et  al., 2018; Sipiczki, 2020). To begin to 
understand ecological niche overlap or niche differentiation 
between the phyllosphere yeasts and the fungal pathogen 
F. graminearum strain 8/1, we  also determined the metabolic 

FIGURE 6 | Overview of the adaptive traits of yeasts inhabiting the wheat flag leaf. Neighbor-joining phylogenetic tree based on partial ITS sequences of yeast 
isolates. Isolates were screened for different traits including biofilm formation, growth at different temperatures, competition with the fungal pathogen F. graminearum 
via the production of agar-diffusible and volatile compounds, and substrate utilization.
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profile of this pathogen. We  found that F. graminearum is not 
only able to utilize most of the nutrient sources tested, but also 
utilizes amino acids, amines and polymers that could not 
be utilized by the phyllosphere yeasts tested. This versatile carbon 
utilization profile likely contributes to the successful infection 
of a wide range of cereal crops by this pathogen.

In addition to oscillating nutrient availability, phyllosphere 
yeasts also need to adapt to oscillating temperatures, which can 
differ drastically between day and night, winter and spring. Yeasts 
from the genera Sporobolomyces, Rhodotorula and Vishniacozyma 
have been proposed to tolerate extreme environmental conditions 
and to help plants adapting to cold environments (Buzzini et  al., 
2018; Vujanovic, 2021). Our results showed that all isolates from 
these genera grew at different temperatures, including low 
temperatures. Also, biofilms play an important role in stress 
resilience and protection against harsh environmental conditions 
(Váchová and Palková, 2018), including temperature oscillations. 
Additionally, biofilms form a physical barrier on injuries of plant 
surfaces preventing the invasion by pathogenic fungi. We  show 
that biofilm formation was wide-spread among the wheat 
phyllosphere yeasts, including all Metschnikowia and Papiliotrema 
isolates. Previous studies have proposed biofilm formation as 
one of the antagonistic mechanisms employed by biocontrol 
Metschnikowia isolates on grape wounds (Sipiczki, 2020). This 
mode of action is hypothesized to be based on growth inhibition 
of the pathogen by increasing colonization efficiency (e.g., 
competition for space). However, other biocontrol mechanisms, 
e.g., production of secondary metabolites, cannot be  excluded 
to contribute to the observed antagonistic activity. Currently, data 
on biofilm formation by environmental yeasts is sparse (Cordero-
Bueso et  al., 2017) and our results suggest this may be  a more 
common trait in the phyllosphere. Future investigations involving 
microscopy should address if these biofilms occur in planta and 
if they contribute to the phyllosphere competence of yeasts.

Interactions Between Yeasts and the 
Fungal Pathogen Fusarium graminearum 
in the Phyllosphere
We found that the production of secondary diffusible compounds 
with inhibitory activity against F. graminearum was not a wide-
spread mechanism among the yeasts isolated from wheat flag 
leaves. Only two out of the 51 phyllosphere yeasts tested were 
able to significantly inhibit hyphal growth. However, it is still 
possible that these yeast isolates can inhibit the fungal pathogen 
by competing for nutrients and space, rather than via the 
production of secondary metabolites. Competition for nutrients 
and space have been proposed as the primary mechanism by 
which biocontrol yeasts inhibit pathogens (Freimoser et  al., 
2019). Isolates F355 and F386, which showed the strongest 
inhibitory effects against F. graminearum, are closely related 
to Papiliotrema flavescens, formerly known as Cryptococcus 
flavescens/C. nodaensis. Earlier studies on P. flavescens OH182.9, 
isolated from wheat heads, showed no antagonism in in vitro 
experiments, but this isolate was able to reduce disease incidence 
caused by F. graminearum by 56% in a bioassay (Khan et  al., 
2001). Field experiments where different winter wheat cultivars 

were inoculated with this strain also demonstrated reduced 
disease severity of F. graminearum by 60% (Schisler et  al., 
2002b; Khan et  al., 2004).

Scanning electron microscopy further showed hyphal 
morphological changes on the hyphae of F. graminearum 
during the interaction with specific yeast isolates. The interaction 
with P. flavescens (isolate F386) not only reduced hyphal 
growth but also changed the hyphal morphology from smooth 
to shrunken and distorted. This morphological change has 
been previously observed for F. graminearum confronted by 
different Paenibacillus peoriae strains, bacteria with a high 
potential of biocontrol and plant growth promotion (Ali et al., 
2021). Interestingly, the interaction of F. graminearum with 
Metschnikowia isolate F318, an isolate displaying little reduction 
of hyphal growth in vitro, led to considerable changes in 
hyphal morphology. These results suggest that Metschnikowia 
isolate F318 imposed stress to the fungal pathogen resulting 
in the production of extracellular polysaccharides (EPS). Biofilm 
formation by other Fusarium species, more specifically 
F. oxysporum, has been described to protect the fungal pathogen 
against several fungicides (Peiqian et  al., 2014).

Contrary to diffusible secondary metabolites, volatile compounds 
with inhibitory effects on F. gramineraum were more frequently 
produced by the phyllosphere yeasts. These low molecular weight 
compounds serve as a means of interspecies communication from 
a distance and are proposed as an effective biological control 
strategy against multiple pathogens (Tilocca et  al., 2020). The 
most promising volatile-producing antagonists belonged to 
M. pulcherrima (isolates F159 and F318), Aureobasidium pullulans 
(isolates F57, F174 and F359) and Papiliotrema flavescens (isolates 
F327 and F347), inhibiting hyphal growth by up to 65%. Volatile 
compounds produced by Metschnikowia and Aureobasidium species 
have been previously described for their biocontrol potential 
against several fungal pathogens, including A. alternata and 
B. cinerea (Oro et  al., 2018). The volatile compounds ethanol, 
2-phenylethanol and ethyl acetate have been proposed to 
be involved in this inhibitory activity (Oro et al., 2018; Contarino 
et al., 2019; Sipiczki, 2020; Yalage Don et al., 2020) and hypothesized 
to disrupt the fungal membranes leading to leakage and deformed 
hyphae (Yalage Don et  al., 2020). To date, however, most of the 
knowledge on yeast volatiles stems from studies using yeasts of 
biotechnological importance, e.g., the production of volatiles by 
yeasts and their effects on wine aroma (Bordet et  al., 2020). 
Further research efforts should be  put on characterization of the 
volatile compounds produced by environmental yeasts and their 
ecological roles.

CONCLUDING REMARKS

The wheat flag leaf is a diverse reservoir of yeasts which can 
withstand the harsh conditions found in the phyllosphere 
through different mechanisms. Here we  provide a first insight 
into the genetic and phenotypic diversity of yeasts living on 
and in the wheat flag leaf. Further research should focus on 
the molecular mechanisms underlying the interactions between 
yeasts, including the identification of genes and metabolites 
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involved in antifungal activity. To this end, current approaches 
and tools already in use for model yeasts can be  employed 
for comparative genomics and functional analysis of the 
phyllosphere yeasts. Unraveling the mechanisms underlying the 
antagonistic activities would not only improve our understanding 
of the ecology of phyllosphere yeasts, but also contribute to 
the discovery of novel yeast-based biocontrol products.
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