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Hybridisation is well documented in many species, especially plants. Although hybrid 
populations might be short-lived and do not evolve into new lineages, hybridisaiton could 
lead to evolutionary novelty, promoting adaptation and speciation. The genus Senecio 
(Asteraceae) has been actively used to unravel the role of hybridisation in adaptation and 
speciation. In this article, we first briefly describe the process of hybridisation and the 
state of hybridisation research over the years. We then discuss various roles of hybridisation 
in plant adaptation and speciation illustrated with examples from different Senecio species, 
but also mention other groups of organisms whenever necessary. In particular, we focus 
on the genomic and transcriptomic consequences of hybridisation, as well as the ecological 
and physiological aspects from the hybrids’ point of view. Overall, this article aims to 
showcase the roles of hybridisation in speciation and adaptation, and the research potential 
of Senecio, which is part of the ecologically and economically important family, Asteraceae.
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INTRODUCTION

Understanding the evolutionary genetic processes that underpin phenotypic adaptation and 
speciation is fundamental for understanding the process of Darwinian evolution. It has been 
more than 160 years since Darwin described how species adapt and evolve through the force 
of natural selection, but despite the subsequent advances in population genetics and evolutionary 
theory, our understanding of adaptation and speciation is still far from complete (Coyne and 
Orr, 2004; Rieseberg and Willis, 2007; Abbott et  al., 2009). Speciation is one of the oldest 
problems in evolutionary biology, which has successfully resisted the efforts of generations of 
evolutionary biologists (e.g., Coyne and Orr, 1989). The advance in molecular genetics techniques 
in the last 15 years or so resulted in the reincarnation of the field which became one of the 
hottest topics of evolutionary biology (e.g., Ravinet et  al., 2017; Campbell et  al., 2018; Becraft 
and Moya, 2021). The role of interspecific hybridisation in adaptation and speciation is actively 
debated in the literature and its importance becomes more apparent (e.g., Ebersbach et  al., 
2020; Nevado et  al., 2020; Wong et  al., 2020; Hobbs et  al., 2021; Bush, 2022).

Plant speciation (or at least the literature on plant speciation) differs substantially from 
that in animals. Plant literature often focuses on species hybridisation and introgression during 
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speciation, rather than on reproductive isolation (reviewed in 
Abbott, 1992). Historically, the animal-focused researchers 
considered hybridisation an evolutionary dead-end (Mayr, 1963) 
since it homogenises the diverging genomes and prevents 
speciation. However, plant biologists (Anderson, 1948; Anderson 
and Stebbins, 1954; Grant, 1972) have long considered 
hybridisation as an important force in adaptation and speciation. 
Indeed, hybridisation is widespread in plants (e.g., Grant, 1972; 
Mallet, 2001; Rieseberg et al., 2004), and it may play a substantial 
role in the adaptation and speciation of plant populations 
(Barton, 2001; Rieseberg et  al., 2003). Recent studies have 
shown that hybridisation can have more complex outcomes 
than just homogenisation of diverging genomes. For example, 
it could lead to extinction of hybrid lineages, evolution of 
new species (hybrid speciation), and introgression of adaptive 
alleles, leading to faster adaptation. While the importance of 
interspecific hybridisation in evolution is becoming more 
apparent, the extent (and the role) of gene exchange during 
hybridisation of plant and animal species is not entirely clear.

Many partially isolated species are known to form hybrid 
zones. A Helianthus hybrid zone was demonstrated to be ‘semi-
permeable’, meaning that while there was a barrier to gene 
flow of some genomic regions, the majority of the genome 
can introgress freely (Rieseberg et  al., 1999). On the other 
hand, the two Senecio species forming an elevational hybrid 
zone on Mount Etna, Sicily, are fully compatible, though the 
evidence for numerous interspecific incompatibilities between 
these species is starting to emerge (Brennan et  al., 2014, 2019; 
Chapman et  al., 2016). Hybrid zones can be  considered as 
‘windows on the evolutionary process’ (Harrison, 1993) and 
they represent ‘evolutionary laboratories’ providing the researchers 
an opportunity to analyse and dissect the role of hybridisation 
in speciation and adaptation. In particular, the analyses of 
hybrid zones inform the debate whether hybrids are an 
evolutionary dead-end (Mayr, 1963) or play a more creative 
role in adaptation and speciation (Anderson, 1948; Arnold, 
1997; Rieseberg, 1997).

There are several ways in which hybridisation could promote 
speciation and adaptation (Seehausen, 2013; Vallejo-Marín 
and Hiscock, 2016). Hybridisation can either act to transfer 
adaptive alleles between lineages to aid adaptation, or result 
in hybrid speciation with or without polyploidisation. 
Allopolyploid hybrid speciation occurs when two parental 
lineages with different chromosome ploidies hybridise. This 
may result in hybrids with an odd (often sterile) or even 
number of chromosome sets. Some of the sterile hybrid 
populations may persist without reproduction due to constant 
hybridisation events, while some can reproduce asexually. 
Others may undergo further genome duplications to overcome 
genomic conflicts such as chromosomal pairing during meiosis 
(e.g., Mimulus peregrinus; Vallejo-Marín, 2012; Vallejo-Marín 
et al., 2015). Homoploid hybrid speciation occurs when both 
parental lineages have the same chromosome number (e.g., 
Italian Sparrow, Passer iltaliae; Hermansen et  al., 2011; and 
Oxford ragwort, Senecio squalidus; James and Abbott, 2005). 
Depending on their origin and genomic structure, hybrids 
have different obstacles to overcome (such as problems in 

meiosis and gene regulation) and different evolutionary 
pathways to eventually become a reproductively isolated taxon. 
Even if hybridisation does not lead to speciation, it can 
provide opportunities for adaptation. Following hybridisation, 
hybrid lineages often experience tremendous changes compared 
to their parents. Instead of detailing all the consequences 
of hybridisation on the phenotypic and genomic level, this 
short review focuses on the ones that are potentially beneficial 
for adaptation and speciation. Examples from different Senecio 
species will be  used to illustrate the role of hybridisation 
in adaptation and speciation.

Senecio L. is a genus of herbaceous plants, shrubs, small 
trees and climbers in the Asteraceae family. The genus has a 
worldwide distribution, containing at least 1,400 described 
species (Royal Botanic Gardens Kew, 2022), many of which 
are cultivated extensively. Alongside other genera such as 
Artemisia, Cynara, Echinacea, Helianthus, Lactuca, Tragopogon, 
the Asteraceae family presents huge economic values, with 
numerous species being used in food, medicine, and horticulture. 
The ‘Senecio system’ is also rapidly becoming recognised as 
one of the most tractable plant models in which to study the 
process of speciation at a genetic, genomic, and ecological 
level (Abbott and Rieseberg, 2012; Gross, 2012; Walter et  al., 
2020). The fact that speciation events in the genus have occurred 
relatively recently, and involve examples of both ecological 
speciation and hybrid speciation (homoploid and allopolyploid; 
Abbott and Rieseberg, 2012; Hegarty et al., 2012), make Senecio 
a unique alternative to more conventional plant models, such 
as Arabidopsis, for studies of plant evolution in action.

Natural hybridisation and stable hybrid zones present natural 
experiments that can be  dissected at the molecular level to 
identify genomic factors associated with local adaptation and 
the maintenance of species differences and boundaries (Grant, 
1981; Rieseberg, 1997; Arnold, 2006; Lexer and Widmer, 2008). 
A classic example of natural hybridisation is found on Mount 
Etna, Sicily. Here, two species of Senecio, S. aethnensis and 
S. chrysanthemifolius, which are locally adapted to high- and 
low-elevation conditions respectively, form a stable hybrid zone 
at the boundaries of their respective ecological ranges mid-way 
up the volcano. S. aethnensis populations are found at high 
elevations [>2,000 meters above sea level (masl)] and 
S. chrysanthemifolius are found at low elevations (<1,000 masl; 
Brennan et  al., 2009; Muir et  al., 2013). The two species are 
distinguishable through an array of phenotypic (such as leaf 
dissection: Figure  1; James and Abbott, 2005; Brennan et  al., 
2009; Wong et al., 2020), physiological (such as seed germination 
temperature: Ross, 2010), and ecological differences (such as 
flowering time). Significant differences between these species 
have also been observed at the level of gene expression (Hegarty 
et  al., 2009; Muir et  al., 2013; Chapman et  al., 2016), and 
candidate genes identified in these studies are predicted to 
be  adaptive (Wong et  al., 2020). For instance, genes predicted 
to be  involved in adaptation to high light intensity, UV stress, 
sulphur metabolism, dehydration and cold stress are highly 
expressed in S. aethnensis compared to S. chrysanthemifolius 
(Hegarty et  al., 2009). The two species maintain a hybrid zone 
at intermediate elevations, where hybrids display intermediate 
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phenotypes (James and Abbott, 2005; Brennan et  al., 2009). 
Despite recent divergence (<200 KYA; Chapman et  al., 2013; 
Muir et  al., 2013; Osborne et  al., 2013) and regular gene flow, 
S. aethnensis and S. chrysanthemifolius evolved as distinct species 
and maintain very different phenotypes, with leaf shape showing 
the most extreme differences at the phenotypic level (Figure 1). 
How the species identity is maintained despite the on-going 
gene flow remains unclear, but it was suggested that multiple 
factors act together to keep the species identity, including 
genetic incompatibilities (Brennan et  al., 2014, 2016, 2019; 
Chapman et al., 2016), strong divergent selection and selection 

against hybrids (Brennan et  al., 2009; Wong et  al., 2020). For 
instance, transmission ratio distortion (TRD) was also identified 
in this system (34 out of 127 marker loci in Brennan et  al., 
2014; three regions in Chapman et  al., 2016; 2.9%–26.8% of 
loci in Brennan et  al., 2019), with pre-zygotic events (such as 
gametophytic selection), cytonuclear incompatibility, Bateson–
Dobzhansky–Muller incompatibility and potentially 
underdominance contributing to these TRFs (Brennan et  al., 
2014). Hybrid breakdown as a consequence of genetic 
incompatibilities was also observed in synthetic hybrids. Some 
of the breakdown traits include low germination and albinism 
(Hegarty et  al., 2009), necrotic growth (Chapman et  al., 2016) 
and early mortality (Brennan et  al., 2014). Thus, current data 
strongly suggest that S. aethnensis and S. chrysanthemifolius 
represent a clear-cut case of ecological speciation driven by 
adaptation to contrasting conditions of high- and low-elevation. 
There are relatively few studied cases of ecological speciation 
(Counterman et  al., 2010; Martínez-Fernández et  al., 2010; 
Papadopulos et al., 2011), making Senecio a particularly valuable 
model system for research in adaptation and speciation.

Another attractive feature of this study system is a case of 
rapid recent (<300 years) homoploid speciation of S. squalidus 
in the United  Kingdom. This speciation occurred following 
the introduction of Senecio plants from Mount Etna to England 
some 300 years ago (Nevado et al., 2020). This case of speciation 
is relatively well documented because it occurred in Oxford 
Botanic Garden, hence the common name of Oxford Ragwort. 
Originating from hybridisation an English garden and a period 
of sustained cultivation in Oxford, S. squalidus has now spread 
to the majority of the United Kingdom as far north as Scotland, 
and was found to hybridise with native species, such as Groundsel 
(Senecio vulgaris) leading to the origin of two new allopolyploid 
species, the allohexaploid S. cambrensis and the allotetraploid 
S. eboracensis (Lowe and Abbott, 2004). This system presents 
an exciting model for studying speciation, adaptation, invasion 
and hybridisation (e.g., Nevado et al., 2020; Walter et al., 2020). 
It also presents an excellent example of how hybridisation can 
lead to speciation.

ROLES OF HYBRIDISATION IN 
ADAPTATION AND SPECIATION

Transcriptome Shock
Studies have shown altered gene expressions in hybrids compared 
to parental lineages, a process known as ‘transcriptome shock’ 
(Lee and Chen, 2001; Shaked et  al., 2001; Adams et  al., 2003; 
Adams and Wendel, 2005; Comai, 2005; Madlung et  al., 2005; 
term first used in Hegarty et  al., 2006). It is worth stressing 
that although transcriptome shock is often observed in polyploid 
hybrids, it is an outcome of hybridisation, rather than genome 
duplication (Wang et al., 2006). The alterations to gene expressions 
are found to be  nonadditive (Wang et  al., 2006; Hegarty et  al., 
2011), immediate in F1 hybrids but stable in subsequent hybrid 
generations (Comai et  al., 2000; Adams et  al., 2003; Hegarty 
et  al., 2006, 2009; Wang et  al., 2006). Studying the triploid 
hybrids (S. x baxteri) between the tetraploid S. vulgaris and 
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FIGURE 1 | Examples of phenotypes and habitats of Senecio 
aethnensis, Senecio chrysanthemifolius, their natural hybrids and 
Senecio squalidus. (A) S. chrysanthemifolius from Mount Etna. 
(B) Natural hybrid on Mount Etna. (C) Homoploid hybrid species  
S. squalidus from Oxford, United Kingdom. (D) S. aethnensis from Mount 
Etna. (E) Natural habitat of Senecio on Mount Etna. (F) S. squalidus 
found on railways in the United Kingdom (identified by yellow arrows). 
(G) Variation in leaf phenotypes in one F2 synthetic hybrid (between  
S. aethnensis and S. chrysanthemifolius) family. (H) Leaf shape variation 
in greenhouse-grown Senecio. Left most: S. chrysanthemifolius; Right 
most: S. aethnensis; All in-between: synthetic F2 hybrids.
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diploid S. squalidus, and hexaploid allopolyploid (S. cambrensis) 
arisen from the triploid hybrid, Hegarty et  al. (2006) showed 
that transcriptome shock was evident in S. x baxteri and that 
the shock was ‘ameliorated’ after genome duplication in the 
S. cambrensis. It could manifest in mechanisms involving gene 
silencing, regulatory networks, chromatin remodelling and DNA 
methylation (Shaked et al., 2001; Madlung et al., 2005). Although 
this epigenetic instability could be  disadvantageous, it could 
serve as a target for selection to act on to subsequently facilitate 
adaptation and speciation in the hybrid lineage (Hegarty 
et  al., 2011).

In the homoploid hybrid species S. squalidus, two genes, 
ATP-sulfurylase precursor and glutathione-S-transferase, were 
found to have transgressive up-regulation compared to the 
midpoint of the parental species (Hegarty et  al., 2009). These 
two genes are likely up-regulated in response to deficiency in 
sulphur (Xiang and Oliver, 1998; Harada et  al., 2002), as most 
of United  Kingdom soils contain much less sulphur (<20 kg/
ha/year; Brown et  al., 2000) than soil on Mount Etna where 
the parental species live (>40 kg/ha/year in quiescent period 
between 1997 and 2001, and much more following volcanic 
eruption; Aiuppa et  al., 2006). Research has shown that the 
hybridisation event leading to speciation of S. squalidus most 
likely happened after parental plants were brought to the 
United  Kingdom, instead of hybrid material arriving in the 
United  Kingdom from Mount Etna, as thought previously 
(Nevado et al., 2020). Hence the altered gene expression observed 
in S. squalidus likely evolved due to hybridisation but not 
pre-adaptation. This is a good example of how transcriptome 
shock can facilitate adaptation in hybrid lineages in a novel 
environment which is drastically different than the parental 
ones (in this case includes sulphur level).

Genome Reorganisation
It is not uncommon for hybrid lineages to experience genome 
reorganisation (‘genome shock’: e.g., Rieseberg, 2001; Chen and 
Ni, 2006), such as chromosomal rearrangements, translocations, 
and movement of transposable elements. These rearrangements 
may not be  involved in adaptation to new environments, but 
they often serve as a form of reproductive isolation from 
parental lineages through restricting backcrossing (Rieseberg 
et  al., 2003; Coghlan et  al., 2005; Hegarty and Hiscock, 2005; 
Paun et  al., 2007), an important step in speciation. Genomic 
restructuring is also commonly observed in new, successful 
hybrid lineages alongside other ecological and spatial divergence 
from progenitors (Buerkle et  al., 2000; Baack and Rieseberg, 
2007; Karrenberg et  al., 2007; Brennan et  al., 2019), and might 
be  crucial to restore nucleocytoplasmic compatibility (Soltis 
and Soltis, 1999).

Hybridisation-induced chromosomal rearrangements have 
been documented in a few allopolyploid species such as Triticum 
(Levy and Feldman, 2004), Nicotiana (Lim et  al., 2004) and 
Arabidopsis (Pontes et  al., 2004); as well as homoploid species 
such as Helianthus (e.g., Burke et  al., 2004; Lai et  al., 2005), 
Iris (Tang et al., 2010; Taylor et al., 2013), Agrodiaetus (Lukhtanov 
et al., 2015), and our focal group Senecio (Brennan et al., 2019).

Comparing the genome structure of S. squalidus and its 
progenitors S. aethnensis and S. chrysanthemifolius using genetic 
mapping, it was found that there are indeed differences in 
genomic architecture between the latter two and this led to 
the inheritance of some of this genetic incompatibility in 
S. squalidus (Brennan et al., 2019). Comparison between genetic 
maps of F2 mapping families with either parent also revealed 
genomic reorganisation between maps in half of the linkage 
groups (Brennan et  al., 2019). They also showed evidence for 
colocation between transmission ratio distortion loci and genomic 
rearrangements. These rearranged regions were hypothesised 
to contribute to incompatibilities and reproductive isolation, 
and where divergent selection acts to promote adaptation and 
speciation. This hypothesis can be  tested with the S. squalidus 
genome that will soon be  available.

Increased Heterozygosity, Heterosis and 
Transgressive Segregation
Another opportunity for adaptation and speciation in both 
homoploid and polyploid hybrid lineages is heterosis, in which 
the hybrid lineages express more vigorous phenotypes compared 
to parental lineages due to increased heterozygosity; and 
transgressive segregation, in which extreme phenotypes (positive 
or negative) are formed. Because of recombination and 
transgressive effects, hybrids usually possess higher level of 
variation compared to parental lineages, which creates vast 
potential for novel evolutionary trajectories (Arnold, 2006; 
Abbott and Brennan, 2014).

In Senecio, heterosis was observed in the F1 hybrids between 
Senecio jacobaea and S. aquaticus. Hybrids had superior fitness, 
and they were found to possess adaptations such as drought 
and flooding resistance, inherited from either parent, respectively, 
(Kirk et  al., 2005). These features would allow the hybrid 
lineage to expand and occupy niches outside of their parental 
ones. Unlike homoploid hybrids whose heterozygosity is expected 
to decline over generations due to recombination, the enforced 
pairing of homologous chromosomes in polyploid hybrids 
inhibits intergenomic recombination, thus conserving the high 
level of heterozygosity through generations (Comai, 2005). An 
exceptional example of the role of polyploid hybridisation in 
adaption and speciation is the arctic flora. Research has suggested 
that polyploid lineages are better at colonising after deglaciation 
compared to diploid lineages, and that the polyploid lineages’ 
fixed-heterozygosity prevented the disadvantageous effects of 
inbreeding and loss of heterozygosity caused by genetic drift 
(Brochmann et  al., 2004).

Transgressive segregation is very commonly applied in crop 
breeding, but it can also be  found in the wild species. For 
example, the homoploid species, Helianthus anomalus, 
H. paradoxus, and H. deserticola (all originated from the 
same pair of parental species), occupy different habitats and 
also exhibit adaptive traits not seen in the parental species 
(Schwarzbach and Rieseberg, 2002; Welch and Rieseberg, 2002; 
Gross et  al., 2003; Gross and Rieseberg, 2005; Lai et  al., 
2005). This demonstrates that hybridisation is able to generate 
novelty in terms of morphology, anatomy, life history and 
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physiology which in turn allows for adaptation and speciation 
(Abbott et  al., 2010). Transgressive up-regulation of genes 
were also observed in Senecio (discussed above: Hegarty 
et  al., 2009).

Change in Mating System and 
Reproductive Traits
Hybridisation and polyploidisation can sometimes lead to a 
different mating system in the hybrids. For instance, it is well-
known that allopolyploidy is frequently associated with a shift 
from self-incompatibility (in the parental species) to self-
compatibility in the hybrid polyploid (Entani et al., 1999; Miller 
and Venable, 2000; Nasrallah et al., 2000; Brennan and Hiscock, 
2010); and be  associated with asexual reproduction, both 
vegetative and agamospermy (Otto and Whitton, 2000; Janko 
et  al., 2012). In the arctic flora, numerous diploid taxa of 
hybrid origin are self-compatible or clonal, making them 
successful in the arctic environment where pollinators are scarce 
(Brochmann et  al., 2004). Having a different mating system 
would allow these hybrid taxa to occupy new niches and/or 
perpetuate in smaller populations since there is reduced reliance 
on pollinators and mating partners.

Hybridisation between the tetraploid S. vulgaris and diploid 
S. squalidus in the United  Kingdom has also resulted in two 
hybrid species with varying reproductive traits and mating 
system. S. vulgaris is self-compatible with capitula that are 
rayless; whereas S. squalidus is self-incompatible with capitula 
showing a mix of ray and disc florets. Their hybridisation led 
to the evolution of an allohexaploid species, S. cambrensis, 
and tetraploid species, S. eboracensis (Lowe and Abbott, 2004; 
Brennan and Hiscock, 2010; Hegarty et  al., 2012). Both hybrid 
species possess self-compatibility of S. vulgaris and ray florets 
from S. squalidus. Although some S. cambrensis were found 
to be  self-sterile (Brennan and Hiscock, 2010). Compared to 
the tetraploid parent S. vulgaris, S. eboracensis was also found 
to have more stigmatic papillae that facilitates pollen capture 
(Richards, 1986), and higher production of pollen grains which 
are the main food source of its pollinators (Gilbert, 1986). 
These changes in reproductive traits (especially self-compatibility) 
are crucial, especially to new hybrid lineages, to sustain their 
initial small populations.

Adaptive Introgression
As reproductive isolation of closely related species is often 
incomplete, mutations may traverse species boundaries. Low 
levels of gene flow due to rare interspecific hybridisation may 
have little effect on neutral diversity within species, but it may 
be  extremely important for genes under positive selection, 
which can spread across a subdivided ‘population’ (i.e., several 
hybridising species) with very little gene flow (Slatkin, 1976; 
Slatkin and Wiehe, 1998). Natural selection may substantially 
accelerate the transfer of genes between the species (reviewed 
in Barton, 2001), and horizontal gene transfer (HGT) in bacteria 
is often detected for genes conferring advantage to their hosts 
(Ochman et  al., 2000; Bapteste et  al., 2004), such as antibiotic 
resistance, or a ‘widespread colonization island’ locus that is 

involved in adherence and colonisation of surfaces (Planet 
et  al., 2003). The extent and the role of HGT in non-microbial 
organisms is less clear.

Sharing of adaptive mutations may significantly accelerate 
adaptation process, as species do not have to ‘wait’ for an 
adaptive mutation to arise de novo (Seehausen, 2004). Sharing 
of adaptive mutations between species is likely to be particularly 
important for species with small population sizes, such as 
endemic adaptive radiations on islands, while species with large 
population sizes may have sufficient standing variation to make 
sharing of adaptive mutations unimportant. However, this 
conjecture remains to be tested. While the number of examples 
of adaptive gene sharing is growing (e.g., Kapralov and Filatov, 
2006; Meier et  al., 2017; Richards and Martin, 2017) the role 
of adaptive allele sharing in adaptation and speciation is still 
far from clear.

Previous studies have identified multiple cases of cytonuclear 
phylogenetic discordance (e.g., Shaw, 2002), suggesting 
introgression of chloroplast or mitochondrial DNA, but 
cytoplasmic DNA may be  particularly prone to interspecific 
introgression (Tsitrone et  al., 2003) and may not reflect the 
situation with nuclear genes. The literature survey of Fst values 
and selection gradients and differentials in phenotypic traits 
suggested that ‘collective evolution’ of species exchanging adaptive 
alleles may be  fairly widespread (Morjan and Rieseberg, 2004), 
but more work is needed to clarify the importance of this 
factor in evolution.

An excellent example of adaptive introgression is the one 
responsible for adaptation to serpentine soils in Arabidopsis 
(Arnold et  al., 2016) and wing colours in mimic Heliconius 
(Pardo-Diaz et  al., 2012). Another example of apparently 
adaptive introgression was also reported for two Senecio species 
in the United  Kingdom (Kim et  al., 2008). Senecio vulgaris 
that normally does not have ray florets on the capitula, evolved 
a variety, S. vulgaris var. hibernicus, which possess rayed 
capitula like S. squalidus following introgression from the 
latter species (Abbott et  al., 1992; Kim et  al., 2008). The 
production of ray florets in this variety of S. vulgaris involves 
the expression of various cycloidea (CYC)-like genes (Kim 
et  al., 2008; Garcês et  al., 2016), and was proven to enhance 
pollination attraction (Abbott and Irwin, 1988) and maternal 
outcrossing (Marshall and Abbott, 1982, 1984) compared to 
the non-introgressed S. vulgaris. In another pair of Senecio 
species in the Bavarian Forest National Park, Germany, 
low-elevation S. ovatus has benefitted from adaptive 
introgression from the high-elevation S. hercynicus, with 
introgressed traits related to climatic conditions at high 
elevations and also shorter vegetative phases as S. ovatus 
spreads towards higher elevations (Bog et  al., 2017).

The spread of globally adaptive mutations across several 
species should result in the loss of species divergence, the loss 
of intraspecific polymorphism and a characteristic bias in the 
frequency spectrum of mutations towards rare alleles for the 
region adjacent to the advantageous gene (Braverman et  al., 
1995). On the other hand, diversifying selection is expected 
to reduce gene flow and inflate species differentiation for genes 
involved in traits that have differing adaptive significance in 
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the two species. Coupled with the effects of adaptive gene 
sharing, diversifying and adaptive selection are expected to 
create a mosaic genome, with some parts of the genome having 
very little divergence between species, while other parts may 
show strong interspecific differentiation, so called genomic 
‘speciation islands’. Such islands were reported in several animal 
(Duranton et  al., 2018; Irwin et  al., 2018; Hejase et  al., 2020; 
Zhang et  al., 2021) and plant (Renaut et  al., 2013; Tavares 
et  al., 2018; Papadopulos et  al., 2019) species, including the 
high- and low-elevation Senecio species on Mount Etna, where 
the genes with high interspecific differentiation clustered around 
the regions with quantitative trait loci responsible for phenotypic 
differences between the species (Chapman et al., 2016). However, 
how much adaptive gene sharing occurs in this Senecio hybrid 
zone remains to be  tested.

Evolution of Novel Compounds
Besides gaining adaptive advantages from mixing parental genomes, 
hybridisation can also drive the evolution of novel compounds 
that neither parent can produce, such as secondary metabolites 
in plants (Rieseberg et  al., 1993; Orians, 2000). This is likely 
due to new selective pressures experienced by the putative hybrids, 
especially when they occupy novel habitats. Novel compounds 
can be  synthesised by a number of mechanisms, including 
inhibition or re-direction of biochemical pathways, change in 
regulatory genes hence gene expression, and segregation of alleles 
(Orians, 2000). One example is the evolution of a novel methylated 
luteolin derivatives (flavonoids) in hybrids between Salix viminalis 
and S. dasyclados, which are involved in resistance against the 
lead beetle Phratora vulgatissima (Torp et  al., 2013).

A novel pyrrolizidine alkaloid, florosenine, that is potentially 
involved in resistance against thrip species was also discovered 
in synthetic and natural hybrids between S. jacobaea and 
S. aquaticus (Kirk et  al., 2010). Although florosenine has been 
found in other Senecio species in other areas (Mendez et  al., 
1990; Reina et  al., 1993; Pelser et  al., 2005), it has never been 
reported for the two species in the studied population and 
other European popoulations except for one S. jacobaea individual 
with trace amount, likely due to introgression (Kirk et  al., 
2004, 2010). This suggests the novelty of florosenine in S. jacobaea 
and S. aquaticus, although further confirmation is required 
(Kirk et  al., 2010).

Gene Redundancy
Another potential for evolution lies within redundant genes in 
the duplicated genomes in auto- and allopolyploids. There are 
many outstanding questions regarding gene redundancy, such 
as how it varies among species and its relationship with genome 
architecture (Barghi et  al., 2019). Many duplicated genes are 
inactivated due to accumulation of mutations (Parisod et  al., 
2009). They could also be  eliminated in the hybrid genomes 
(e.g., in wheat: Shaked et  al., 2001; in maize: Lai et  al., 2004; 
in Tragopogon miscellus: Tate et  al., 2006). A consequence of 
sequence elimination is divergence of homoeologous chromosomes 
preventing their meiotic pairing. Polyploid hybrid lineages have 
also been shown to purge redundant genomic regions that are 

far from adaptive optimum as they progress to behave in a 
more diploidised way (Wu et  al., 2006), potentially allowing for 
better adaptation in novel habitats (Paun et  al., 2007).

Nonetheless, there is some empirical evidence hinting on 
the role of redundant genes in adaptation and speciation. There 
are many possible reasons why these genes are not purged, 
for example due to gene balance (Freeling and Thomas, 2006; 
Birchler and Veitia, 2007) or dosage balance (Conant and 
Wolfe, 2008). In the early stages of possessing gene redundancy 
(such as soon after polyploidisation), the hybrid lineage also 
has a lower chance of creating homozygous recessive genotypes 
(Comai, 2005). Selection can act on the redundant genes that 
are not inactivated or purged to diversity gene function (Comai, 
2005). They could either evolve new (neofunctionalisation) or 
complementary functions (subfunctionalisation; Lynch et  al., 
2001; Parisod et  al., 2010). For example, gene redundancy has 
been suggested to be  the basis of polygenic adaptation to new 
temperature regimes in Drosophila simulans (Barghi et al., 2019).

Similarly, in an experiment using Senecio lautus it was found 
that replicate populations of the same ecotype showed parallel 
evolution of similar phenotypes through different mixtures of 
adaptive alleles or different mutations in different genes that 
underlie the same biological functions (James et  al., 2021). 
Most SNPs and genes studied in the divergence between the 
dune and headland ecotypes were not shared (non-parallel 
evolution); among all the candidate outlier SNPs, only five 
were shared across the whole system (James et al., 2021). These 
indicate that there is plenty of genetic redundancy underlying 
each biological function in the species (James et  al., 2021).

CONCLUDING REMARKS

Hybridisation may not always allow for adaptation and speciation. 
There is a trade-off between the advantages and disadvantaging 
of combining divergent genomes. For example, hybrids could 
obtain the advantageous, higher environmental tolerance, while 
possessing intermediate traits between the parents that are 
disadvantageous for surviving in parental habitats (Shimizu-
Inatsugi et  al., 2017). The successful establishment of hybrids 
depends on a complex interplay of many evolutionary 
mechanisms, some of which were discussed in this article. 
The research in the genus Senecio, especially the work focused 
on the S. aethnensis—S. chrysanthemifolius—S. squalidus system, 
has significantly advanced our understanding of adaptation and 
speciation. In particular, the work in this system revealed some 
of the roles hybridisation could play in evolution, including 
transcriptome shock (e.g., up-regulation of genes linked to 
sulphur deficiency), genome reorganisation (e.g., between 
S. aethnensis and S. chrysanthemifolius, and inherited in 
S. squalidus), change in mating system and reproductive traits 
(e.g., self-compatibility and gain of ray florets in S. cambrenisis 
and S. eboracensis, hybrid species involving self-incompatible 
S. squalidus and self-compatible S. vulgaris), and adaptive 
introgression (e.g., gain in ray florets in S. vulgaris through 
hybridisation with S. squalidus). Other aspects, such as evolution 
of novel compounds, gene redundancy, and the extent of 
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adaptive allele sharing, have been explored in other Senecio 
species (e.g., novel florosenine in S. jacobaea, heterosis in 
S. jacobaea x S. aquaticus hybrids), but remain to be  explored 
in the S. aethnensis—S. chrysanthemifolius—S. squalidus system. 
This showcases the research potential of Senecio as a whole 
to not only study the role of hybridisation in speciation and 
adaptation, but also other questions in evolutionary biology 
and ecology (reviewed in Walter et al., 2020). With the worldwide 
distribution of a vast number of species and ease of cultivation, 
Senecio offers great potential for evolutionary biologists to 
address outstanding questions regarding the role of hybridisation 
in adaptation and speciation. Specifically, how do hybridising 
species maintain their identity despite their gene pools being 
homogenised by hybridisation and interspecific gene flow? How 
do hybridising (sub)species diverge and evolve reproductive 
isolation? How strong and widespread in the genome diversifying 
selection should be  to drive speciation of actively hybridising 
(sub)species? Under what conditions (e.g., large versus small 

populations) interspecific hybridisation plays more important 
in adaptation and speciation processes? The upcoming S. squalidus 
genome will help to address these questions using the 
S. aethnensis—S. chrysanthemifolius—S. squalidus system.
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