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Wetland species commonly exhibit a range of strategies to cope with water stress,
either through drought tolerance or through avoidance of the period of limited water
availability. Natural populations provide a genetic resource for ecological remediation
and may also have direct economic value. We investigated the effects of drought
stress on the seed germination of wetland species. Nineteen species were germinated
in four concentrations of polyethylene glycol 6000 (PEG) and were evaluated daily
(12-h light photoperiod) or after 35 days (continuous darkness) to determine seed
germination under water stress. Germination percentage decreased with an increase
in polyethylene glycol 6000 (PEG) concentration, but species’ germination response
to PEG concentration varied significantly. Seeds recovered their germinability after the
alleviation of water stress, but the extent of recovery was species-dependent.

Keywords: drought, germination, hydrotime, PEG6000, osmotic potential, subtropical forest

INTRODUCTION

The incidence and intensity of drought and temperature extremes are increasing with climate
change and are a serious threat to many natural ecosystems (Smith, 2011; Cardinale et al., 2012;
Čanak et al., 2020) due to the implications for germination and seedling survival (Walck et al., 2011;
Fernández-Pascual et al., 2019). Environmental factors such as temperature, light, and availability
of moisture are the most important factors regulating seed dormancy and germination (Baskin
and Baskin, 2014). Moisture availability is fundamental for seeds to initiate water absorption
(Kestring et al., 2009), and osmotic solutions can be applied to evaluate germination patterns,
simulating drought stress under low water potential (Michel and Kaufmann, 1973; Bradford et al.,
2013). Drought stress may negatively impact plant regeneration, growth, and survival (Du et al.,
2019; Ding et al., 2020) due to the reduced osmotic potential of dehydrated seeds restricting their
metabolism (Bradford et al., 2013). Water is the main abiotic factor limiting seed germination
and early seedling growth (Ansari et al., 2013; Bhatt et al., 2020a). Effects of severe drought stress
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vary with species, and different taxa may display different
adaptation strategies to survive under such stressful events (Volis
and Bohrer, 2013; Baskin and Baskin, 2014; Miranda et al.,
2014; Bhatt et al., 2019). Evaluating drought tolerance during
seed germination could assist with understanding population
persistence and community assembly patterns, and how these
may be affected by a changing climate.

Ecological functions such as dispersal mode, germination,
seedling establishment, growth rate and plant size, competition,
and survival can be predicted by easily obtained seed traits such
as seed mass and shape (Moles and Westoby, 2004; Moles et al.,
2005; Jiménez-Alfaro et al., 2016; Saatkamp et al., 2019). Seed
mass is positively correlated with higher germination percentages
and seedling establishment under drought stress, due to higher
levels of food reserves (Kos and Poschlod, 2008; Čanak et al.,
2020; Koirala and Neff, 2020).

Lower drought tolerance during germination is a cautious
strategy of reduced fitness when conditions are less suitable and
is likely to correlate negatively with seed size (Kos and Poschlod,
2008). The relationships between germination response to
drought stress and seed size could be important to understand
functional regeneration strategies. Phylogenetic constraints also
influence seed trait patterns at the community level and thus
inform the ecological roles of functional traits (Bu et al., 2008;
Wang et al., 2009).

Species differ in their life span (annual vs. perennial) and
strategy toward drought (tolerance vs. avoidance). Annual species
usually show stress-escaping strategies due to presenting rapid
phenological development and a high degree of plasticity, being
able to complete their life cycle before water deficit becomes
severe enough to cause physiological damage (Kooyers, 2015).
Perennial species avoid water stress both by absorbing water
through an abundant root system and by reducing transpiration
through stomatal closure or laminar morphology. Drought
tolerance is a mechanism through which a plant maintains
metabolism even with the reduction of tissue water potential,
mainly due to the accumulation of compatible solutes or
osmolytes, osmoprotective proteins, and antioxidant capacity
(Verslues et al., 2006). Poorter et al. (2012) described perennial
species as drought-tolerant and able to allocate more resources
to roots, thus improving their ability to source moisture (Roumet
et al., 2006). However, few studies have compared germination
response to drought between annual and perennial species from
subtropical wetlands. We expect differences in life span to reflect
the variation in drought tolerance during the germination stage.

In wetland areas, species commonly show a range of strategies
to cope with osmotic stress (e.g., salinity) or dry spells, either
by being drought tolerant or by escaping drought during the
period of limited water availability (Capon, 2003). It has been
predicted that drought frequency will increase in the near future
(Zhang et al., 2020), which may cause stress to wetland areas
causing the extinction of some species. The climate of south
China is relatively humid when compared with the northern part
of the country (Huang et al., 2017), but drought incidents are
increasing in frequency and severity in southern China including
Jiangxi Province in recent years (Ding et al., 2020; Zhang et al.,
2020). Poyang lake, one of the largest freshwater lakes located in

Jiangxi Province, China, is becoming subjected to seasonal water
level fluctuation, which is severely impacting wetland areas (Feng
et al., 2016; Mei et al., 2016). The gradual degradation of wetland
areas will alter the community composition of wetland plants by
disrupting and segregating their habitats (Feng et al., 2016).

The impacts of drought on species from subtropical
monsoonal climatic conditions of wetland areas around the
Poyang lake remain currently unexplored. In this study, we aimed
to investigate: (i) the ability of seeds from 19 different species to
germinate under a gradient of water potentials, (ii) germination
recovery after the alleviation of drought stress, and (iii) the
relationship of seed mass/size, life span, and phylogeny with
drought tolerance. The results of this study will help to explain
the interspecific variability in drought tolerance strategies among
wetland species, aiding to predict the consequences of drought on
species composition and performance in a changing world.

MATERIALS AND METHODS

Seed Collection and Storage
Freshly mature seeds were collected at the time of natural seed
dispersal (between May and November) from different areas of
Jiujiang, China, during 2020 (Table 1). The climate of Jiujiang is
categorized as subtropical monsoon, where winter (December–
February) is cold with a min/max of 3–11◦C, while summer
(July–August) is hot with a maximum temperature of 39◦C.
Rainfall events occur throughout the year, but precipitation is
greatest during the monsoon (May–July).

We categorized the study species into two groups: (i) wetland
species (defined as per Convention on Wetlands of International
Importance, especially as Waterfowl Habitat – 1971) and (ii)
species that may be found in wetland habitats but are not
limited to them.1 Seeds of each species were collected from
more than 35 individuals spaced at least 2 m apart, to ensure
the genetic diversity of the population. Seeds were cleaned
and dried to 5–8% moisture content (optimal conditions for
most of the orthodox seeds) using 15◦C and 20% relative
humidity before storing at −18◦C at the Lushan Botanical
Garden, China, until the experiment started in September
2021. Before starting the germination experiments, seeds were
retrieved from−18◦C storage and allowed to equilibrate to room
temperature for 24 h.

Seed Morphology
Fresh seed mass was determined for each study species by
weighing three 100-seed replicates using an analytical balance
(Sartorius Analytical Balance mod. ENTRIS224-1S, Bradford,
MA, United States; accurate to 0.1 mg). Seed length, width, and
breadth were measured on 15 seeds per species using a Stereo
Microscope (Nikon SMZ800N; Nikon Instruments Inc. Melville,
NY, United States) fitted with a camera IMG-SC600C (iMG
Biotechnology Co., Ltd, Suzhou, Jiangsu, China). Seed shape
index was calculated as described in Thompson et al. (1993).

1http://www.efloras.org/flora_page.aspx?flora_id=2
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TABLE 1 | Location and other details of species.

Species Code Family Collection time Place Latitude Longitude Altitude (msl) Habit Habitat Wetland
species +

Occasionally
occur in

wetland x

Aeschynomene indica L. AI2 Fabaceae September Minshan 29◦41’27.62′′ 116◦4’16.52′′ 2.41 Annual Open area +

Beckmannia syzigachne (Steud.)
Fernald

BS2 Poaceae May Minshan 29◦29’47.28′′ 115◦53’14.85′′ 116.37 Annual Open area +

Bidens pilosa L. BP Asteraceae November Gutang 29◦40’13.03′′ 116◦5’33.82′′ 13.55 Annual Open area x

Echinochloa crus-galli (L.) P.Beauv. * EC2 Poaceae September Gutang 29◦40’10.99′′ 116◦5’33.52′′ 16.24 Annual Open area +

Echinochloa crus-galli var. mitis (Pursh)
Peterm.

ECM Poaceae November Gutang 29◦40’03.72′′ 116◦6’33.32′′ 24.54 Annual Open area +

Eclipta prostrata (L.) L. EP Asteraceae October Gaolong 29◦35’44.86′′ 116◦3’38.96′′ 62.06 Annual Open area +

Juncus effusus L.* JE2 Juncaceae June Saiyang 29◦32’18.53′′ 115◦53’25.77′′ 107.14 Perennial Streamside +

Juncus prismatocarpus R.Br. JP Juncaceae June Yujiahe 29◦41’59.66′′ 116◦3’46.58′′ 8.02 Perennial Waterlogged area +

Kyllinga brevifolia Rottb.* KB Cyperaceae September Gutang 29◦40’31.937′′ 116◦6’16.88′′ −0.04 Perennial Open area +

Leptochloa chinensis (L.) Nees * LC2 Poaceae November Gutang 29◦39’25.56′′ 116◦6’22.49′′ 25.76 Annual Open area +

Leptochloa panicea (Retz.) Ohwi * LP Poaceae September Gutang 29◦40’27.89′′ 116◦5’38.68′′ −7.28 Annual Streamside +

Lophatherum gracile Brongn. LG Poaceae November Guling 29◦33’12.98′′ 115◦57’56.01′′ 947.81 Perennial Forests x

Melochia corchorifolia L. MC Sterculiaceae October Minshan 29◦29’31.03′′ 115◦53’06.26′′ 98.94 Perennial Open area +

Polypogon fugax Nees ex Steud. PF Poaceae May Weijia 29◦40’31.39′′ 116◦5’29.14′′ 4.94 Annual Streamside x

Polygonum lapathifolium var.
salicifolium Sibth.

PLS2 Polygonaceae July Gutang 29◦40’13.03′′ 116◦5’33.82′′ 13.55 Annual Grassland +

Rorippa globosa (Turcz. ex Fisch. &
C.A. Mey.) Hayek

RG2 Brassicaceae June Yujiahe 29◦41’33.94′′ 116◦2’52.59′′ 13.29 Annual Open area +

Rumex japonicus Houtt. RJ Polygonaceae June Yujiahe 29◦40’55.23′′ 116◦4’21.73′′ 8.95 Perennial Cultivated area +

Sporobolus fertilis (Steud.) Clayton* SPF2 Poaceae November Lianhua 29◦37’14.35′′ 115◦58’33.58′′ 216.52 Perennial Open area x

Veronica persica Poir. VP Scrophulariaceae June Yujiahe 29◦41’02.48′′ 116◦4’28.78′′ 7.19 Annual Open area x

*C4 species (Zhai Z K, Zhao M, Wei Y S, Liu H Q, Bai Y, 2020. The List of C4 Plant in China. Shaanxi Forest Science and Technology,48(05): 7189-7193).
+Wetland species are defined as per the Convention on Wetland of International Importance, especially as Waterfowl habitat (1971).
xeflora of China.
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Effects of Water Stress on Seed
Germination
Effect of drought stress (i.e., low water potential) on germination
was determined using polyethylene glycol-6000 (PEG 6000,
Merck Group, Darmstadt, Germany, part number 8170075000).
The GerminaR package version 2.1.3 (Lozano-Isla et al., 2019)
was used to calculate the fresh weight of PEG 6000 to 9w = 0,
−0.3, −0.6, and −0.9 MPa. These osmotic potentials were used
based on our preliminary study. Seeds were incubated in 9-cm-
diameter Petri dishes on one sheet of Whatman No. 1 filter
paper moistened with distilled water (control) or one of the three
concentrations of PEG. To prevent evaporation, Petri dishes were
sealed with parafilm. Four replicates of 25 seeds each were used
for each treatment and placed in a germinator set at 12/12 h
cycles of 20/30◦C in light conditions (12-h light photoperiod)
and also under constant darkness (dark treatment). Petri dishes
subjected to the dark treatment were wrapped in aluminum foil.
The temperature used to incubate the seeds was chosen because it
was found to be optimal for the germination of these species (data
not shown). The higher temperature period coincided with the
light cycle in the 12-h light photoperiod. Germinated seeds were
counted daily and removed from light treatments for 35 days after
seed soaking; but in the dark treatment, they were counted only
at day 35. Germination was defined as the emergence of a radicle
>2 mm through the external integument, as proposed by the
International Seed Testing Association (Allen and Alvarez, 2020).
Thereafter, germination percentage (G%), mean germination
time (MGT), and synchrony (SYN) were computed in 12-h light
photoperiod seeds using GerminaR (Lozano-Isla et al., 2019)
in accordance with formulas expressed in Bhatt et al. (2020a).
The photoblastism was assessed by calculating the relative light
germination index (RLG) as described in Milberg et al. (2000)
and Flores et al. (2011).

Germination Recovery
Non-germinated seeds from the previous water potential
treatments with light exposure were tested for germination in
conditions free from water stress. The remaining seeds were
rinsed four times with distilled water, placed in newly prepared
Petri dishes, as described previously, and moistened with distilled
water. These Petri dishes were placed in light at 20/30◦C, and
germinated seeds were counted daily for 25 days to test their
ability to recover germination. At the end of the experiment, a
cut test with scalpel to evaluate the embryo status (living and
therefore white and turgid, or brown and therefore dead) under a
binocular microscope was carried out to evaluate the viability of
ungerminated seeds (data not shown).

Germination Traits Grouping and
Phylogenetic Analysis
To group the seeds by similar germination behavior, we selected
the following traits: germination at 0 MPa under white light
(control), to detect primary dormancy; effect size of −0.3 MPa
in relation to control, to detect drought tolerance; the RLG, to
detect the light sensitivity; and germination from recovery after
−0.9 MPa, to detect resistance to rehydration. The groups were

established via K-means and then plotted in a cluster plot. Those
germination behavior traits and seed size for each species were
used to obtain scored values from principal component analysis.

For detection of a phylogenetic trace on seed germination
behavior and seed size, we built a phylogenetic tree with
the “V.PhyloMaker” package (Jin and Hong, 2019). Then, the
phylogenetic signal was analyzed via the Pangel’s λ, which is
based on the Brownian motion evolution model (“phytools”).

Data Analysis
The influence of incubation temperature (IT) on three dependent
variables (i.e., germination percentage, mean germination time,
and synchrony) was performed using GerminaR software
(Lozano-Isla et al., 2019). All data were analyzed by ANOVA,
and means were compared using an SNK test (P < 0.05)
by Statistic version 14.0 (StatSoft, Tulsa, OK, United States).
Correlations among variables were assessed using Pearson’s
correlations using Sigmaplot version 14.0 (Systat Software Inc.,
San Jose, CA, United States).

RESULTS

Characterization of Study Species
The 19 study species are listed in Table 1. To facilitate some
analyses, species’ names were replaced by a code representing
each species. Of the 19 species, eight belonged to the Poaceae
family; two to each of Asteraceae, Juncaceae, and Polygonaceae;
and one from each of Fabaceae, Cyperaceae, Sterculiaceae,
Brassicaceae, and Scrophulariaceae. Twelve species were annuals
and seven perennials. Most of the study species (13) inhabit
open areas, while three are riparian and the remainder are
from cultivated lands (Rumex japonicus), forests (Lophatherum
gracile), or waterlogged areas (Juncus prismatocarpus). In total,
14 species were classified as wetland species.

Seed dimensions varied strongly among the study species,
with two of them (Leptochloa chinensis and Kyllinga brevifolia)
having a seed length of 838.74 ± 15.32 and 402.16 ± 12.68 µm,
respectively (Table 2). For the other 17 species, seed length varied
from 0.48 ± 0.01 µm (in Juncus effusus) to 9.16 ± 0.33 µm
in Bidens pilosa and Eclipta prostrata, whose seeds were 19.1-
fold longer than J. effusus. Comparing the extremes, seeds of
L. chinensis (the largest) had an increased ratio up to 1,747-
fold longer than J. effusus seeds (the smallest). A similar
pattern was verified regarding seed width, where L. chinensis
and K. brevifolia presented values of 457.34 ± 14.24 and
225.28 ± 5.67 µm, respectively (Table 2). If we consider the two
extremes, L. chinensis and J. prismatocarpus (0.25 ± 0.01 µm),
L. chinensis seeds are 1,829.4-fold wider than J. prismatocarpus.
Seed shape index had less variation comparing the rounder seeds,
with values close to 0 (i.e., 0.02 ± 0.01; R. japonicus), and the
ones tending to be more flattened/elongated, with higher values
(0.19 ± 0.01; B. pilosa; Table 2). Such variation was thus limited
to Dshape = 0.17 in seed shape index in favor of B. pilosa seeds. In
contrast, the fresh mass of 100 seeds varied greatly between the
lightest seeds (L. chinensis; 0.04± 0.01 mg) and the heaviest ones
(A. indica; 1,004.00 ± 8.33). Seeds of Aeschynomene indica were
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TABLE 2 | Seed length (SL), seed width (SW), seed height (SH), seed shape (SS), fresh weight of 100 seeds (P100), seed morphology, and seed color measured in
19 plant species.

Plant species SL (µm) SW (µm) SS P100 (mg) Seed morphology Color

A. indica 3.49 ± 0.04 e 2.30 ± 0.03 0.04 ± 0.01 i 1,004.00 ± 8.33 a Reniform Blackish brown

B. syzigachne 1.72 ± 0.02 i 0.57 ± 0.01 0.11 ± 0.01 c 33.33 ± 1.33 h Long elliptic Tawny

B. pilosa 9.16 ± 0.33 c 0.73 ± 0.02 0.19 ± 0.01 a 149.33 ± 6.67 f Cylindrical Dark brown

E. crus-galli 2.59 ± 0.10 g 1.48 ± 0.02 0.06 ± 0.01 fg 107.67 ± 7.42 g Oval Brown

E. crus-galli var. mitis 2.95 ± 0.04 f 1.61 ± 0.02 0.07 ± 0.01 f 201.33 ± 4.81 e Oval Brown

E. prostrata 9.16 ± 0.33 c 0.73 ± 0.02 0.19 ± 0.01 a 28.00 ± 2.31 hi Oval Light brown

J. effusus 0.48 ± 0.01 l 0.28 ± 0.01 0.06 ± 0.01 fg 4.00 ± 0.01 i Oval-shaped Oblong Tawny

J. prismatocarpus 0.55 ± 0.01 l 0.25 ± 0.01 0.08 ± 0.01 e 4.00 ± 0.02 i Long oval Wax yellow

K. brevifolia 402.16 ± 12.68 b 225.28 ± 5.67 0.09 ± 0.01 d 8.00 ± 0.01 i Obovate oblong Brown

L. chinensis 838.74 ± 15.32 a 457.34 ± 14.24 0.08 ± 0.01 e 0.04 ± 0.01 i Oblong sphere Brown

L. panicea 0.60 ± 0.01 l 0.41 ± 0.01 0.04 ± 0.01 j 4.00 ± 0.01 e Oblong sphere Brown

L. gracile 3.94 ± 0.11 d 1.06 ± 0.02 0.12 ± 0.01 b 306.67 ± 4.81 c Long oval Brown

M. corchorifolia 2.10 ± 0.02 h 1.50 ± 0.03 0.03 ± 0.01 j 229.33 ± 2.67 d Ovoid Brown-black

P. fugax 0.93 ± 0.01 k 0.41 ± 0.01 0.09 ± 0.01 d 5.33 ± 1.33 i Oval Brown

P. lapathifolium 2.10 ± 0.03 h 1.63 ± 0.03 0.12 ± 0.01 bc 426.67 ± 23.25 b Broad-ovate Brown/Fulvous

R. globosa 0.56 ± 0.02 l 0.47 ± 0.02 0.09 ± 0.01 d 5.33 ± 1.33 f Broadly ovate Light brown

R. japonicus 2.21 ± 0.04 h 1.55 ± 0.04 0.02 ± 0.01 j 142.67 ± 7.42 c Broad-ovate Reddish/Dark-brown

S. fertilis 1.03 ± 0.02 k 0.75 ± 0.01 0.05 ± 0.01 gh 25.33 ± 1.33 hi Oblong oval Brown

V. persica 1.59 ± 0.03 g 1.21 ± 0.04 0.05 ± 0.01 h 49.33 ± 2.67 h Oblong Brown

In each column, different lowercase letter denotes statistical significance at P ≤ 0.05.

25,100-fold heavier than L. chinensis. Other features, such as seed
morphology and seed color, are also shown in Table 2.

Effects of Osmotic Stress on Seed
Germination
Low water potentials (i.e., higher PEG6000 concentration)
influenced germination percentage (Table 3), with a null
germination percent under −0.9 MPa for all study species.
Germination of the controls was species-dependent. For
instance, seeds of Melochia corchorifolia reached only
19.00 ± 3.42%. On the contrary, seeds of B. pilosa, K. brevifolia,
R. japonicus, and R. globosa showed high G% values of 93,
90, 94, and 82%, respectively. In these species, germination
percent was weakly affected by the −0.3 MPa treatment in
R. japonicus (85.00± 2.60%), moderately affected in K. brevifolia
(56.00 ± 5.89%) and R. globosa (56.00 ± 6.32%), and strongly
affected in B. pilosa (18.00± 2.00%) (Figures 1, 2). These data are
supported by a direct correlation; as the water potential decreases,
the germination percentage decreases with the same intensity,
both in light (r = 0.742; P = 3.75× 10−41) and in dark treatments
(r = 0.383; P = 2.32 × 10−9; Figure 3). The MGT varied strongly
among the study species, ranging from 2.36 ± 0.25 days in
A. indica to 25.49 ± 0.17 days in J. prismatocarpus. A similar
pattern was also demonstrated in seed germination at −0.3 MPa
of PEG6000. On the contrary, synchrony variation was very
low, ranging from 0.03 ± 0.00 (P. lapathifolium) to 0.45 ± 0.50
(L. chinensis). The increase of PEG concentration was positively
correlated with the proportion of dead seeds (r = 0.236;
P = 3.48 × 10−3), while the dead seed was negatively correlated,
both in light (r =−0.510; P = 1.99× 10−11) and dark treatments
(r =−0.325; P = 2.93× 10−4; Figure 4).

Effects of Seed Traits on Seed
Germination
Seed dimensions did not show a significant correlation with
germination in the light treatment, but showed a negative
correlation with G% in the dark regarding seed length
(r = −0.216; P = 1.04 × 10−3), width (r = −0.217;
P = 1.03 × 10−3), breadth (r = −0.206; P = 1.72 × 10−3), and
shape index (r = −0.174; P = 8.46 × 10−3). There was a positive
correlation between dark germination and fresh mass (r = 0.273;
P = 2.93× 10−5).

Effects of Light on Seed Germination
Light sensitivity of seeds showed a moderate and positive
correlation of RLG index with PEG6000 (r = 0.578;
P = 4.15 × 10−19). Similarly, RLG positively influenced
germination in the light treatment (r = 0.438; P = 1.03 × 10−10)
and negatively influenced germination in the dark treatment
(r =−0.183; P = 9.53× 10−3; Figure 4). A positive photoblastism
(RLG values close to 1) predominated in at least 13 species
(Table 4 and Figures 1, 2). The other three species (A. indica,
M. corchorifolia, and R. japonicus) had a negative photoblastism,
mostly germinating in dark conditions, with RLG values <0.4
(Table 4). Such negative photoblastism was found at PEG6000
concentration as low as −0.3 or −0.6 MPa. The aphotoblastism
(germination indifferent to light, values ∼0.5) was found in
E. crus-galli var. mitis, L. gracile, and V. persica seeds (Table 4).

Effects of Stress Relief on Seed
Germination
Germination strongly increased after stress relief for all study
species (Table 5 and Figure 4). Pooling all species responses,
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TABLE 3 | Germination, mean germination time, and synchrony of 19 wetland species, occurring in Jiujiang, China. Each value denotes mean (±SE).

Plant species Germination (%) Mean germination time (MGT; Days) Synchrony (Syn)

0 MPa 0.3 MPa 0.6 MPa 0 MPa 0.3 MPa 0.6 MPa 0 MPa 0.3 MPa 0.6 MPa

Aeschynomene indica 53.00 ± 3.42 a 43.00 ± 5.51 a 1.00 ± 1.00 b 2.36 ± 0.25 a 1.88 ± 0.59 a 2.00 ± 0.71 a 0.12 ± 0.19 b 0.73 ± 0.43 a –n.d.–

Beckmannia syzigachne 23.00 ± 1.91 a 12.00 ± 5.16 b –n.d.– 7.53 ± 0.35 a 7.50 ± 0.66 a –n.d.– 0.09 ± 0.07 a 0.04 ± 0.04 a –n.d.–

Bidens pilosa 93.00 ± 1.91 a 18.00 ± 2.00 b 3.00 ± 0.71 c 10.71 ± 0.28 a 11.27 ± 1.15 a 8.50 ± 1.77 b 0.06 ± 0.01 a 0.05 ± 0.03 a –n.d.–

Echinochloa crus-galli 31.00 ± 3.79 a 10.00 ± 1.15 b –n.d.– 8.67 ± 0.28 b 11.17 ± 0.35 a –n.d.– 0.05 ± 0.02 –n.d.– –n.d.–

Echinochloa crus-galli var. mitis 75.00 ± 5.51 a 70.00 ± 2.58 a 13.00 ± 4.43 b 5.26 ± 0.28 c 8.59 ± 0.19 b 10.67 ± 1.94 a 0.30 ± 0.03 a 0.08 ± 0.01 a –n.d.–

Eclipta prostrata 37.00 ± 5.74 a 4.00 ± 2.00 b –n.d.– 10.07 ± 0.58 b 14.50 ± 1.06 a –n.d.– 0.04 ± 0.02 –n.d.– –n.d.–

Juncus effusus 21.00 ± 1.91 a 17.00 ± 2.52 a –n.d.– 10.53 ± 0.39 a 11.15 ± 0.22 a –n.d.– –n.d.– 0.02 ± 0.02 –n.d.–

Juncus prismatocarpus 83.00 ± 3.42 a 6.00 ± 1.15 b –n.d.– 25.49 ± 0.17 a 23.50 ± 0.50 b –n.d.– 0.06 ± 0.01 b 1.0 ± 0.01 a –n.d.–

Kyllinga brevifolia 90.00 ± 2.58 a 56.00 ± 5.89 b –n.d.– 13.33 ± 0.13 b 16.53 ± 0.51 a –n.d.– 0.09 ± 0.01 a 0.10 ± 0.01 a –n.d.–

Leptochloa chinensis 58.00 ± 2.00 a 37.00 ± 3.42 b –n.d.– 4.48 ± 0.47 a 5.76 ± 0.28 a –n.d.– 0.45 ± 0.05 a 0.18 ± 0.04 b –n.d.–

Leptochloa panice 62.00 ± 5.03 a 35.00 ± 7.19 b 2.00 ± 1.15 c 4.39 ± 0.06 c 6.43 ± 0.29 b 19.00 ± 0.01 a 0.32 ± 0.05 a 0.10 ± 0.01 b –n.d.–

Lophatherum gracile 51.00 ± 4.12 a 8.00 ± 2.83 b –n.d.– 8.49 ± 0.45 b 10.63 ± 0.75 a –n.d.– 0.06 ± 0.01 a 0.08 ± 0.06 a –n.d.–

Melocchia corchorifolia 19.00 ± 3.42 a 4.00 ± 1.91 b 1.00 ± 1.00 b 8.46 ± 0.96 b 10.21 ± 0.39 b 25.50 ± 0.35 a 0.07 ± 0.07 a 0.17 ± 0.12 a –n.d.–

Polypogon fugax 81.00 ± 1.91 a 45.00 ± 7.37 b –n.d.– 8.23 ± 0.17 b 12.74 ± 0.92 a –n.d.– 0.12 ± 0.01 a 0.14 ± 0.04 a –n.d.–

Polygonum lapathifolium 89.00 ± 4.12 a 6.00 ± 2.58 b –n.d.– 21.85 ± 0.71 a 11.78 ± 3.16 b –n.d.– 0.03 ± 0.00 b 0.67 ± 0.24 a –n.d.–

Rorippa globosa 82.00 ± 4.76 a 56.00 ± 6.32 b –n.d.– 6.24 ± 0.27 b 13.00 ± 0.25 a –n.d.– 0.19 ± 0.02 a 0.06 ± 0.01 b –n.d.–

Rumex japonicus 94.00 ± 1.00 a 85.00 ± 2.6 b –n.d.– 2.75 ± 0.22 b 3.94 ± 0.14 a –n.d.– 0.43 ± 0.05 a 0.34 ± 0.01 b –n.d.–

Sporobolus fertilis 65.00 ± 3.00 a 63.00 ± 4.12 b 26.00 ± 3.83 b 5.36 ± 0.36 b 5.53 ± 0.22 b 8.87 ± 0.27 a 0.34 ± 0.04 a 0.24 ± 0.03 b 0.18 ± 0.04 b

Veronica persica 43.00 ± 1.00 a 33.00 ± 3.79 b 6.00 ± 1.15 c 5.53 ± 0.57 b 7.03 ± 0.92 ab 9.88 ± 0.31 a 0.10 ± 0.03 a 0.10 ± 0.02 a –n.d.–

Within features, different lowercase letters denote significance at P ≤ 0.05.
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FIGURE 1 | Germination in light (dark green) and dark treatments (light green) under three PEG6000 concentrations for 10 wetland species occurring in Jiujiang,
China. Vertical bars denote ± SE around the mean. Within features, different lowercase letters indicate significance at P ≤ 0.05. For more details on each study
species, see Table 1.

the mean germination after −0.3, −0.6, and −0.9 MPa PEG6000
was 32.04 ± 26.94, 39.71 ± 29.70, and 37.02 ± 30.93%,
respectively. However, germination patterns strongly varied from
species to species after stress relief. Some species, such as
R. japonicus (77.00 ± 3.70%), P. lapathifolium (59.74 ± 1.62%),

B. pilosa (59.47 ± 2.21%), L. panice (58.65 ± 1.01%), P. fugax
(72.57 ± 0.98%), and K. brevifolia (85.08 ± 1.92%), showed G%
>55% after stress relief, irrespective of the initial water potential
(Figure 4). Seeds of S. fertilis (30.85 ± 1.17%), E. crus-galli var.
mitis (45.33 ± 1.00%), J. prismatocarpus [(53.00 ± 2.02%) and
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FIGURE 2 | Germination in light (dark green) and dark treatments (light green) under three water PEG6000 concentrations for the remaining nine wetland species
occurring in Jiujiang, China. Vertical bars denote ± SE around the mean. Within features, different lowercase letters indicate significance at P ≤ 0.05. Vertical bars
denote mean (±SE). Within features, different lowercase letters indicate significance at P ≤ 0.05. For more details on each study species, see Table 1.

(30.41 ± 0.90%)], and A. indica (34.83 ± 1.15) showed average
G% between 30 and 55%. The remaining eight species showed an
average G% lower than 30% after stress relief (Figure 4).

Germination after stress relief had a weak and inverse
but significant correlation with G% in light (r = −0.274;
P = 6.43 × 10−4) and dark treatments (r = −0.199;

P = 0.014), showing a direct correlation with MGT under stress
(r = 0.463; P = 2.03 × 10−5; Figure 3). For other factors,
PEG6000 concentration had a positive correlation (r = 0.235;
P = 3.57 × 10−3) influencing germination after stress relief.
Similarly, MGT after stress relief showed a negative correlation
with seed germination both in light (r =−0.228; P = 5.74× 10−3)
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FIGURE 3 | Pairwise correlation matrix between all germination parameters and seed morphology. Asterisks (∗) denote a significant correlation of at least P < 0.05.

FIGURE 4 | Seeds germinated in PEG (dark red), after stress relief (green), and non-germinated (orange) in each osmotic potential (-MPa) and each plant species.
Each bar denotes the mean of four true repetitions.

and dark treatments (r = −0.372; P = 4.02 × 10−5), while
synchrony had a positive correlation (r = 0.435; P = 6.23× 10−6)
with G% in the dark, and a negative correlation with MGT under
stress (r = −0.233; P = 0.046). Germination after stress relief was
negatively correlated with all morphological seed traits, such as
seed length (r = −0.234; P = 0.027), seed width (r = −0.239;
P = 0.019), and seed breadth (r =−0.326; P = 0.039).

In all study species, embryos unable to germinate after
stress relief were subsequently confirmed to be non-viable
(dead; Figure 4). The proportion of dead seeds showed
a wide variation, between 10% (in P. lapathifolium var.
salicifolium under −0.9 MPa PEG concentration) and 100% (in
B. syzigachne under−0.9 MPa PEG6000; Figure 4). Germination
after stress relief also showed a wide variation between 0%
(in B. syzigachne under −0.9 MPa PEG6000) and 90% (in

R. japonicus and P. lapathifolium, both initially allowed to
germinate at−0.9 MPa PEG6000).

Germination Traits Grouping and
Phylogenetic Analysis
Cluster analyses indicated three main groups distributed
according to germination patterns (Figure 5). Group I is
comprised of species with high initial germination in the
controls, i.e., non-dormant seeds, but sensitive to drought.
Seeds in group II also have no dormancy but are tolerant to
drought (germination recovery after stress relief) and tend to be
positively photoblastic. Group III comprises seeds with low initial
germination and low germination after exposure to the lowest
water potential (−0.9 MPa). Such exposure clearly jeopardized
G% in these species; for example, seeds of J. effuses, B. syzigachne,
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TABLE 4 | Relative light germination (RLG) and probable photoblastism.

Plant species PEG6000 concentration (M) Probable

0 0.3 0.6 RLGmean (±SE) Photoblastism

A. indica 0.51 0.57 0.03 0.37 ± 0.17 Negative

B. syzigachne 0.98 1.00 — 0.99 ± 0.01 Positive

B. pilosa 0.55 0.34 1.00 0.63 ± 0.20 Positive

E. crus-galli 0.81 0.85 — 0.83 ± 0.02 Positive

E. crus-galli var. mitis 0.49 0.56 0.37 0.48 ± 0.06 Aphotoblastic

E. prostrata 0.98 1.00 — 0.99 ± 0.01 Positive

J. effusus 1.00 1.00 — 1.00 ± 0.00 Positive

J. prismatocarpus 1.00 1.00 — 1.00 ± 0.00 Positive

K. brevifolia 0.99 1.00 — 1.00 ± 0.01 Positive

L. chinensis 1.00 1.00 — 1.00 ± 0.00 Positive

L. panicea 0.89 0.94 1.00 0.95 ± 0.03 Positive

L. gracile 0.74 0.33 — 0.53 ± 0.21 Aphotoblastic

M. corchorifolia 0.52 0.32 0.00 0.28 ± 0.19 Negative

P. fugax 0.56 0.73 — 0.64 ± 0.08 Positive

P. lapathifolium 0.86 0.63 — 0.74 ± 0.12 Positive

R. globosa 0.77 0.95 — 0.86 ± 0.09 Positive

R. japonicus 0.51 0.52 0.00 0.34 ± 0.17 Negative

S. fertilis 0.70 0.74 0.66 0.70 ± 0.02 Positive

V. persica 0.60 0.51 0.67 0.59 ± 0.05 Aphotoblastic

The RLG was calculated as proposed by Flores et al. (2011). All value to RLG denote the media (±SE). More information of each species, see Table 1.

E. crus-galli, E. prostrata, L. gracile, and M. corchorifolia could be
damaged by drought stress, resulting in non-viable embryos.

No phylogenetic signal has been detected regarding scored
values for germination patterns and seed traits (Figure 6). The
Pangel’s λ for germination was low (logλ = 4.3, p = 1), indicating
that the germination parameters had no relation to phylogenetic
proximity among the study species. Morphological traits also
presented no relation to species’ phylogeny (logλ = 8.45,
P = 0.29).

DISCUSSION

The majority of study species were able to germinate at−0.3 MPa
PEG6000, decreasing G% at the moderate water potential
(−0.6 MPa PEG6000), with little to no germination observed at
−0.9 MPa PEG6000. Such results indicate that germination of
all study species reached their maximum G% in the controls,
while lower water potentials, promoted by PEG6000, decreased
germination. Although germination patterns varied greatly from
species to species, seedling emergence was unlikely to occur
at this level of severe osmotic/drought stress. This life span
pattern is commonly attributed to perennial species, since 42%
of the species studied (M. corchorifolia, P. fugax, R. globosa,
R. japonicus, S. fertilis, V. persica, A. indica, and E. crus-galli var.
mitis) showed significant germination of up to −0.3 MPa and
others 21% (S. fertilis, R. japonicus, A. indica, and E. crus-galli
var. mitis) showed significant germination of up to −0.6 MPa.
Germination was more prominent in seeds germinated in
light than in darkness with the exception of M. corchorifolia.
This description is in accordance with Silvertown (1981) and

Kooyers (2015), who describe annual species as presenting stress-
escaping strategies due to their short life spans, allocating more
resources for reproduction in order to maintain their population
persistence. However, MGT is a more suitable tool to classify
this type of phenomenon. Perennial species tend to have a lower
MGT, facilitating rapid seed germination to produce the largest
number of plants in the shortest time. In this sense, the species
P. fugax, R. globosa, R. japonicus, V. persica, and A. indica are in
synchrony with this theory of life span.

Seeds of a legume shrub commonly used for vegetation
recovery in northern China, Caragana korshinskii, had
germination capacity up to −0.6 MPa, with a subsequent
decrease in G% with drought stress (Zheng et al., 2004). Seed
germination is the earliest and most sensitive stage in the
plant life cycle (Fenner and Thompson, 2005; Baskin and
Baskin, 2014). Therefore, germination timing is most likely to
synchronize with the favorable season for seedling growth and
establishment (Escobar et al., 2018; Bhatt et al., 2020b; Gómez-
Maqueo et al., 2020). Temperature may be the most limiting
factor for germination and seedling establishment in subtropical
monsoon region of China, given that soil moisture availability
is not a constraint in the area (Kang et al., 2017). However, due
to climate change, droughts are becoming more frequent, and
wetland plant communities are likely to be strongly affected
through altered habitats (Feng et al., 2016). Understanding the
effect of drought stress on the germination of wetland species
could be useful for identifying the species that can be tolerant to
environmental changes.

Despite the observed germination inhibition under low water
potential, seeds of most study species were able to recover their
germinability after the alleviation of drought stress. Germination
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TABLE 5 | Germination, mean germination time, and synchrony of 19 wetland species measured, occurring in Jiujiang, China, after water stress relief.

Plant species Germination (%) Mean Germination Time (MGT; Days) Synchrony (Syn)

0.3 MPa 0.6 MPa 0.9 MPa 0.3 MPa 0.6 MPa 0.9 MPa 0.3 MPa 0.6 MPa 0.9 MPa

Aeschynomene indica 12.00 ± 2.58 b* 49.58 ± 3.07 a* 42.00 ± 4.76 a 6.00 ± 3.49 a 1.21 ± 0.12 b 0.51 ± 0.39 b 0.33 ± 0.29 b 0.76 ± 0.04 a 0.72 ± 0.05 a

Beckmannia syzigachne 5.91 ± 1.55 a* 2.00 ± 1.15 b –n.d.– 2.25 ± 0.63 b* 8.00 ± 0.71 a –n.d.– –n.d.– –n.d.– –n.d.–

Bidens pilosa 70.91 ± 7.57 a* 61.50 ± 9.22 ab* 46.00 ± 11.94 b 3.63 ± 0.34 b* 5.82 ± 0.27 a 5.84 ± 0.42 a 0.19 ± 0.05 a 0.21 ± 0.06 a 0.09 ± 0.02 b

Echinochloa crus-galli 3.00 ± 1.00 a* 4.00 ± 1.63 a 1.00 ± 1.00 a 4.33 ± 0.29 a* 4.67 ± 0.29 a 6.00 ± 0.01 –n.d.– –n.d.– –n.d.–

Echinochloa crus-galli var. mitis 18.00 ± 2.58 b* 58.00 ± 0.27 a* 60.00 ± 4.32 a 2.68 ± 0.25 b* 4.00 ± 0.27 a* 4.18 ± 0.23 a 0.18 ± 0.05 b 0.20 ± 0.05 b 0.33 ± 0.01 a

Eclipta prostrata 29.00 ± 6.61 a 20.00 ± 1.63 a 16.00 ± 1.63 a 8.52 ± 0.43 a 7.07 ± 0.83 a 11.98 ± 2.38 s 0.04 ± 0.02 a 0.04 ± 0.03 a 0.03 ± 0.03 a

Juncus effusus 32.52 ± 2.00 a* 27.05 ± 1.09 a 2.00 ± 1.15 b 4.54 ± 0.42 b* 4.72 ± 0.16 b 14.50 ± 1.06 a 0.13 ± 0.03 a* 0.10 ± 0.02 a –n.d.–

Juncus prismatocarpus 67.00 ± 3.42 a* 46.00 ± 6.00 b 46.00 ± 7.39 b 16.60 ± 0.38 a* 16.68 ± 0.18 a 16.65 ± 0.41 a 0.28 ± 0.05 a* 0.04 ± 0.02 b 0.12 ± 0.02 b

Kyllinga brevifolia 85.25 ± 7.78 a* 84.00 ± 4.00 a 86.00 ± 5.29 a 6.42 ± 1.23 a* 8.30 ± 0.42 a 6.35 ± 0.19 a 0.09 ± 0.03 b 0.12 ± 0.02 b 0.21 ± 0.03 a

Leptochloa chinensis 4.84 ± 1.65 a* 4.00 ± 1.63 a 1.00 ± 1.00 b 4.33 ± 0.29 a* 4.67 ± 0.29 a 6.00 ± 0.01 a –n.d.– –n.d.– –n.d.–

Leptochloa panice 30.54 ± 6.44 b 77.42 ± 4.47 a* 68.00 ± 5.89 a 8.91 ± 1.34 a 5.16 ± 0.22 b* 6.06 ± 0.36 b 0.10 ± 0.08 a 0.13 ± 0.01 a 0.18 ± 0.01 a

Lophatherum gracile 16.40 ± 1.39 a* 10.00 ± 2.00 b 6.00 ± 1.15 b 5.21 ± 0.16 a* 4.31 ± 0.67 a 6.00 ± 0.58 a 0.13 ± 0.08 –n.d.– –n.d.–

Melocchia corchorifolia 18.22 ± 1.88 a* 14.00 ± 2.58 a* 20.00 ± 1.63 a 5.25 ± 1.12 ab* 2.57 ± 0.68 b* 7.39 ± 1.42 a 0.05 ± 0.03 b 0.23 ± 0.09 a 0.22 ± 0.06 a

Polypogon fugax 62.70 ± 7.46 b 74.00 ± 5.77 ab 81.00 ± 5.74 a 5.57 ± 0.46 a 5.52 ± 0.69 a* 6.65 ± 0.91 a 0.12 ± 0.02 a 0.14 ± 0.03 a 0.13 ± 0.02 a

Polygonum lapathifolium 70.22 ± 6.08 a* 56.00 ± 2.83 b 53.00 ± 4.43 b 11.62 ± 0.76 b 14.01 ± 0.27 a 9.82 ± 0.50 b 0.06 ± 0.01 a 0.06 ± 0.01 a 0.05 ± 0.01 a

Rorippa globosa 3.17 ± 0.39 a* 2.58 ± 0.13 b 3.39 ± 0.43 a 0.73 ± 0.24 a* 1.33 ± 0.14 a 1.84 ± 0.41 a 0.11 ± 0.10 b 0.47 ± 0.02 a 0.34 ± 0.14 a

Rumex japonicus 50.00 ± 8.33 b* 91.00 ± 1.66 a 90.00 ± 2.24 a 2.25 ± 0.22 a* 2.23 ± 0.05 a 2.27 ± 0.10 0.75 ± 0.13 a 0.70 ± 0.06 a 0.68 ± 0.08 a

Sporobolus fertilis 10.39 ± 3.93 c* 34.10 ± 2.38 b* 48.00 ± 1.63 a 4.50 ± 0.75 a 3.98 ± 0.55 a* 4.36 ± 0.13 a –n.d.– 0.12 ± 0.06 a 0.15 ± 0.01 a

Veronica persica 17.87 ± 5.14 b 39.36 ± 3.65 a* 34.00 ± 5.29 a 4.34 ± 0.28 a* 3.98 ± 0.58 a* 3.92 ± 0.36 a 0.09 ± 0.04 b 0.23 ± 0.02 a 0.15 ± 0.03 ab

Each value denotes mean (±SE). Within features, different lowercase letters denote significance at P ≤ 0.05. Values marked with asterisks (*) are statistically different from those measured durisng water stress.
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FIGURE 5 | Cluster analysis of species using seed germination parameters.

recovery may vary among species. Interspecific differences in
germination and recovery responses after alleviating the 9w are
thus important to understand species’ survival and community
assembly under stressful conditions. Such large variation was
suggested to be related to a niche differentiation among species
to inhabit arid environments, rather than an adaptation (Kos
and Poschlod, 2008). On the contrary, the ability to recover after
drought has been recognized as an adaptive strategy, selected
by the environment to deal with drought stress (Balachowski
and Volaire, 2018). We argue that, although germination
patterns might be variable, post-stress recovery seems to be a
common trait in subtropical wetland communities. Avoiding
germination at low water potential and the ability to recover
after stress alleviation seems to be a dominant regeneration
strategy regarding germination in the study area, as observed
in seeds of groups I and II, usually reaching G% >50 after
stress relief. Such patterns can help us predict the impact of
drought stress and to better understand the adaptative strategies
of local plants regarding their regeneration capacity. Moreover,
germination recovery was observed even from the lowest water
potential, irrespective of phylogenetic constraints, indicating that
seeds may undergo some kind of secondary dormancy during
drought period and will be able to germinate when water
becomes available [see Hegarty (1978)]. In halophyte species
from Chinese grasslands, such as Chloris virgata, germination
recovery reaches up to 80% after stress under severely low water
potentials of −1.2 MPa (Lin et al., 2016). Seeds from African
savanna trees also show germination requirements related to very

stressful conditions, as in the case of Combretum apiculatum
and Colophospermum mopane (Choinski and Tuohy, 1991).
Weed grasses, such as Echinochloa phyllopogon, and species
from desert communities have been reported to show base
psi values equal to or lower than −1.0 MPa (Boddy et al.,
2012). Intraspecific variations of germination traits have yet
to be evaluated for different populations of the study species,
as observed for different provenances of Pinus yunnanensis
and crop wild relatives (Orsenigo et al., 2017; Gao et al.,
2021).

Drought stress caused the death of seeds of group III, thus
being classified as stress-sensitive species. Different proportions
of seed mortality due to drought stress provoked by osmotic
solutions (using PEG6000) have been reported in germination
studies in the literature (Silva et al., 2001; Miranda et al., 2014;
Kintl et al., 2021). For seeds of a tropical legume tree, Silva
et al. (2001) described a mean proportion of dead seeds in about
15–18%, probably due to interaction with a germination delay
caused by low water potential. This may be due to reduced water
potential in orthodox seeds causing embryo death (Chin et al.,
1989; Zhang et al., 2021). Moreover, orthodox seeds show a low
water potential that is unable to reactivate enzymes to recover
germination, leading to embryo death (Garwood and Lighton,
1990; Ebone et al., 2019). In cultivated clover species, the number
of dead seeds increased both in the coated (pelleted) seeds and
the uncoated ones (Kintl et al., 2021). As expected, we found an
enhanced proportion of dead seeds with lower water potentials,
mostly in the light treatments.
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FIGURE 6 | The relation between the plant species phylogenetic relationship and the seed traits. The germination behavior traits were germination with distilled water
under white light (G0), relative drought germination (RDG), relative light germination (RLG), and recovery from –0.9 MPa (R0.9). Seed morphology traits were fresh
weight of 100 seeds (P100), seed length (SL), and seed shape (SS). The size of the circles corresponds to the magnitude of the mean value inside the measured trait.

Seeds germinated in the dark—for instance, buried in soil seed
banks—are more likely to recover from water stress than those
germinated in light. At the soil surface under full light intensity,
seeds are more exposed to water deficit during germination
(Taylor and Ewing, 1988). Correlations with seed traits also
showed an enhanced proportion of dead seeds with small-seeded
species, given that smaller seeds are more likely to suffer injury
by drought than the larger/heavier seeds. In spite of the relatively
broader tolerance to low water potentials, larger seeds can be
supported in drier environments and colonize forest canopy gaps
(Bray, 1956). Beckage et al. (2000) showed only slight increases in
the recruitment of new seedlings in small gaps, and the increases
observed were due to heavier than normal seed production.
Clinton (2003) described a greater concentration of small seeds
of Rhododendron maximum in soils with lower water potential
(%Yw), while in soils with less negative % 9w the presence
of larger seeds was significantly greater than small seeds. In
agreement with Clinton (2003) and Daws et al. (2008) described
a lower risk of seedling establishment as seed size is increased.
Conversely, other studies found no correlation between seed mass

and drought stress in seeds from the arid Kalahari savanna (Kos
and Poschlod, 2008). Further studies should be conducted in
other wetland areas worldwide, such as the Brazilian Pantanal,
the Congo, and the Nilo Rivers’ basins (see Keddy et al., 2009),
to unveil germination patterns and regeneration strategies in
threatened floodplains considered as conservation priorities.

CONCLUSION

Wetland seeds can be classified into functional groups based on
strategies of seed germination and response to drought stress.
No phylogenetic signal was found, and thus, environmental
factors may influence species’ seed traits, driving regeneration
after stress relief. Larger seeds tended to be the most tolerant
to drought stress, while the small-seeded species may be injured
by the low water potentials. Post-stress germination recovery is
a regeneration strategy in subtropical wetland seeds. Seeds of
the most study species were able to recover their germinability
after the alleviation of drought stress. However, the germination
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recovery varies among species. Seeds of most of the species
were able to recover their germinability from the lowest water
potential, irrespective of phylogenetic constraints, indicating
that seeds may undergo secondary dormancy during drought,
enabling them to germinate when water becomes available.
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