
ORIGINAL RESEARCH
published: 13 July 2022

doi: 10.3389/fpls.2022.906410

Frontiers in Plant Science | www.frontiersin.org 1 July 2022 | Volume 13 | Article 906410

Edited by:

Dirk Walther,

Max Planck Institute of Molecular

Plant Physiology, Germany

Reviewed by:

Joshua Koh,

Department of Jobs, Precincts and

Regions, Agriculture Victoria, Australia

Jason Adams,

Sandia National Laboratories (DOE),

United States

*Correspondence:

Narendra Narisetti

narisetti@ipk-gatersleben.de

Evgeny Gladilin

gladilin@ipk-gatersleben.de

†Present address:

Michael Henke,

Plant Sciences Core Facility,

CEITEC-Central European Institute of

Technology, Masaryk University, Brno,

Czechia

Specialty section:

This article was submitted to

Technical Advances in Plant Science,

a section of the journal

Frontiers in Plant Science

Received: 28 March 2022

Accepted: 14 June 2022

Published: 13 July 2022

Citation:

Narisetti N, Henke M, Neumann K,

Stolzenburg F, Altmann T and

Gladilin E (2022) Deep Learning Based

Greenhouse Image Segmentation and

Shoot Phenotyping (DeepShoot).

Front. Plant Sci. 13:906410.

doi: 10.3389/fpls.2022.906410

Deep Learning Based Greenhouse
Image Segmentation and Shoot
Phenotyping (DeepShoot)

Narendra Narisetti 1*, Michael Henke 1†, Kerstin Neumann 1, Frieder Stolzenburg 2,

Thomas Altmann 1 and Evgeny Gladilin 1*

1Molecular Genetics, Leibniz Institute for Plant Genetics and Crops (IPK), Seeland, Germany, 2 Automation and Computer

Sciences Department, Harz University of Applied Sciences, Wernigerode, Germany

Background: Automated analysis of large image data is highly demanded in

high-throughput plant phenotyping. Due to large variability in optical plant appearance

and experimental setups, advanced machine and deep learning techniques are required

for automated detection and segmentation of plant structures in complex optical scenes.

Methods: Here, we present a GUI-based software tool (DeepShoot) for efficient, fully

automated segmentation and quantitative analysis of greenhouse-grown shoots which

is based on pre-trained U-net deep learning models of arabidopsis, maize, and wheat

plant appearance in different rotational side- and top-views.

Results: Our experimental results show that the developed algorithmic framework

performs automated segmentation of side- and top-view images of different shoots

acquired at different developmental stages using different phenotyping facilities with an

average accuracy of more than 90% and outperforms shallow as well as conventional

and encoder backbone networks in cross-validation tests with respect to both precision

and performance time.

Conclusion: The DeepShoot tool presented in this study provides an efficient solution

for automated segmentation and phenotypic characterization of greenhouse-grown plant

shoots suitable also for end-users without advanced IT skills. Primarily trained on images

of three selected plants, this tool can be applied to images of other plant species

exhibiting similar optical properties.

Keywords: greenhouse image analysis, image segmentation, deep learning, U-net, quantitative plant phenotyping

1. INTRODUCTION

Image-based high-throughput plant phenotyping became a method of choice in quantitative plant
sciences aiming to reveal casual links between phenotypic and genomic plant traits under varying
environmental conditions (Li et al., 2014). The ultimate goal is to make an assessment of plant
phenotypic traits data as efficient and scalable as genomic screening (Miller et al., 2007; Fahlgren
et al., 2015). However, efficient and accurate processing and analysis of large image data from
different optical set-ups represent a challenging task constituting one of the major bottlenecks in
the pipeline of phenome-genome correlation (Minervini et al., 2015).
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The first critical step in quantitative analysis of plant image
data is image segmentation, which aims to classify all image pixels
into two or more distinctive classes, e.g., foreground (plant)
and background (non-plant) regions. Due to several natural
and technical factors, segmentation of plant structures from
background regions renders a challenging task. Inhomogeneous
illumination, shadows, occlusions, reflections, and dynamic
optical appearance of growing plants complicate the definition
of invariant criteria for detection of different parts (e.g.,
leaves, flowers, fruits, and spikes) of different plant types (e.g.,
arabidopsis, maize, and wheat) at different developmental stages
(e.g., juvenile, adult) in different views (e.g., top or multiple
side views) (Henke et al., 2019). Consequently, conventional
methods that are typically based on the some suitable image
features and tailored to a particular data cannot be extended
to new data in a straight forward manner. For example, one
such popular approach to unsupervised image segmentation is
based on analysis of differences between plant-containing and
‘empty’ reference images (Choudhury et al., 2018). Thereby, it
is assumed that background intensity/colors remain unchanged
after plants were moved into the photo chamber. However,
due to shadows and reflections both background and plant
regions change their optical appearance. Moreover, these changes
are dynamically progressing in course of plant development.
Consequently, an ’empty’ background image does not provide
an ideal reference for the straightforward segmentation of plant
structures. Mapping of RGB images onto alternative color spaces
such as HSV and/or L*a*b is known to be useful for the
separability of fore and background colors (Philipp and Rath,
2002; Pape and Klukas, 2015; Henke et al., 2021). However, it
cannot completely solve the problem of overlapping plant and
background colors.

To overcome the above limitations of uni-modal image
analysis, a registration-classification approach to plant image
segmentation was suggested in our previous study (Henke
et al., 2020), which relies on pre-segmentation of plant regions
in image modalities with higher fore-/background contrast,
such as fluorescence images, followed by their co-registration
with low-contrast image modalities (e.g., visible light or near-
infrared images). Since segmentation masks derived from one
image modality do not perfectly match another image modality,
classification of plants and marginal background structures
in masked image regions has to be subsequently performed
using pre-trained intensity/color models. In some rare cases
of severe plant movements due to the relocation of carriers
from one photo chamber to another one, substantial differences
between plant contours in two different image modalities can
occur. Although the registration-classification showed relatively
high accuracy of final segmentation results, the principle
requirement of high-contrast multimodal data and occasional
movement artifacts limit its application to experiments where
only one single image modality (typically visible light images)
is acquired.

Numerous further supervised approaches to intensity-/color-
based plant image segmentation were proposed in the past.
In Lee et al. (2018), automated segmentation of arabidopsis

top-view images using a super pixel- and random forest
classification-based algorithm was presented. In this approach,
pre-labeled masks were used to segment each plant from
the multi-tray experiment. However, like many other color-
based models it is limited to a particular experimental setup
and plant type. More recently, Adams et al. (2020) proposed
a neural network based shallow learning method for the
segmentation of side view visible light images. This approach
classifies each pixel based on neighborhood pixel information
of the trained ground truth data and outperforms conventional
thresholding methods.

All the above state-of-the-art techniques require reference
images, the presence of particular image features, and expertise
in manual parameter tuning for each image to be segmented.
Consequently, conventional supervised techniques are typically
trained on and applied to particular types of plants, experimental
set-ups, and illumination scenes. However, high-throughput
phenotyping of thousands and millions of plant images demands
fully automated, efficient, and accurate segmentation algorithms
with higher order cognitive abilities that can tolerate variation in
scene illumination and plant/background colors.

In recent times, convolutional neural networks (CNNs)
gained high attention especially in computer vision applications,
because of the ability to directly extract and train relevant
multi-level features from data without prior knowledge and
human effort in feature design. CNNs have been shown
to outperform conventional approaches when applied to
many traditionally difficult tasks of image analysis including
pattern detection and object segmentation in biomedical
images (Ronneberger et al., 2015; Bai et al., 2018), traffic
scenes (Badrinarayanan et al., 2017) and remote sensing
(Marmanis et al., 2016). In recent years, they were also
used for high-throughput plant phenotyping such as the
detection of wheat roots grown in germination paper (Pound
et al., 2017), segmentation of roots from the soil in X-ray
tomography (Douarre et al., 2018), and segmentation of spikes
in wheat plants (Misra et al., 2020). However, most of these
studies present exemplary applications and/or computational
frameworks that can hardly be handled by end-users without
advanced programming skills.

The aim of this study is to develop an efficient and handy tool
for automated shoot image segmentation and quantification for
different plant types using a pre-trained deep CNN framework
which could be used in a straight forward manner even by
unskilled users. The GUI software tool (DeepShot) developed
for this purpose relies on the U-net segmentation model from
Ronneberger et al. (2015) which was trained on ground truth
images of three different plants (arabidopsis, maize, and barley)
acquired from two different views (side, top) in different stages of
their development. The article is structured as follows. First, we
present our methodological framework including the proposed
U-net based framework for shoot image segmentation, ground
truth data generation, and training and evaluation procedures.
Then, the results of experimental investigations are presented
including a model performance by application to segmentation
of test shoot images vs. alternative state-of-the-art solutions.
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2. MATERIALS AND METHODS

2.1. Image Data
The deep learning-based shoot image analysis tool (DeepShoot)
is designed for automated segmentation and quantification of
visible light (VIS) images of arabidopsis, maize, and barley shoots
acquired from greenhouse phenotyping experiments using
LemnaTec-Scanalyzer3D high throughput plant phenotyping
platforms (LemnaTec GmbH, Aachen, Germany). Figure 1

shows examples of arabidopsis, maize, and barely images from
three different LemnaTec phenotyping platforms tailored to
the screening of large, mid-size, and small plants. All three
phenotypic platforms have different designs of photo chambers,
illumination, colors of background walls, and camera resolutions
ranging between 1 and 6 Mpx.

2.2. Ground Truth Generation
For the training of CNN segmentation models, a representative
set of ground truth images with an accurate annotation of
fore- and background image regions is required. In this study,
the generation of ground truth images of different greenhouse
cultured plants was performed using the GUI software tool
kmSeg (Henke et al., 2021), which allows for the efficient
annotation of image regions by manual selection of pre-
calculated k-means color clusters corresponding to targeted
plant structures. Background structures that exhibit similar
color fingerprints as plant regions and, thus, could not be
separated by color clustering are excluded or subsequently
removed using manual region masking and cleaning likewise
provided with the kmSeg tool. Semi-automated segmentation of
a typical greenhouse image using kmSeg takes between 1–5 min
depending on color composition and structural complexity of a
given plant shoot image.

2.3. Image Segmentation Using CNN
The proposed CNN model is derived from the original encoder-
decoder architecture of U-net (Ronneberger et al., 2015), which
provides a versatile framework for semantic segmentation. In our
model, batch normalization (Ioffe and Szegedy, 2015) is applied
after each convolution layer in contrast to the original U-net.
Because batch normalization improves the network performance
and stability by normalizing the feature maps at respective levels
(Ioffe and Szegedy, 2015; Santurkar et al., 2019). Furthermore,
the original U-net used dropout layers to remove outliers in the
feature maps. But we avoided this layer because the combination
of batch normalization and dropout layers can cause worse
results (Li et al., 2018). Also, to improve the segmentation quality
on largely connected patterns, a larger kernel size is considered in
our approach compared to the original U-net (Peng et al., 2017).
Finally, our CNN model has less depth (of 3) compared to the
original U-net depth of 4 due to the smaller input image size. The
detailed comparison of convolutional parameters with respect to
the original U-net is summarized in Table 1.

Under consideration of the above suggestedmodifications, the
U-net framework was adapted to the task of multimodal shoot
image segmentation, refer to Figure 2. This network is designed
in such a way that training and testing are performed on patches

of input images in original resolution. The advantage of this
image masking approach is that it enables model training using
a large amount of ground truth data on consumer GPUs without
losing high frequency information due to image downscaling.
Furthermore, training of CNNs on image patches is more
advantageous for learning local features than full-size images
(Jha et al., 2020). Therefore, the input and output layers of the
network are designed to operate on images of the size 256 x 256.
Further details of the network encoder and decoder layers are
described below.

Encoder network: The encoder network consists of 3 encoder
blocks. The first encoder block takes the image patches of size 256
x 256 as input and produces corresponding feature maps of size
(256 x 256 x 16) as output. Then, the feature maps are forwarded
to the second and third encoder blocks to generate further feature
maps for the plant pixel detection. Each encoder block consists of
two convolutional layers to learn featuremaps at respective levels,
where each convolutional layer consists of a 7×7 convolution
filter followed by batch normalization (Ioffe and Szegedy, 2015)
and a non-linear activation function called Rectified Linear Unit
(ReLU) (Agostinelli et al., 2014). Followed by each encoder block,
a max-pooling operation using a general window size of 2 x 2
(Wang et al., 2015; Jha et al., 2020) is applied for down-sampling
the feature maps by half of their original size. The above steps
enable a more efficient aggregation of image features. All three
encoders are repeated with varying depths of 16, 32, and 64 to
detect diverse plant features respectively.

Followed by the encoder network, a bridge encoder block
without a max-pooling layer is applied. This results in 128 feature
maps of the size 32 x 32.

Decoder network: The output from the bridge encoder (32
x 32 x 128) is upsampled using 3 x 3 transpose convolution
with the same padding and stride 2. This means the size of
feature maps (32 x 32 x 128) was doubled to (64 x 64 x 128)
by applying the filter of size 3 x 3 to all input elements and
boarder elements were computed using zero padding. Then the
resulting feature map is concatenated with the corresponding
encoder feature maps. This results in feature maps of size (64 x
64 x 256) that are subsequently passed through a convolutional
layer like an encoder block but have decreasing channel depth
of 64. This process is repeated for the remaining decoder blocks
with decreasing channel depths of 32 and 16. Finally, the output
of the final decoder block is fed into a convolutional layer of
size 1 x 1 x 1 with a “Softmax” activation function (Dunne and
Campbell, 1997) to classify each pixel as plant or non-plant at
the patch level. The output of the proposed architecture is a
predictedmask of size 256 x 256 like the input image patch shown
in Figure 2.

2.4. Performance Metrics
To evaluate the performance of the proposed U-net model during
the training and testing stage, the Dice coefficient (DC) (Zou
et al., 2004) is used. It measures the area of intersection between
the model and ground truth segmentation and its value ranges
from 0 to 1, where 1 corresponds to 100% perfect and 0 to false
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FIGURE 1 | Examples of side- and top-view images of arabidopsis (A,B), barley (C,D), and maize (E,F) plants acquired with three different plant phenotyping

platforms.
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segmentation. The Dice coefficient is defined as:

DC =
2 ∗ (P ∩ G)

P ∪ G
=

2 ∗
∑N

i PiGi
∑N

i Pi +
∑N

i Gi

(1)

where P and G are predicted and ground truth binary images,
respectively. Pi and Gi are output values 0 and 1 of pixel i in
predicted and ground truth binary images, respectively.

2.5. Computational Implementation
2.5.1. Training
The proposed U-net architecture was developed under Python
3.8 using TensorFlow (Abadi et al., 2016) with Keras API. In
addition, image processing operations such as reading, cropping,

TABLE 1 | Convolutional parameters of the original U-net and proposed

modifications.

Convolutional

parameters

Original U-net Proposed modifications

Kernel size 3 x 3 7 x 7

Transposed kernel size 2x2 3x3

Stride 1 x 1 2 x 2

Padding Unpadded Padding with zeros

Depth 4 3

Number of filters (64, 128, 256, 512, 1,028) (16, 32, 64, 128)

and training data preparation were done using PIL, Numpy
(Walt et al., 2011), and Scikit-Image (Van der Walt et al.,
2014) packages. Then the proposed model was trained on a
GPU machine with Linux operating system (Intel(R) Core (TM)
i7-10700K CPU @ 3.80GHz) and NVIDIA RTX 3090-24GB
graphic card. As discussed above, the model is designed in
such a way that training will be performed on patches of the
original image. Thus, to generate non-overlapping patches of
size 256 x 256, original images were padded with zeros at
the image edges so that their width and height are divisible
by 256. Out of these non-overlapping patches, both plant and
background masks are considered in equal proportion to avoid
potential imbalance between plant and non-plant training masks.
Then each cropped mask is normalized in the range of [0, 1]
for feature consistency in the CNN network. The overview of
prepared training data of arabidopsis, barley, and maize and their
growth stages are described inTables 2, 3, respectively. Regarding
information on growth stages, an approximately equal number of
images from different developmental stages (early, mid, and late
developmental phases) were analyzed in this study.

Subsequently, based on our experience and previous studies
(Crimi et al., 2018; Joseph, 2022), the above prepared data sets
were partitioned into training and validation in the ratio of 85:15,
respectively. The initial weights of the proposed model were
defined randomly with zero mean and SD of 0.05 as proposed
by Krizhevsky et al. (2012). Then the model was optimized
with an Adam optimizer (Kingma and Ba, 2014) to improve
the segmentation performance on training data sets. The binary

FIGURE 2 | The proposed U-net architecture for shoot image segmentation.
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TABLE 2 | Overview of training data including images of arabidopsis, barley, and maize plants.

Side view Top view

Plant Original resolution # of images # of masks # of images # of masks

Arabidopsis 2,056 x 2,454 197 17,730 193 17,730

Barley 1,234 x 1,624 100 3,395 100 1,908

Maize 2,056 x 2,454 100 3,669 55 1,036

TABLE 3 | Overview of growth stages of training data from arabidopsis, barley,

and maize plants.

Growth stage

Plant/View # of images Early Mid Late

Arabidopsis/Side 197 62 65 70

Arabidopsis/Top 193 62 65 66

Barley/Side 100 30 35 35

Barley/Top 100 30 35 35

Maize/Side 100 30 35 35

Maize/Top 50 20 20 15

cross-entropy loss function (Jha et al., 2020) is used to measure
the unhappiness of the model during training and it defines the
difference between predicted output and ground truth generated
by the kmSeg tool as described above. This function compares
each pixel prediction (0: non-plant, 1: plant) with the ground
truth pixel and averages all pixels loss for computing the total
loss of the image. Therefore, each pixel contributes to the overall
objective loss function. Then the model was trained for 100
epochs with 16 convolutional channel features and a batch size
of 128 as per system constraints. The learning rate alters the
magnitude of the updates to the model weights during each
iteration and is initialized with 0.001. Then a learning rate
scheduler was used to dynamically reduce the learning rate by
a factor of 0.2 if the validation loss is not improved in the
next 5 iterations. This was introduced in order to avoid a too
quick convergence of the model to a suboptimal solution and
overfitting in the case of a large learning rate. Whereas, a too
small learning rate may never converge and get stuck on the
suboptimal solution (Bengio, 2012). Here, note that all data sets
(arabidopsis, barley, and maize) were trained in a similar way
with the same parameter configuration.

2.5.2. Prediction
As stated above, original shoot images have a variational
resolution, whereas the proposed model requires input images
of the size 256 x 256. Thus, during the prediction stage, original
images are padded with zeros then non-overlapping 256 x 256
masks were generated similar to what was done in the training
stage. The model does predictions on these 256 x 256 masks
then they are combined into a single output image as shown
in Figure 3. This process is dynamic, that means any image

with a resolution greater which 256x256 can be segmented in an
automated manner.

Since the output layer of the model is a Sigmoid activation
function or logistic function, the predicted segmentation is
a probability map with values ranging in between 0 and 1.
Hence, this probability map is converted to a binary image
using threshold ’T’. Here, relatively, plant pixels will have high
probabilities compared to the background pixels. Therefore, T ≥

0.6 is chosen to consider all high probability pixels as plant pixels
in the final segmentation. After fully automated segmentation,
phenotypic traits of segmented plant structures were calculated
in the final step.

2.5.3. Graphical User Interface
In practice, end-users prefer to have an easy-to-use software
solution with a Graphical User Interface (GUI). Therefore, a
user-friendly GUI front-end was developed under the MATLAB
2021a environment (MATLAB Optimization Toolbox, 2021)
to comfortably operate the complex algorithmic framework
of shoot segmentation software. Figure 3 shows the complete
workflow involved in the DeepShoot tool for automated plant
segmentation and trait extraction. For import of deep learning
models trained under Python the MATLAB interoperability
routine importKerasNetwork (MATLAB Optimization Toolbox,
2021) was used. According to the specification of this function,
the U-net models trained in Python were exported in the so-
called h5 file format, which is supported by the recent versions
of MATLAB including 2021a.

2.6. Method Comparison
The performance of our proposed model is compared with the
recently published shallow learning based neural network (NN)
by Adams et al. (2020) which was developed and evaluated for the
same application as ours, namely, segmentation of greenhouse
shoot images. This algorithm classifies each pixel based on 3x3
neighborhood information from red, green, and blue channels
using fully-connected neural networks. In this study, the same
NNmodel architecture was retrained on our image data set with a
large number of neighborhood features of 5,939,562 and a higher
batch size of 4,096 compared to the original study of 51,353 and
1,024, respectively.

In addition, the proposed encoder backbone of the U-
net architecture is compared with different encoder backbones
including vgg19 (Simonyan and Zisserman, 2014), resnet50 (He
et al., 2016), and xception (Chollet, 2017). These models were
trained on the same image data set with a similar training
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FIGURE 3 | Workflow of the pipeline for image processing and segmentation in the DeepShoot tool. Green and orange color boxes represent the operations of image

segmentation and trait calculation: (A) original image, (B) original image patches of size 256 x 256, (C) segmented image patches of size 256 x 256, (D) binary

segmentation of the original image, (E) RGB color space of (D).

configuration except for the increased number of filters (64, 128,
256, 512) as discussed in Section 2.5.1.

3. RESULTS

3.1. Training and Validation
As described above, the proposed network was trained and
validated on six different data sets including arabidopsis,
barley, and maize images acquired from three different plant
phenotyping facilities. Thereby, each of these three data sets
was subdivided into training and validation sets in the ratio of
85:15, respectively. The model performance is analyzed using
binary cross-entropy loss (CE loss) and Dice coefficient at each
epoch during the learning stage of the network. Because of the

dynamic optical appearance of growing plants, segmentation of
shoot regions in side view images represents a more difficult
task. This results in discontinuous shoot structures in segmented
images. Therefore, it is important to give equal weights to errors
related to both background and plant pixels in this study using
the Dice coefficient. Figure 4 shows the training and validation
performance of the proposed model on six different data sets
over 100 epochs. It shows that the training loss of six models
was minimized and platen the curve after epoch number 60.
Simultaneously, training DC was maximized and achieved more
than 90% of the accuracy for all models by the end of the
training epochs. In turn, the generalized performance of the
model is measured using validation measurements. Similarly,
training performance and validation DC also achieved more than
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FIGURE 4 | Training and validation performance of the shoot model over 100 epochs. X- and Y-axes represent the epoch number and performance measure,

respectively. For visualization purposes, logarithmic cross-entropy values are plotted for all models. (A) Arabidopsis side view, (B) Arabidopsis top view, (C) Barley side

view, (D) Barley top view, (E) Maize side view, and (F) Maize top view.
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90% accuracy with a low value of loss for all models at the
end of the epochs. A brief overview of training and validation
measurements is shown in Table 4.

In addition to the training performance, the exemplary
segmentation of all models on test images is shown in Figure 5.
It turns out that all models performed with a relatively higher
DC of 0.95 except for the arabidopsis side-view model which
has a DC of 0.9117 compared to the ground truth generated
by the kmSeg tool. Furthermore, trained models were tested on
variational data sets from arabidopsis top-view like stress and
multi-tray experiments as shown in Figure 6. Here, the model
resulted in DC of 0.9664 and 0.9873 for stress and multi-tray
experiments image compared to the ground truth, respectively.

3.2. Evaluation of the Reference Data Set
To measure the performance of the model on unseen data,
our CNN model trained on arabidopsis top-view images from

TABLE 4 | Training and validation performance of the shoot models.

Training Validation

Plant CE loss DC CE loss DC

Arabidopsis side view 0.00075 0.9821 0.00083 0.9707

Arabidopsis top view 0.00297 0.9907 0.00345 0.9846

Barley side view 0.01172 0.9737 0.01300 0.9589

Barley top view 0.02986 0.9593 0.03366 0.9551

Maize side view 0.00687 0.9834 0.00906 0.9731

Maize top view 0.05433 0.9742 0.05673 0.9671

LemnaTec-Scanalyzer3D was applied to the set of arabidopsis
top-view from Scharr et al. (2016). This dataset was frequently
used for CNN model training and evaluation in several previous
studies within the scope of CVPPP competitions (https://
www.plant-phenotyping.org/CVPPP2018, https://www.plant-
phenotyping.org/CVPPP2019 https://www.plant-phenotyping.
org/CVPPP2020). However, here it is only used for cross-
validation of our model trained on images from our phenotyping
facility. Figure 7 shows the mean DC of single and multi-tray
experiments from the Scharr et al. data set. The model resulted
in the mean DC of 0.93 over 100 images and 0.95 over 27 images
for single and multi-tray experiments, respectively. Examples of
segmentation of single-tray images from the references data set
are shown in Figure 8.

3.3. Evaluation of DeepShoot vs.
Alternative Solutions
The proposed U-net was compared with the recently published
shallow learning based neural network (NN) by Adams et al.
(2020) which was originally developed and evaluated for shoot
side view image segmentation. Figure 9 shows the comparative
analysis of 17, 25, and 20 side view images of arabidopsis,
barley, and maize plants, respectively. It briefs that the proposed
U-net outperforms DC > 0.9 for all images, whereas neural
networks predictions haveDC between 0.5 and 0.8. An exemplary
segmentation of three plants using a neural network and
proposed U-net with respect to ground truth is shown in
Figure 10. Also, the computational time of both segmentation
models required for the prediction on Intel(R) Xeon(R) Gold
CPU @2.10 GHz with 20 CPU cores is listed in Table 5.

FIGURE 5 | Segmentation performance: first, second and third row represents the original RGB image, ground truth segmentation by the kmSeg tool and predicted

segmentation by the DeepShoot tool, respectively. The DC of each image as following: (A) Arabidopsis side view: 0.9117, (B) Arabidopsis top view: 0.9876, (C)

Barley side view: 0.9384, (D) Barley top view: 0.9617, (E) Maize side view: 0.9709, (F) Maize top view: 0.9843.
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FIGURE 6 | Segmentation performance on variational data sets: DC of stress and multi-tray experiments are 0.9664 and 0.9873, respectively. (A) Stress experiment

image, (B) Ground truth, (C) Predicted segmentation, (D) Multi-tray image, (E) Ground truth, and (F) Predicted segmentation.

FIGURE 7 | Evaluation of image segmentation on the references data set from Scharr et al.: Dice coefficient of arabidopsis top-view model over 100 and 27 images

for single- and multi-tray experiments, respectively (A,B). The dotted orange line represents the mean DC value.

Furthermore, a comparison of different encoder backbones
(vgg19, resnet50, and xception) of the U-net architecture was
performed. Figure 11 shows the performance of alternative U-
net backbones by training on arabidopsis top view images. It
shows that both resnet50 and xception networks have higher
validation loss (> 0.004) and it increases over several iterations.
On the other hand, vgg19 and the proposed U-net are promising
comparable performances with a lower validation loss of 0.0033.

In addition, the complexity of alternative U-net models with
different encoder backbones on arabidopsis top view images is
shown in Table 6.

3.4. DeepShoot GUI Tool
Figure 12 shows the GUI of DeepShoot software which
is freely available as a precompiled executable program
from https://ag-ba.ipk-gatersleben.de/ds.html. In addition to
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FIGURE 8 | Examples of segmentation of arabidopsis top-view images from Scharr et al. All images were segmented with DC over 0.9.

FIGURE 9 | Performance of neural network (blue) and proposed U-net (orange) segmentation models on (A) 17 arabidopsis, (B) 25 barley, and (C) 20 maize side view

images.

automated image segmentation, DeepShooot calculates 35 shoot
traits that are categorized into 4 feature groups (i.e., area,
bounding box traits, convex-hull area, and statistical color
features). Further information on the definition of traits can be
found in Supplementary Table 1 accompanying this article.

In order to restrict the analysis to the region of interest (ROI),
users can define a custom ROI as a rectangle or polynomial shape
using the crop or Clear outside buttons of the DeepShoot GUI.
TheDeepShoot tool can be applied for analysis of single images in
a step-by-step manner or for automated processing of all images
in a selected folder. Regarding DeepShoot time performance,
image segmentation and traits calculation all together take an

average of 18.5 s to process and analyze a 5-megapixel image on
a system with Intel(R) Xeon(R) Gold 6130 CPU @2.10GHz with
20 CPU cores.

4. DISCUSSION

Automated processing and quantitative analysis of a large
amount of phenotypic image data represent a critical point in
determining the efficiency and accuracy of trait computation.
The deep learning-based tool for automated shoot image
segmentation and phenotypic analysis developed in this study
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FIGURE 10 | Evaluation of neural network segmentation with respect to the proposed U-net on arabidopsis, barley and maize side view images respectively. (A) NN

DC: 0.7824, DeepShoot DC: 0.8342, (B) NN DC: 0.6973, DeepShoot DC: 0.8924, (C) NN DC: 0.8746, DeepShoot DC: 0.9360.

aims to address this challenging task. Our experimental tests on
three different plant types (arabidopsis, barley, and maize) and
two different views (side and top) showed that the performance
of the model during the training is improved over the number
of iterations. On the other hand, the model trained (for all
plants) before iteration number 40 was under performed and
showed worse performance for model validation. However, due
to the dynamic reduction in learning rate by a factor of 0.2
a stable performance with more than 90% Dice coefficient for
all shoot models was achieved. Additional information on the
impact on learning rate can be found in Supplementary Figure 1

accompanied by this article. Moreover, arabidopsis and maize

models achieved low CE loss values, whereas barley models have
slightly higher CE loss values due to the variational leaves like
yellow and brown color leaves. This is reflected in the lower
DC of barley side- and top-view test images (0.9384 and 0.9617)
compared to the arabidopsis top-view and maize models (>
0.97). Also, the trained model exhibited a low value of DC
(0.9117) for the arabidopsis side view test image compared to the
other models due to the low contrast of secondary stems which
have intensity similar to the background pixels.

In addition, the trained arabidopsis top-view model is
validated on reference data sets including examples of stressed
and multi-tray experiments. Our experimental results showed
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that themodel achieved a remarkably high DC of 0.9664 (stressed
plants) and 0.9873 (multi-tray images) on these unseen data.
However, small background noisy objects which have intensity
and patterns similar to the leaves require additional application
morphological operations (e.g., min cluster size) that are also
available with the DeepShoot GUI tool. Furthermore, the model
achieved a very high DC (> 0.9), especially on untrained images
with a different background from Scharr et al. dataset. Overall
our results indicate that the CNN model trained a particular set
of images can also be applied to unseen data exhibiting similar
plant shoot patterns but different background regions.

The performance of the proposed U-net was compared
with the shallow learning neural networks. Thereby, it was

TABLE 5 | The computational time of shoot segmentation algorithms in seconds

per image on a system with Intel(R) Xeon(R) Gold 6130 CPU @2.10GHz with 20

CPU cores.

Algorithm Arabidopsis

(2,056 x 2,454)

Barley (1,234 x

1,624)

Maize (2,056 x

2,454)

Neural networks 20,410 13,100 20,410

Proposed U-net 7.2 3.05 7.2

shown that most of the arabidopsis and maize images have
a relatively low discrepancy between the predicted DC of
both algorithms, because these images contain, mostly, high
contrast green color pixels for the target structures. In contrast,
the shallow neural network exhibited a significantly lower
DC on barley images. We draw the observation back to the
fact that barley plants have more variable color fingerprints
including brown and yellow leaves. This shows that the neural
network is only capable of segmenting high contrast shoot
structures, whereas the U-net model is capable of segmenting
both high contrast and color-altering shoot structures. Because
CNN frameworks are capable of generating multi-level features
including neighborhood information, color, spatial patterns, and
textural features compared to shallow learning methods where
only neighborhood information was calculated. Therefore, rich

TABLE 6 | The complexity of alternative U-net models with different encoder

backbones on arabidopsis top view images.

Parameter Proposed U-net vgg19 resnet50 xception

# of trainable parameters 2,484,721 24,780,993 15,053,121 5,583,065

FIGURE 11 | Loss performance of alternative U-net models with different encoder backbones on arabidopsis top view images.
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FIGURE 12 | Graphical User Interface of the DeepShoot tool: left, middle, and right images represent the original image, predicted probability map, and predicted

color image, respectively.

information makes DeepShoot outperforms shallow networks.
Furthermore, tests of computational performance of the shallow
neural network vs. the proposed U-net model demonstrated the
superior performance of the latter. In summary, the DeepShoot
tool enables users to perform segmentation and analysis of plant
shoot images faster and more accurately in comparison to the
shallow neural network.

Furthermore, the performance of the proposed U-net model is
comparedwith vgg19, resnet50, and xception encoder backbones.
Thereby, it was observed that lower depth architecture vgg19
achieved better results in comparison to deep depth architectures
such as resnet50 and xception that tend to overfit. This can
be attributed to the higher complexity of these multi-layer
networks that generate too many redundant features. However,
the vgg19 model still contains a large number of convolution
layers with trainable weights which makes it 10 times larger
in size than our proposed U-net. Therefore, our proposed
model achieves optimum results at the lower level of complexity
which enables us to perform high-throughput plant phenotyping
on both lower and higher hardware configuration systems in
real time.

It is known that U-net captures not only color but also
spatial pattern information. From this perspective, one can
expect larger segmentation errors by application of DeepShoot
to optical scenes strongly deviating from plant and background
structures used by our model training. Nevertheless, our

tests with unseen shoot images indicated that the present
CNN framework can also be applied to the analysis of
quite different optical scenes or filed-like images as long as
the target plant structures are optically somewhat similar to
images used in our training sets. Users are free to try and
evaluate the performance of provided segmentation models on
their particular images. From that perspective, there are no
other restrictions as the requirement of RGB image with the
size ≥256 x 256.

Moreover, segmentation of thin or twisted leaves, flowers
as well as shadowed or light-reflecting regions (such as
metallic surfaces) is more prone to misclassification, which in
turn may lead to fracturing of targeted structures or false-
segmented background regions. Nevertheless, improvements
in model accuracy and generability can be certainly expected
by extending the training set of ground truth images with
more and more variable data, in particular, more examples
of stressed/aged phenotypes exhibiting non-green colors, e.g.,
brown, yellow, red leaves. Furthermore, the tool can be
extended by automated detection of the plant type and
the camera view (side or top) that have to be manually
selected in the present implementation from the list of
pre-trained CNN models. Finally, further investigations are
required to quantitatively assess and compare different model
architectures as well as the performance of binary vs. multi-class
segmentation models.
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