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A quantitative understanding of the factors driving changes in grain filling is essential for 
effective prioritization of increasing maize yield. Grain filling is a significant stage in maize 
yield formation. Solar radiation is the energy source for grain filling, which is the ultimate 
driving factor for final grain weight and grain filling capacity that determine maize yield. 
Here, we first confirmed the quantitative relationships between grain filling parameters 
and photosynthetically active radiation (PAR) by conducting field experiments using 
different shading and plant density conditions and cultivars in 2019 and 2020 in Xinjiang, 
China. The results showed that with every 100 MJ m−2 increase in PAR, the average grain 
filling rate (Gave), maximum grain-filling rate (Gmax), and the kernel weight at the time of 
maximum grain-filling rate (Wmax) increased by 0.073 mg kernel−1 day−1, 0.23 mg kernel−1 
day−1, and 0.24 mg kernel−1, and the time of maximum grain-filling rate (Tmax) delayed by 
0.91 day. Relative changes in PAR were significantly and positively correlated with relative 
changes in yield and Gave. With every 1% change in PAR, yield and Gave changed by 1.16 
and 0.17%, respectively. From the perspective of grain filling capacity, DH618 was a more 
shade-resistant cultivar than XY335 and ZD958. It is urgent to breed maize cultivars with 
low light tolerance and high grain yield in the face of climate change, particularly the 
decrease in solar radiation.

Keywords: maize, solar radiation, cultivar, grain filling rate, quantitative relationship

INTRODUCTION

Maize (Zea mays L.) is one of the most economically important crops, playing a vital role 
in maintaining food security in China and throughout the world (Hou et  al., 2020; Liu 
et  al., 2021c, 2022). Maize requires adequate solar radiation throughout the duration of 
growth to produce sufficient photoassimilates (Ren et  al., 2016; Shi et  al., 2018). However, 
recent studies have revealed that the intensity of photosynthetically active radiation (PAR) 
reaching the crop canopy is often reduced due to environmental pollution, overcast or rainy, 
and scant lighting the rainy weather frequently occurs during the crop growing season (Liu 
et  al., 2012; Gao et  al., 2017a; Zhang et  al., 2019; Poonam et  al., 2022). There have been 
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varying degrees of reduction in radiation both nationally and 
worldwide (Ren et  al., 2016; Zhou et  al., 2020; Liu et  al., 
2021d), which could lead to reduced biomass production and 
maize yield (Hou et al., 2021). The reduction of light availability, 
especially during grain filling, threatens photosynthesis and 
carbohydrate synthesis, restricting maize yield (Jia et al., 2007; 
Zhang et  al., 2007b; Ren et  al., 2016; Gao et  al., 2017a, 2020; 
Shao et  al., 2020).

The grain filling stage is a crucial period during the entire 
growth season, with grain filling capacity determining final 
grain weight and yield (Shi et  al., 2013; Cao et  al., 2022). In 
the Southern and Huanghuaihai regions in China, maize yield 
has been limited by light deprivation during the grain filling 
stage (Wang et  al., 2020a). The grain filling rate is one of the 
main limiting factors for yield increase (Ottaviano and Camussi, 
1981; Xu et  al., 2018). Zhou (2004) introduced that grain 
filling rate was one of the manifestations of grain’s ability to 
accumulate the photosynthate. Other studies have investigated 
both the rate and duration of grain filling, which jointly 
determine the formation of maize grain weight (Johnson and 
Tanner, 1972; Liu and Zhang, 2010). Grain filling in maize is 
influenced by various factors, for instance, genetics (Borrás 
et  al., 2009; Li et  al., 2020), irrigation methods and drought 
stress (Ahmad et al., 2022; Cao et al., 2022), fertilizer application 
(Zhang et  al., 2021; Wu et  al., 2022), and planting patterns 
and sowing densities (Jia et  al., 2018). However, the amount 
of solar radiation received during the growing season is the 
most critical factor that determines the grain filling rate of 
maize (Shi et al., 2013, 2018; Chen et al., 2014; Rizzo et al., 2022).

Field shading is a common method used to vary solar 
radiation and study its effects on crop growth and development 
(Barnett and Pearce, 1983; Zhang et  al., 2007b; Lu et  al., 2013; 
Wang et  al., 2020b). There have been many conclusions about 
the effects of shading on crop growth and the grain filling 
process in maize (Shi et  al., 2013; Chen et  al., 2014). It has 
been demonstrated that canopy shading reduces grain filling 
rate (Arisnabarreta and Miralles, 2008) and duration (Sandaña 
et  al., 2009). Shi et  al. (2013) reported that shading decreased 
the yield of summer maize by reducing the dry matter 
accumulation and maximum grain filling rate. Data published 
by Wang et  al. (2020b) showed that shading stress at the grain 
filling stage depressed endosperm cell differentiation, which 
reduced storage capacity and decreased wheat yield. Furthermore, 
variations in solar radiation cause differences in grain filling 
characteristics at several growth stages (Shi et  al., 2013; Chen 
et  al., 2014). Previous studies have analyzed the qualitative 
effects of shading on grain filling in maize. However, the 
quantitative relationships between solar radiation and grain 
filling parameters have remained under-studied. In the present 
study, four shading levels were tested to investigate the effects 
of solar radiation on grain filling parameters, to deepen 
understanding of the process underlying grain weight formation, 
and develop effective interventions targeted to the critical stage 
of grain filling. We specifically aimed to (1) explore the response 
of final grain weight and grain-filling parameters to shading, 
and (2) quantify the relationship between grain filling parameters 
and PAR.

MATERIALS AND METHODS

Experimental Design
Field experiments were conducted at the Qitai Farm in Xinjiang, 
Northwestern China (43°49′N, 89°48′E; 1,020 m above sea level) 
in the 2019 and 2020 growing seasons. This region is characterized 
by the most abundant sunshine hours in China (Xue et  al., 
2016). Meteorological data for the 2019 and 2020 maize growing 
seasons were obtained from a “Watch Dog” Data Logger 
(Spectrum Technologies, Inc., United  States) located in the 
experimental field. The 2-year meteorological data are 
summarized in Table  1. The study was conducted using a 
split-split plot design with three replications. Three maize 
cultivars were used: Denghai618 (DH618), Xianyu 335 (XY335), 
and Zhengdan 958 (ZD958). These three cultivars have high 
yield potential and are widely planted throughout China (Hou 
et  al., 2012; Gao et  al., 2017b; Liu et  al., 2021b). The sowing 
dates were April 19, 2019 and April 18, 2020. Two planting 
densities were tested: 7.5 × 104 (D1) and 12 × 104 plants ha−1 
(D2). Four shading treatments were applied from the three-leaf 
stage until maturity: 15% (85% of natural light, 15% shaded; 
S1), 30% (70% of natural light, 30% shaded; S2), and 50% 
(50% of natural light, 50% shaded; S3) shading compared to 
natural light, and no shading (CK). The shade nets were built 
with temporary scaffolding and nylon nets, and a distance of 
1.5 m was maintained between the top of the maize canopy 
and the shade nets to keep microclimate conditions (other 
than solar radiation) consistent with the unshaded portions 
of the field. Each experimental plot area was 11 × 10 m in an 
alternating narrow–wide-row planting pattern (0.4 + 0.7 m) and 
adjacent plots were spaced 1 m apart.

Maize was irrigated and fertilized using a drip irrigation 
system, with irrigation water pumped from groundwater (Zhang 
et  al., 2017). In the 2-year field experiment, base fertilizers 
including urea (150 kg ha−1  N), super phosphate (225 kg ha−1 
P2O5), and potassium sulfate (75 kg ha−1 K2O) were applied 
before sowing; additional urea (300 kg ha−1  N) was applied by 
fertigation during the entire irrigation period of the growing 
stage to ensure an adequate supply of nutrients. The experiments 
were conducted with no visible water stress, and pests and 
weeds were adequately controlled throughout the growing seasons.

Sampling and Measurements
At the silking stage, plants at the same growth stage were 
labeled. From silking until maturity, five tagged ears from each 
plot were sampled at 10-day intervals; 100 grains were sampled 
from the middle part of the ear and oven-dried at 85°C to 
a constant weight. The grain-filling process of maize cultivars 
differing in maturity was analyzed using a logistic model:

 
y A B= +( )−

/ 1 e
Cx

where y = grain weight (mg); x = number of days after silking; 
A is the potential kernel weight (mg), B and C are coefficients 
determined by regression. This model was used to evaluate 
the dynamics of accumulated grain weight in maize plants 
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growth under different treatments (Gao et  al., 2017b). The 
weight of a kernel at the time of the maximum grain-filling 
rate (Wmax) was equal to A/2 (Chen et  al., 2014). The grain 
filling rate was derived from the first derivative of the sigmoidal 
equation. To determine yield (at 14% water content), an area 
of 16.5 m−2 comprising the central three rows of each plot 
(which were 5 m in length) were hand-harvested from each 
plot at maturity and grain moisture content was determined 
using a PM8188 portable moisture meter (Kett Electric 
Laboratory, Tokyo, Japan). PAR was measured in the wide 
and narrow rows with a diagonal orientation on clear days 
using a SunScan device (Delta-T Devices, Cambridge, 
United  Kingdom; Liu et  al., 2019; Yang et  al., 2021a). Net 
photosynthetic rate (Pn) was measured under ambient 
conditions using a LI-6400 portable photosynthesis system 
(LI-COR Biosciences, Lincoln, Nebraska, United  States) from 
the ear leaves of three representative plants during the grain-
filling stage (30 days after silking). Cuvette conditions were 
400 μmol CO2 mol−1, and PAR was 2,000 μmol m−2  s−1. The 
ambient temperature was 24°C–26°C. The cuvette area 
was 6 cm2.

Statistical Analysis
Statistical analyses were performed in Excel 2016 (Microsoft, 
Redmond, WA, United  States) and SPSS v18.0 (IBM SPSS, 
Chicago, IL, United  States). The differences of yield, grain 
weight (yP), the average grain filling rate (Gave), the time of 
maximum grain-filling rate (Tmax), maximum grain-filling rate 
(Gmax), kernel weight at Tmax (Wmax), and Pn between different 
treatments were tested by using one-way ANOVA with the 
least significant difference test (LSD, α = 0.05). Pearson 
correlations were calculated to identify relationships between 
yield, PAR, Pn, yP, and grain filling parameters. We  conducted 
univariate analyses to examine interactions with yP, and grain 
filling parameters as dependent variables and the year (Y), 
cultivar (C), planting densities (D), and shading level (S) as 
independent variables. Figures were produced with Origin 2018 
(OriginLab, Northampton, MA, United  States).

RESULTS

Yield and Phenological Information
Plant growth was recorded from sowing to maturity (Table  2). 
The three cultivars had a similar growth duration; DH618, XY335, 
and ZD958 had average growth durations (sowing to maturity) 
of 161.4, 165.9, and 162.7 days, respectively, in the 2 experimental 
years. For shading treatments, the silking and maturity stages 

delayed, and the duration of growth was longer than the control 
by 2.8, 3.1, and 7.6 days for S1, S2, and S3, respectively. The 
yield decreased in the order of S3 > S2 > S1 > CK after shading in 
2019 and 2020, significantly. The average yield for DH618, XY335, 
and ZD958 under all shaded conditions decreased by 6.3, 7.2, 
and 5.2 t ha−1, respectively, at D1 and by 6.2, 7.5, and 7.3 t ha−1 
at D2 compared to the CK yields. The grain yields of the three 
cultivars decreased in the order of XY335 > ZD958 > DH618. At 
lower planting density (D1), DH618 and XY335 were more 
sensitive to shading than ZD958 was, but yield decreases were 
smaller in DH618 than in XY335 and ZD958 at the higher 
planting density (D2). This indicated that DH618 were better 
able to tolerate low light under high-density planting.

Grain Weight and Grain Filling
As shown in Table  3, logistic fitting results showed that the 
potential grain weight yP (when x = 80), differed between shading 
treatments; cultivar DH618 had the maximum yP value and 
ZD958 had the minimum value. After shading, the potential 
grain weight yP significantly decreased by 9.5% for ZD958, 
6.7% for XY335, and 5.7% for DH618. The reduction in yP at 
low planting density was higher than it was at high density 
(9.0 and 5.6%, respectively). Compared with CK, yP decreased 
by 3.0, 6.7, and 12.1% in treatments S1, S2, and S3, respectively. 
Gave, Gmax, and Wmax significantly decreased and Tmax was delayed 
with increased shading levels (Table 3). Gave (among all cultivars 
and densities) was 2.9, 6.5, and 11.7% lower in treatment groups 
S1, S2, and S3, respectively, than in the CK. Likewise, Gmax 
was 4.5, 9.6, and 18.0% lower in S1, S2, and S3, respectively, 
compared to CK; Wmax was 2.7, 5.9, and 9.1% lower than CK, 
and Tmax was delayed by 1.0, 2.9, and 6.5 days, respectively. 
There were significant differences in grain filling parameters 
between cultivars and shading levels. On average across shading 
levels and densities, Gave was 4.57, 4.23, and 4.18 mg kernel−1 
day−1 for cultivars DH618, XY335, and ZD958; these values 
were 5.6, 6.4, and 9.1% lower than the CK, respectively. Gmax 
was 9.24, 8.26, and 8.29 mg kernel−1 day−1, representing a 
decrease of 9.6, 10.4, and 12.1%, respectively, compared to the 
CK. Tmax was 37.9, 41.4, and 41.7 days for cultivars DH618, 
XY335, and ZD958, respectively, which were later than the 
CK by 2.7, 4.0, and 3.8 days. Wmax was 192.7, 180, and 177.5 mg 
kernel−1 day−1 for the three cultivars, a decrease of 4.9, 5.1, 
and 7.7% compared to the CK. Shading treatment had a great 
effect on Gave and Wmax at low planting density (D1), whereas 
high planting density (D2) had a great effect on Gmax and Tmax 
compared with CK on average across all shading levels 
and cultivars.

TABLE 1 | Mean daily maximum temperature (T-max), minimum temperature (T-min), diurnal temperature variation (Td), solar radiation, relative humidity (RH), and 
precipitation (Pre) during the maize growing season at Qitai Farm, Xinjiang, China in 2019 and 2020.

Year T-max (°C) T-min (°C) Td (°C)
Solar radiation 
(MJ m−2 day−1)

RH (%) Pre (mm)

2019 25.9 11.5 18.7 9.8 52.6 138.5
2020 25.4 12.0 18.7 9.1 46.0 189.1

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Yang et al. Low Light Affects Maize Grain-Filling

Frontiers in Plant Science | www.frontiersin.org 4 June 2022 | Volume 13 | Article 906060

TABLE 2 | Yield, phenological information for the three maize cultivars at different shading levels (CK, natural light; S1, 15% of natural light; S2, 30% of natural light; 
and S3, 50% of natural light) and densities (D1 = 7.5 × 104 plants ha−1 and D2 = 12 × 104 plants ha−1) and the total intercepted PAR in the whole stage at the Qitai 
research station in 2019 and 2020.

Treatment
2019 2020

Silking date Mature date PAR MJ m−2 Yield (t ha−1) Silking date Mature date PAR MJ m−2 Yield (t ha−1)

DH618-D1-CK 7/13 9/25 1097.1 20.39 a 6/28 9/23 1066.1 21.64 a
DH618-D1-S1 7/15 9/27 940.0 17.94 b 6/29 9/22 905.1 19.43 b
DH618-D1-S2 7/17 9/29 878.2 18.58 b 7/02 9/24 641.7 16.62 c
DH618-D1-S3 8/01 10/07 477.7 4.27 c 7/07 9/27 435.6 11.59 d
DH618-D2-CK 7/15 9/28 1162.0 20.05 a 7/03 9/22 1122.3 22.15 a
DH618-D2-S1 7/16 9/29 975.6 18.44 b 7/03 9/23 912.1 21.02 ab
DH618-D2-S2 7/18 9/26 890.6 18.38 b 7/03 9/22 691.7 18.96 b
DH618-D2-S3 8/02 10/07 470.3 0.58 c 7/09 9/29 439.3 12.03 c
XY335-D1-CK 7/15 9/29 1107.9 19.10 a 7/03 9/26 1023.9 22.30 a
XY335-D1-S1 7/16 10/05 942.3 15.03 b 7/04 9/27 837.4 20.58 b
XY335-D1-S2 7/17 10/04 856.3 15.64 b 7/05 10/01 609.8 15.82 c
XY335-D1-S3 8/01 10/07 380.8 3.40 c 7/10 10/01 409.4 10.77d
XY335-D2-CK 7/16 10/02 1231.1 21.57 a 7/03 9/24 1094.4 22.38 a
XY335-D2-S1 7/19 10/05 1038.5 19.25 b 7/06 9/30 953.2 22.26 a
XY335-D2-S2 7/19 10/05 944.0 15.87 c 7/08 9/30 730.6 16.49 b
XY335-D2-S3 8/5 10/07 466.1 3.02 d 7/12 10/05 516.0 10.25 c
ZD958-D1-CK 7/16 9/24 1150.0 18.44 a 7/02 9/25 1096.8 20.42 a
ZD958-D1-S1 7/18 9/29 940.3 18.13ab 7/02 9/25 912.6 19.08 a
ZD958-D1-S2 7/19 9/28 850.4 16.52 b 7/03 9/27 674.8 16.81 b
ZD958-D1-S3 8/06 10/05 374.7 2.80 c 7/09 9/27 465.5 11.78 c
ZD958-D2-CK 7/19 9/25 1219.1 18.62 a 7/03 9/24 1138.8 22.13 a
ZD958-D2-S1 7/19 10/02 990.5 15.83ab 7/05 9/26 989.2 20.19 a
ZD958-D2-S2 7/20 10/02 858.2 15.15 b 7/05 9/26 734.5 15.55 b
ZD958-D2-S3 8/10 10/05 419.9 1.04 c 7/14 10/01 443.1 10.75 c

Lowercase letters indicate significant differences between treatments at p < 0.05.

TABLE 3 | Characteristic parameters of maize at grain-filling stage under different treatments.

Treatment A B C yp (mg kernel−1)
Gave (mg 

kernel−1 day−1)
Tmax (d)

Gmax (mg 
kernel−1 day−1)

Wmax (mg 
kernel−1)

DH618-D1-CK 415.8 ± 10 a 31.7 ± 0 a 0.1 410.5 ± 22.1 a 4.93 ± 0.08 a 35.3 ± 0 b 10.1 ± 0.2 a 207.9 ± 4.1a
DH618-D1-S1 406.5 ± 10.7 ab 34.8 ± 8.8 a 0.1 401.5 ± 7.7 a 4.84 ± 0.02 a 35.5 ± 0.5 b 10.1 ± 0.2 a 203.3 ± 4.4 ab
DH618-D1-S2 388.1 ± 10 b 44.8 ± 11.8 a 0.1 383.2 ± 15.8 a 4.65 ± 0.01 ab 37.6 ± 1 ab 9.9 ± 0.2 a 194.1 ± 4.1 b
DH618-D1-S3 361.6 ± 16.2 c 45.5 ± 18 a 0.1 354.1 ± 3.3 b 4.3 ± 0.27 b 40 ± 1.6 a 8.7 ± 0.3 b 180.8 ± 6.6 c
DH618-D2-CK 384.7 ± 12.1 a 43.5 ± 14.1 a 0.1 380.1 ± 4.3 a 4.61 ± 0.1 a 36.6 ± 1 b 9.8 ± 0.2 a 192.4 ± 4.9 a
DH618-D2-S1 381.5 ± 12.9 a 37.8 ± 11.7 a 0.1 375.4 ± 5.2 a 4.54 ± 0.02 a 37.2 ± 0.9 b 9.3 ± 0.2 a 190.8 ± 5.3 a
DH618-D2-S2 380.2 ± 15.8 a 31.8 ± 9.2 a 0.09 368.9 ± 8.8 a 4.44 ± 0.02 a 40 ± 0.4 a 8.3 ± 0.3 b 190.1 ± 6.5 a
DH618-D2-S3 364.4 ± 16.7 a 35 ± 10.9 a 0.09 352.1 ± 4.4 b 4.25 ± 0.03 b 41.5 ± 0.5 a 7.9 ± 0.3 b 182.2 ± 6.8 a
XY335-D1-CK 387 ± 14.4 a 34.9 ± 10.3 a 0.09 378.4 ± 27.1 a 4.57 ± 0.18 a 38.4 ± 0.4 b 8.9 ± 0.2 a 193.5 ± 5.9 a
XY335-D1-S1 375.5 ± 15 ab 35.4 ± 10.8 a 0.09 366 ± 3 a 4.42 ± 0.1 a 39.8 ± 0.5 ab 8.5 ± 0.2 a 187.8 ± 6.1 ab
XY335-D1-S2 353.6 ± 15.7 bc 44.2 ± 15.4 a 0.09 343.8 ± 21.7 ab 4.17 ± 0.08 a 41.6 ± 0.9 a 8.1 ± 0.3 a 176.8 ± 6.4 bc
XY335-D1-S3 336.7 ± 15.1 c 46.7 ± 17.5 a 0.09 328.5 ± 6.6 b 3.99 ± 0.03 b 41.2 ± 0.8 a 7.1 ± 0.3 b 168.4 ± 6.2 c
XY335-D2-CK 362.3 ± 10.8 a 45.2 ± 13.2 a 0.1 357 ± 7.4 a 4.33 ± 0.01 a 38.4 ± 0.4 c 9.1 ± 0.2 a 181.2 ± 4.4 a
XY335-D2-S1 360.3 ± 12.3 a 44.1 ± 12.7 a 0.09 352.2 ± 4.2 a 4.27 ± 0.02 a 40 ± 0.8 bc 8.5 ± 0.2 ab 180.2 ± 5 a
XY335-D2-S2 346.3 ± 13.6 a 48.5 ± 15 a 0.09 336.2 ± 4.5 b 4.09 ± 0.03 b 42.4 ± 0.9 b 8 ± 0.2 b 173.2 ± 5.6 a
XY335-D2-S3 358.2 ± 22.3 a 52.3 ± 16 a 0.08 329.9 ± 6.4 b 4.02 ± 0.1 b 49.6 ± 0.9 a 7.2 ± 0.2 c 179.1 ± 9.1 a
ZD958-D1-CK 399.6 ± 13 a 38.4 ± 11 a 0.1 392.5 ± 7.8 a 4.75 ± 0.01 a 38.4 ± 0.7 b 9.6 ± 0.1 a 199.8 ± 5.3 a
ZD958-D1-S1 378 ± 13.4 ab 39.5 ± 12 a 0.09 370.6 ± 6.6 b 4.48 ± 0.02 b 39.1 ± 1.3 b 9 ± 0.1 b 189 ± 5.5 ab
ZD958-D1-S2 367.5 ± 14.5 b 45.5 ± 14.9 a 0.09 358.6 ± 3.2 b 4.35 ± 0.06 b 40.4 ± 0.9 ab 8.6 ± 0.2 b 183.8 ± 5.9 b
ZD958-D1-S3 329.2 ± 18 c 58.6 ± 32.4 a 0.1 320.7 ± 11.6 c 3.91 ± 0.04 c 42.6 ± 0.9 a 7.9 ± 0.2 c 164.6 ± 7.3 c
ZD958-D2-CK 355.1 ± 10.8 a 45 ± 12.6 a 0.1 348.7 ± 22.5 a 4.23 ± 0.01 a 39.3 ± 1.9 b 8.7 ± 0.2 a 177.6 ± 4.4 a
ZD958-D2-S1 340.2 ± 11.5 a 53.6 ± 16.6 a 0.1 333 ± 17.7 a 4.06 ± 0.04 b 41.1 ± 2.1 b 8.3 ± 0.2 a 170.1 ± 4.7 a
ZD958-D2-S2 331.9 ± 12.4 a 51.2 ± 16 a 0.09 323.3 ± 9.5 a 3.93 ± 0.05 b 42 ± 2.2 b 7.8 ± 0.2 a 166 ± 5.1 a
ZD958-D2-S3 339.1 ± 28.8 a 48.1 ± 19.9 a 0.08 305.1 ± 1.4 b 3.71 ± 0.04 c 50.8 ± 3 a 6.4 ± 0.5 b 169.6 ± 11.8 a

A, B, and C were the coefficients of the Logistic equation; yp, potential grain weight (x = 80). Gave, average grain filling rate; Tmax, time to maximum grain filling rate; Gmax, maximum 
grain-filling rate; and Wmax, kernel weight at Tmax. Lowercase letters indicate significant differences between treatments at p < 0.05.
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Photosynthetic Capacity
As shown in Figure  1, ear leaf photosynthetic rate (Pn) 
decreased significantly in all three cultivars with shading in 
2019 (Figure  1A) and 2020 (Figure  1B). On average across 
years, cultivars, and densities, the mean Pn decreased by 7.6, 
17.6, and 32.6% in treatment groups S1, S2, and S3, respectively, 
compared with CK. On average across years, shading levels, 
and densities, mean Pn decreased in cultivars XY335, ZD958, 
and DH618 by 19.9, 18.6, and 17.5%, respectively, compared 
with CK. On average across years, shading levels, and cultivars, 
mean Pn decreased by 16.4 and 20.9% under the D1 and 
D2 planting densities, respectively, compared to CK.

Quantitative Relationship Between Grain 
Filling Parameters and Solar Radiation
Gave, Gmax, and Wmax were significantly and positively correlated 
with PAR, whereas Tmax was negatively correlated with PAR 
(Figure 2). With every 100 MJ m−2 increase in PAR, Gave (Figure 2A), 
Gmax (Figure  2B), and Wmax (Figure  2D) increased by 0.073, 
0.23 mg kernel−1 day−1, and 0.24 mg kernel−1, respectively, and 
Tmax (Figure  2C) was delayed by 0.91 days. Relative changes in 
yield and Gave between different shading treatments were significantly 
positively correlated with relative changes in PAR (Figure 3). With 
every 1% increase in PAR, yield (Figure 3A) and Gave (Figure 3B) 
increased by 1.16 and 0.17%, respectively.

We found that Gave, Gmax, Wmax, and Pn were significantly 
positively correlated with grain weight and yield. Furthermore, 
Tmax was delayed with increased shading levels and was 
significantly negatively correlated with grain weight and yield 
(Table 4). Significant interaction influences of year (Y), cultivar 
(C), planting densities (D), and shading level (S) on yP, Gave, 
Gmax, Tmax, and Wmax existed (Table  5). As shown in Table  5, 
yP and Wmax were significantly affected by the interaction of 

Y × D. yP, Tmax, and Wmax were significantly affected by the 
interactions of Y × C and Y × S. yP, Wmax, and Gmax were significantly 
affected by the interactions of D × C and D × S. Tmax was 
significantly affected by the interaction of D × C. Gave was 
significantly affected by the interaction of Y × D × S. yP, Tmax, 
Wmax, and Gmax were significantly affected by the interactions 
of Y × D × C, Y × D × S, Y × C × S, D × C × S, and Y × D × C × S.

DISCUSSION

Maize yield formation is determined by grain filling capacity 
and final grain weight (Zhang et  al., 2007b; Chen et  al., 2014). 
Solar radiation is the energy source for photoassimilates (Shi 
et  al., 2013), which are the ultimate driving factor of maize 
development and growth (Hou et  al., 2021). Previous studies 
concluded that plant growth was more severely inhibited by 
low light as the level of shading increased (Bidhari et  al., 
2021). The present study supported those findings; we  here 
found that shading negatively affected yield (Table  2), final 
grain weight, grain filling parameters (Table  3), and Pn 
(Figure  1), with higher levels of shade having greater effects. 
Other researchers have shown that the correlative coefficient 
of Gave and Gmax to 100-grain weight is highest in the late 
grain filling stage (Zhang et  al., 2007a; Liu et  al., 2013). 
Additionally, Zhang et  al. (2007b) reported that this change 
could be  a result of photosynthesis during grain filling. The 
results of the present study are consistent with that report, 
showing that Pn decreased significantly in all three cultivars 
in response to shading (Figure 1), which may be the underlying 
cause of the decrease in final grain weight. It has also previously 
been reported that decreasing both photosynthesis and the 
activity of key starch synthesis enzymes limits photosynthesis 

A B

FIGURE 1 | Ear leaf photosynthetic rate (Pn) at the grain-filling stage for maize grown in 2019 (A) and 2020 (B). DH, Denghai618; XY, Xianyu 335; ZD, Zhengdan 
958; CK, natural light; S1, 85% of natural light (15% shaded); S2, 70% of natural light; S3, 50% of natural light; D1, 7.5 × 104 plants ha−1; and D2, 12 × 104 plants 
ha−1. Error bars represent the SD of three replicates. Lowercase letters indicate statistically significant differences (p < 0.05).
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(Lu et  al., 2013; Rivera-Amado et  al., 2020; Feng et  al., 2021) 
and caused decreases in transportation and distribution of 
photosynthates from leaves to grains (Zhang et  al., 2008; 
Kromdijk et  al., 2016; Gao et  al., 2020; Feng et  al., 2021). In 
addition, temperature condition during grain filling is one of 
the most important climatic drivers that determine the rate 
of crop development and biomass accumulation (Borrás et  al., 
2009; Kromdijk and Long, 2016; Hou et  al., 2021). Previous 
studies have shown maize photosynthesis and grain filling rate 
are limited by temperature (Jia et  al., 2018). However, there 
are many studies reported that there were no significant changes 
in the relative humidity and temperature at different positions 
inside and outside the shade shelter, after shading treatments 
(Zhang et  al., 2007b; Feng et  al., 2021). Similarly, in this study, 
a distance of 1.5 m was maintained between the top of the 
maize canopy and the shade nets to keep microclimate conditions 
consistent with the unshaded treatment. But for S3 treatment, 
the temperature might be decreased after shading which together 

with decreased light affected the growth of maize. This needs 
further research in the future.

A quantitative understanding of the factors driving changes 
in grain filling is essential to developing agricultural information 
technology, crop growth models, and crop options for adaptation 
to climate change (Hou et  al., 2021; Liu et  al., 2021a; Tao 
et  al., 2022). There is a wide geographical range in which 
Chinese maize is grown; one of large differences between 
regions is the level of solar radiation (Liu et al., 2021a). Xinjiang 
is in Northwest China and has the most abundant light radiation 
(Xue et  al., 2016; Yang et  al., 2020). Shading treatments in 
this region can simulate the light environment in other regions 
and allow quantitative analysis of the relationship between 
maize growth and solar radiation. We  here confirmed the 
quantitative relationships between maize grain filling parameters 
and PAR using different shading treatments and planting 
densities (Figure  2), which had not previously been widely 
reported (Chen et  al., 2014). The study design allowed us to 

A B

C D

FIGURE 2 | Relationships between maize grain filling parameters and [Gave, average grain filling rate (A); Gmax, maximum grain-filling rate (B); Tmax, time to maximum 
grain-filling rate (C); Wmax, kernel weight at Tmax (D)] photosynthetically active radiation (PAR) under different treatments. Gave, average grain filling rate; Gmax, maximum 
grain-filling rate; Tmax, time to maximum grain-filling rate; Wmax, kernel weight at Tmax; DH, Denghai618; XY, Xianyu 335; ZD, Zhengdan 958; D1, 7.5 × 104 plants ha−1; 
and D2, 12 × 104 plants ha−1. *p < 0.05; **p < 0.01.
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establish the relationship between relative changes in PAR and 
maize yield/Gave (Figure 3). These data can be used to estimate 
the yield and Gave of maize in different years or regions with 
varying levels of solar radiation, and contribute to the 
improvement of crop models.

Grain filling rate is affected by both genotype and 
environmental conditions, and light stress responses vary by 
genotype (Li et al., 2005). However, Rizzo et al. (2022) concluded 
that genetic improvement accounted for only 13% of yield 
increase, and that if genetic progress in yield potential was 
also slowing in other environments and crops, future crop-yield 
gains would increasingly rely on improved agronomic practices. 
Additionally, Li and Wang (2009) reported that breeding cultivars 
tolerant to high planting density and other adverse conditions 
would be  the most effective cultivation measure for improving 
maize grain yield. Some studies also stated that as planting 
density increases the number of grains per ear decreases, and 

the maximum and average maize grain-filling rate significantly 
decrease (Jia et  al., 2018). Previous studies also showed that 
the photosynthate produced under high density and weak light 
could not satisfy yield formation (Yang et  al., 2021a). Besides, 
shading delayed vegetative and reproductive growth, and reduced 
the kernel number per ear and kernel weight because of the 
limited assimilates supply to the developing ear shoot (Cui 
et  al., 2015; Yang et  al., 2021b). In this study, shading had 
greater effects on Gave and Wmax at low planting density (D1), 
but smaller effects at high planting density (D2) which might 
be  due to that Gave and Wmax under CK were much higher at 
low density than that at high density. In other words, under 
the higher planting density of D2, self-shading was more 
prominent by denser canopies and increased the proportion 
of partially shaded leaves (Kromdijk et  al., 2016), therefore the 
shading treatments were less consequential. Moreover, the average 
yield and grain weight of DH618 plants were generally higher 

A B

FIGURE 3 | Relationships between relative change of PAR and relative changes of yield (A) and average grain filling rate (Gave; B). The equations for relative 
changes of PAR, yield, and Gave across 2 years and planting densities are inset in the top left corner of each graph. **p < 0.01.

TABLE 4 | Correlation coefficients for yield, PAR, Pn, yp, and grain filling parameters.

PAR Gave Gmax Tmax Wmax Pn yp

Gave 0.621**
Gmax 0.668** 0.923**
Tmax −0.653** −0.837** −0.927**
Wmax 0.525** 0.957** 0.815** −0.675**
Pn 0.857** 0.673** 0.707** −0.686** 0.552**
yp 0.603** 0.994** 0.916** −0.829** 0.970** 0.645**
Yield 0.932** 0.614** 0.659** −0.661** 0.513* 0.805** 0.593**

PAR, photosynthetically active radiation; Gave, average grain filling rate; Gmax, maximum grain-filling rate; Tmax, time to maximum grain filling rate; Wmax, kernel weight at Tmax; Pn, ear leaf 
photosynthetic rate; and yp, potential grain weight (x = 80). 
*p < 0.05; **p < 0.01.
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compared to the other two cultivars (Tables 2, 3). This may 
be  because Gave and other grain filling parameters were higher 
in cultivar DH618 than the other two cultivars after shading 
(Table 3). Therefore, we  think that cultivars DH618 was a kind 
of suitable for dense planting under insufficient light conditions 
(Table  2). In addition, the decreases in grain filling parameters 
were smaller in DH618 than in XY335 and ZD958 after shading. 
This could be  because cultivar DH618 is an erect-type hybrid, 
which can intercept as much solar radiation as possible (Liu 
et  al., 2021a).

CONCLUSION

Understanding the quantitative relationship between solar 
radiation and grain filling parameters of maize is essential for 
improving maize production and developing options for 
adaptation to climate change. In this study, it was found that 

there were significant differences in maize final grain weight 
and other grain filling parameters in response to shading 
treatments. Quantitative relationships were discovered between 
PAR and grain yield, Gave, Gmax, Tmax, and Wmax. DH618 had 
better grain filling ability and tolerance to high planting density 
than the other two cultivars under weak light conditions. This 
type of cultivar should be  selected and bred for low light 
adaptation to achieve high grain yield in the face of climate 
change, particularly the decrease in solar radiation.
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