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Kernel size and weight are crucial components of grain yield in wheat. Deciphering their
genetic basis is essential for improving yield potential in wheat breeding. In this study, five
kernel traits, including kernel length (KL), kernel width (KW), kernel diameter ratio (KDR),
kernel perimeter (KP), and thousand-kernel weight (TKW), were evaluated in a panel
consisting of 198 wheat accessions under six environments. Wheat accessions were
genotyped using the 35K SNP iSelect chip array, resulting in a set of 13,228 polymorphic
SNP markers that were used for genome-wide association study (GWAS). A total of
146 significant marker-trait associations (MTAs) were identified for five kernel traits on
21 chromosomes [–log10(P) ≥ 3], which explained 5.91–15.02% of the phenotypic
variation. Of these, 12 stable MTAs were identified in multiple environments, and six
superior alleles showed positive effects on KL, KP, and KDR. Four potential candidate
genes underlying the associated SNP markers were predicted for encoding ML protein,
F-box protein, ethylene-responsive transcription factor, and 1,4-α-glucan branching
enzyme. These genes were strongly expressed in grain development at different growth
stages. The results will provide new insights into the genetic basis of kernel traits
in wheat. The associated SNP markers and predicted candidate genes will facilitate
marker-assisted selection in wheat breeding.

Keywords: bread wheat, kernel traits, SNP array, GWAS, candidate genes

INTRODUCTION

Bread wheat (Triticum aestivum L., 2n = 6 × = 42, BBAADD) is one of the most important cereals
worldwide, providing calories and proteins for ∼40% of the world population (Rajaram, 2001;
Golan et al., 2015). Over the past 40 years, wheat production has increased significantly, but the
rate of increase in annual wheat production has tended to decline. Current increases in wheat
production are likely to be insufficient to meet the food needs of the global population by 2050
(Ray et al., 2012; Ray et al., 2013). Given the increasing mismatch between acreage and world
population, increasing wheat yield has become particularly crucial (Li M. et al., 2015). Thousand
kernel weight (TKW), as one of the three essential components of wheat yield, has relatively higher
heritability than the number of spikes per plant and the number of grains per spike. Therefore,
genetic improvement of TKW is a viable approach to increase wheat yield. Kernel length (KL),
kernel width (KW), kernel diameter ratio (KDR), and kernel perimeter (KP) determine kernel size
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and affect kernel weight and milling quality (Gegas et al., 2010;
Ramya et al., 2010). Therefore, understanding the genetic basis of
kernel traits is of great importance for improving wheat yield.

Most agronomic traits of wheat are complex quantitative traits
controlled by multiple genes. Their genetic structure is difficult to
decipher using conventional methods, so complementing them
with molecular approaches is essential (Ayoub et al., 2002; Börner
et al., 2002). Quantitative trait locus (QTL) mapping based on
linkage analysis has been widely used to analyze the molecular
genetic basis of complex quantitative traits. However, this method
is only applicable to bi-parental populations and leads to low-
resolution mapping of the QTLs and decreases the usefulness
of detected QTLs in breeding practices. Alternatively, genome-
wide association study (GWAS) provides an effective strategy
to identify associations between genotypes and phenotypes.
Compared with the former, GWAS can shorten breeding years
because segregation population do not need to be established,
broader genetic variations can be explored, and much higher
accuracy in QTL detection can be achieved (Zhang P. et al.,
2021). In recent years, with the development of molecular DNA
markers and high-throughput genotyping technology, the single-
nucleotide polymorphism (SNP) array has become a powerful
tool for marker-assisted selection (MAS). GWAS using SNP chip
arrays has been applied to a variety of crops such as rice (Oryza
sativa L.) (Yang et al., 2014; Yano et al., 2016), maize (Zea mays
L.) (Liu et al., 2016; Zhu et al., 2018), cotton (Gossypium spp.) (Su
et al., 2018, 2020a), and other crops. GWAS is also an efficient
approach for the genetic analysis of complex quantitative traits
in wheat and has been reported for various traits, such as disease
resistance (Riaz et al., 2017; Juliana et al., 2018; Mourad et al.,
2018; Yang et al., 2019) and quality-related traits (Kristensen et al.,
2018; Li et al., 2018; Liu et al., 2018; Chen et al., 2019). Pang
et al. (2020) reported 90 marker-trait associations (MTAs) and
identified eight putative candidate genes for TKW, KL, KW, and
KDR using GWAS with 768 wheat cultivars. In addition, several
studies have used the GWAS method to identify MTAs for wheat
kernel traits and to determine the underlying candidate genes and
function markers (Sun et al., 2017; Li et al., 2019; Alemu et al.,
2020; Soumya et al., 2021). However, due to the complexity and
large size of the wheat genome, the genetic basis of kernel traits
is still poorly understood. In this study, we performed a GWAS
for five kernel traits in six environments using the 35K SNP
iSelect chip array. Our main objectives were to identify MTAs
and search for useful SNP markers and potential candidate genes
associated with kernel traits in wheat to be used for marker-
assisted selection and genetic improvement of grain size and
weight in wheat breeding.

MATERIALS AND METHODS

Plant Materials and Field Conditions
A diverse set of 198 bread wheat accessions was used for this
study. Of these, 183 varieties were from eight provinces in China,
including 114 from Gansu, 33 from Shanxi, 11 from Hebei, ten
from Beijing, six from Shaanxi, six from Shangdong, two from
Tianjin, and one from Henan. The remaining 15 cultivars were

from America (Supplementary Table 1). All cultivars were grown
in six environments with different locations and years at Yuzhong
farm station, Lanzhou, Gansu (35◦51′N, 104◦07′E; altitude
1900 m) in 2015–2016 (E1) and 2017–2018 (E3), and Tongwei
farm station, Dingxi, Gansu (35◦11′N, 105◦19′E; altitude 1750 m)
in 2015–2016 (E2), 2017–2018 (E4), 2018–2019 (E5), and 2019–
2020 (E6). The two cultivation sites are characterized by a typical
arid inland climate in Northwestern China, where the annual
average temperature is about 7.0◦C, the annual rainfall is less than
400 mm, with nearly 60% falling from July to September, but
the annual evaporation capacity is more than 1,500 mm (Miao
et al., 2022). A randomized complete block design was conducted
with three replications, where the row length of each plot was
1 m and the row spacing was 20 cm, and 60 seeds were sown in
each row. Local wheat cultivation practices were considered in
field management.

Trait Measurement and Statistical
Analysis
At grain maturity, five individual plants of each cultivar
were randomly selected for threshing, and incomplete seeds
were removed. Kernel length (KL), kernel width (KW), kernel
diameter ratio (KDR), kernel perimeter (KP), and thousand
kernel weight (TKW) were measured by image analysis using
the SC-G software (Hangzhou Wanshen Detection Technology
Co., Ltd., Hangzhou, China). All trait measurements were
repeated three times.

The best linear unbiased prediction (BLUP) of kernel traits for
wheat was calculated by using the R package “lme4.” The broad-
sense heritability (h2

B) was calculated by the following equation
(Sukumaran et al., 2015): h2

B = σ2
G/(σ2

G + σ2
G × E/l + σ2

e/rl),
where σ2

G is the genetic variance, σ2
G × E is the genotype-

environment variance, σ2
e is the residual variance, l is the number

of environments, and r is the number of replications. Descriptive
statistics, ANOVA, and Pearson’s correlation coefficient were
calculated using IBM SPSS Statistics V.25.

Single-Nucleotide Polymorphism
Genotyping and Population Structure
Analysis
A panel of 198 wheat accessions was genotyped by the 35K
SNP iSelect chip array (Beijing Zhongyujin Marking Co.,
Ltd., Beijing, China), which contained 35,143 SNP markers
(Allen et al., 2017). The markers without clear physical
position information on the chromosomes were removed. The
genotyping data were filtered by removing markers with missing
values > 20% and minor allele frequency (MAF) < 5%.
As a result, 13,228 polymorphic SNP markers were used for
subsequent analysis.

The ADMIXTURE V1.3 software was applied to infer
population structure based on the filtered polymorphic SNP
markers. The genotypes were clustered by assuming the number
of groups with K value set as 2–10. The optimal number of
clusters was determined according to the cross-validation error
(CV error) rate, and the K-value with the minimum CV error
rate corresponds to the optimal number of subpopulations
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(Alexander et al., 2009). A neighbor-joining (NJ) phylogenetic
tree of genotypes was constructed by the PowerMarker V3.25
software (Liu and Muse, 2005).

Genome-Wide Association Analysis
The GWAS analysis was conducted by the TASSEL V5.0 software
using the mixed linear model (Q + K, MLM), where population
structure (Q) and kinship (K) matrices were applied to avoid
spurious associations caused by population structure and control
false positives simultaneously. To declare the significant MTAs,
P-value after Bonferroni correction was considered with high
stringency. Therefore, P ≤ 0.001 [–log10(P) ≥ 3] was regarded
as the threshold using a liberal approach to reduce ignoring any
significantly associated SNP marker for the kernel traits (Kumar
et al., 2020). Manhattan plots and Quantile-Quantile (Q-Q) plots
were drawn using the R package “CMplot.”1

Identification of Candidate Genes
After the significant MTAs were identified in multiple
environments, the flanking sequence spanning 1 kb upstream
and downstream of the significant SNP position was used to
query against the Chinese Spring wheat reference genome
IWGSC RefSeq v1.1.2 Subsequently, JBrowse was used to
examine candidate genes that overlapped with the flanking
region of the SNPs (Kumar et al., 2020). Functional annotations

1https://github.com/YinLiLin/R-CMplot
2http://www.wheatgenome.org/

of candidate genes were extracted from WheatGmap3 (Zhang
L. et al., 2021). To investigate the function of candidate genes,
expression analysis was performed based on the publicly
available expression data of a drought-tolerant cultivar Jinmai
47, obtained from roots, stems, leaves, developing spikes,
spikes at the anthesis stage, and developing grains at 5, 10,
and 20 days after anthesis (DAA). Total RNA was extracted
using the E.Z.N.A. R© Plant RNA Kit (Omega Bio-Tek, Norcross,
GA, United States). Three biological replications were used
for quantitative real-time PCR (qRT-PCR) analysis in each
treatment. TaActin was used as an endogenous reference, and
the 2−11C(t) method was used to determine relative gene
expression levels. Primer sequences used for qRT-PCR are listed
in Supplementary Table 2.

RESULTS

Phenotypic Evaluation
Phenotypic performance of kernel traits showed wide variation
and normal distribution in different environments (Figure 1).
The coefficients of variation for each trait in different
environments ranged from 3.44 to 14.79%, indicating broad
phenotypic variation among genotypes. The broad-sense
heritabilities of KL, KW, KDR, KP, and TKW were moderate
to high, ranging from 0.60 to 0.85. In comparison, KW had the

3https://www.wheatgmap.org/

FIGURE 1 | Distribution of the kernel traits in 198 wheat association panel. KL, kernel length; KW, kernel width; KDR, kernel diameter ratio; KP, kernel perimeter;
TKW, thousand kernel weight.
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lowest h2
B value (0.60), whereas KL had the highest h2

B value
(0.85) (Table 1).

Pearson’s correlation coefficients based on BLUP for the
kernel traits are shown in Figure 2. All traits were significantly
correlated with each other (P < 0.001). KL, KW, KDR, and KP
showed positive correlations with TKW (r = 0.24–0.83). KW
showed a negative correlation with KDR (r = –0.37), whereas
the other traits were positively correlated with each other. The
highest correlation was between KL and KP (r = 0.98).

Marker Distribution and Population
Structure
A total of 35,143 SNPs were genotyped for 198 wheat accessions.
After filtering, 13,228 SNPs were polymorphic and were used

TABLE 1 | Descriptive statistics and heritability (h2
B) of five kernel traits.

Trait Environment Min Max Mean SD CVa (%) F-testb h2
B

c

KL (mm) E1 5.22 7.36 6.28 0.38 5.99 34.77**

E2 5.47 7.48 6.38 0.36 5.63 61.53**

E3 5.02 7.00 5.90 0.37 6.23 19.95**

E4 5.14 7.11 5.97 0.36 6.06 35.39**

E5 6.06 8.06 6.86 0.40 5.84 219.60**

E6 5.92 8.36 6.89 0.48 6.95 340.49**

BLUP 5.80 7.33 6.45 0.33 5.05 231.37** 0.85

KW (mm) E1 2.29 3.47 2.99 0.18 6.18 20.03**

E2 2.64 3.63 3.27 0.15 4.44 22.37**

E3 2.01 3.29 2.70 0.21 7.63 10.53**

E4 2.23 3.42 2.77 0.21 7.40 21.13**

E5 3.14 3.87 3.59 0.13 3.73 72.20**

E6 3.00 4.04 3.56 0.18 4.92 134.71**

BLUP 2.84 3.44 3.21 0.11 3.44 58.96** 0.60

KDR E1 1.85 2.49 2.12 0.12 5.54 59.42**

E2 1.72 2.35 1.96 0.10 5.19 75.06**

E3 1.87 2.94 2.23 0.18 8.04 32.97**

E4 1.83 2.92 2.20 0.19 8.46 25.41**

E5 1.69 2.23 1.92 0.11 5.47 208.48**

E6 1.69 2.35 1.95 0.12 6.04 220.81**

BLUP 1.84 2.35 2.05 0.11 5.22 153.76** 0.80

KP (mm) E1 12.32 17.95 15.71 0.87 5.54 35.93**

E2 14.76 18.56 16.30 0.77 4.70 54.31**

E3 11.78 17.30 14.96 0.90 5.99 10.93**

E4 12.94 17.39 15.16 0.83 5.47 19.17**

E5 15.75 19.97 17.54 0.84 4.78 153.79**

E6 15.53 21.27 18.01 1.11 6.17 197.88**

BLUP 14.88 18.26 16.48 0.68 4.12 133.44** 0.79

TKW (g) E1 26.80 51.85 37.49 5.55 14.79 258.23**

E2 32.95 62.19 47.01 4.97 10.57 144.18**

E3 29.87 56.12 42.09 4.70 11.17 170.71**

E4 28.72 53.51 42.24 4.24 10.03 103.50**

E5 34.55 61.72 49.02 4.78 9.76 128.47**

E6 32.40 55.71 44.05 4.38 9.94 168.24**

BLUP 32.88 54.14 44.00 3.70 8.40 515.26** 0.80

aCV, coefficient of variation.
b**, P ≤ 0.01.
ch2

B, the broad sense heritability.

FIGURE 2 | Pearson’s correlation coefficients among BLUP for the kernel
traits. ***Significant at P < 0.001.

for subsequent analysis (Supplementary Figure 1). Of these,
4,704, 5,408, and 3,116 SNPs were observed in the A, B, and
D sub-genomes, respectively. On average, 1,890 SNP markers
were distributed per homeologous group. The smallest number of
SNPs was found in the homeologous group IV (1,070 SNPs), and
the largest number of SNPs was found in the homeologous group
II (2,519 SNPs). The distribution of SNP markers varied greatly
across 21 chromosomes, with the fewest SNPs on chromosome
4D (180 SNPs) and the most on chromosome 2B (980 SNPs).

The inferring population structure showed a minimum CV
error rate value at K = 4, indicating that the association
population was structured into four subpopulations. Each of
them contained 48, 60, 44, and 46 accessions, respectively
(Figures 3A,D and Supplementary Table 1). Genetic clustering
with the kinship matrix and the NJ phylogenetic tree also showed
that the association population could be clustered into four
subpopulations (Figures 3B,C). Thus, it was suitable to divide the
association population into four subpopulations.

Marker-Trait Associations
A total of 146 significant MTAs (P ≤ 0.001) for the kernel traits
were identified on all 21 chromosomes, explaining phenotypic
variation (R2) ranging from 5.91 to 15.02% (Supplementary
Table 3 and Figure 4). The overall rate of false-positive
association results was properly controlled, as shown by quantile-
quantile plots (Supplementary Figure 2). Of these, 22, 43, 36, 23,
and 22 MTAs were identified for KL, KW, KDR, KP, and TKW,
respectively, in all environments (Supplementary Figure 3).

In total, twelve MTAs were repeatedly observed in multiple
environments, with R2 ranging from 5.91 to 15.02%. Therefore,
these MTAs were considered stable loci. Of these, seven MTAs
were repeatedly observed in two environments, four MTAs
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FIGURE 3 | Population structure and kinship analyses of the 198 wheat accessions. (A) Graph of the cross-validation of errors. The numbers of clusters (K) were set
from 2 to 10. (B) A neighbor-joining (NJ) phylogenetic tree of the 198 wheat accessions. (C) Clustering heat map created using kinship matrix. (D) Four
subpopulations for 198 wheat accessions. The X-axis represents the number of accessions, and the Y-axis shows the membership probabilities of the
subpopulations.

were repeatedly observed in three environments, and one MTA
was repeatedly observed in all environments except E1 and
E6. In addition, three SNP markers involved in six MTAs
were associated with multiple kernel traits. Two markers, AX-
94400331 and AX-94509671, were both significantly associated
with KL and KP, and AX-94393836 was significantly associated
with KW and TKW (Table 2).

Allelic Effects of Associated Markers on
Kernel Traits
The allelic effect was estimated from the MTAs repeatedly
identified in multiple environments. Significant differences
between SNP alleles were found for six MTAs except AX-
95629937 (Figure 5). The alleles of AX-94400331 and AX-
94509671 showed positive additive effects, increasing both KL
and KP. For AX-94400331, the allelic effect on mean KL
between the superior allele TT and the inferior allele CC
was 0.33 mm, and the corresponding effect on mean KP was
0.70 mm. For AX-94509671, the allelic effect on mean KL
between the superior allele CC and the inferior allele AA
was 0.32 mm, and the corresponding effect on mean KP was
0.64 mm. In addition, the mean KDR of the superior alleles
(GG and AA) was slightly higher than that of the inferior
alleles (AA and GG) for both markers AX-94409249 and AX-
95629937.

The average values for phenotypes of wheat accessions
carrying different numbers of superior alleles (0–2) are shown
in Figure 6. Under different environments, the average KL
with two superior alleles was 6.65 mm (6.24–7.20 mm). In
contrast, the average KL with one superior allele and neither
superior allele was 6.61 mm (6.08–7.40 mm) and 6.32 mm
(5.86–6.84 mm), respectively. For KDR, the mean score with
two superior alleles was 2.18 (2.03–2.45), and the mean
scores with one superior allele and neither superior allele
were 2.09 (1.94–2.26) and 2.03 (1.90–2.18), respectively. In
addition, the average KP with different superior alleles showed
the same result as KL, indicating that the phenotypic values
for these kernel traits are higher when they contain more
superior alleles.

Candidate Genes for Kernel Traits
By using the flanking sequence alignment of significant
SNP markers from 12 stable MTAs, nine candidate genes
for the kernel traits were identified, controlling diverse
functional groups of proteins (Table 3). Functional annotations
showed that four KDR-associated candidate genes, namely,
TraesCS3B02G139500 on chromosome 3B,TraesCS5B02G428200
on chromosome 5B, TraesCS6B02G323800LC on chromosome
6B, and TraesCS7D02G535400 on chromosome 7D. Those genes
encoded a rotundifolia-like protein, an MD-2-related lipid
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FIGURE 4 | Manhattan plots for the kernel traits. The association of 13228 SNPs located on 21 chromosomes in six environments and BLUP for KL, KW, KDR, KP,
and TKW were shown in panels (A–E), respectively. Dotted lines indicate the threshold value at –log10(P) = 3.

recognition domain-containing protein, an F-box protein, and a
1,4-α-glucan branching enzyme, respectively. On chromosome
5D, two candidate genes, namely, TraesCS5D02G011900 and
TraesCS5D02G657200LC, correlated with KL and KW, and
they encoded hydroxysteroid dehydrogenase and chromosomal
replication initiator protein DnaA, respectively. Of the other
three candidate genes, which were involved in two different
traits, the gene TraesCS5D02G223200 on chromosome 5D
for KL and KP encoded serine protease HtrA-like and
the gene TraesCS5D02G223700 on chromosome 5D for KL
and KP encoded ethylene-responsive transcription factor.
TraesCS1A02G135300 on chromosome 1A for KW and TKW
encoded a protein of the superfamily of nucleoside triphosphate
hydrolases with P-loop. The expression levels of the candidate
genes were examined in various tissues, including roots, stems,
leaves, developing spikes, spikes at anthesis, and developing
grains at 5, 10, and 20 DAA. Among the nine candidate genes
identified, the CDS sequences of TraesCS5D02G657200LC and
TraesCS5B02G428200 were short, and it was difficult to design
suitable specific primers. Therefore, we only presented the qRT-
PCR results for the other seven candidate genes (Figure 7).
The relative expression of each gene was different at different
growth stages. Among them, both TraesCS5D02G223700 and
TraesCS7D02G535400 were strongly expressed in the developing

grains at different growth stages, with the highest expression
level shown at 10 DAA. Both TraesCS5B02G428200 and
TraesCS6B02G323800LC were strongly expressed in developing
grains at 20 DAA. This suggests that the above four genes may
play a key role in regulating grain development.

DISCUSSION

Phenotypic Variation and Population
Structure
We used image analysis technology for the phenotyping of kernel
traits, which drastically reduces artificial errors and ensures the
accuracy of measurement results. The phenotypic distribution
of the kernel traits showed normal distribution of the traits,
indicating that these traits are quantitative traits and suitable
for GWAS analysis. Large phenotypic variation was observed
in all target traits, of which the largest variation was observed
in TKW with coefficients of variation ranging from 8.40 to
14.79% in different environments (Figure 1). In addition, TKW
showed a higher h2

B of 0.80 (Table 1), which is consistent with
previous studies (Li Q. et al., 2015; Su et al., 2018). The h2

B
of other kernel traits was moderate to high, ranging from 0.60
to 0.85. This indicated that the traits were largely controlled
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TABLE 2 | Significant marker-trait associations for kernel traits under multiple environments.

Trait SNP marker Allelea Chrb Postion (bp) Environment P-value R2c (%)

KL AX-95248961 A/T 5D 6450092 E5 6.41E-04 7.91

E6 2.40E-04 8.91

BLUP 6.88E-04 7.80

AX-94400331 C/T 5D 330891375 E4 3.77E-04 8.76

BLUP 4.81E-04 8.44

AX-94509671 A/C 5D 331402475 E2 2.25E-04 8.99

E3 6.67E-04 7.69

E4 4.57E-04 8.20

E5 7.87E-04 7.57

BLUP 3.08E-05 11.23

KW AX-94393836 C/T 1A 208219190 E1 7.78E-06 14.68

E5 1.13E-04 10.62

BLUP 4.59E-06 15.02

AX-94438072 C/T 5D 561626204 E3 7.14E-04 6.14

E5 6.86E-04 6.36

BLUP 2.63E-04 7.35

KDR AX-94409249 A/G 3B 126000659 E1 5.21E-04 8.13

E6 8.73E-04 7.81

BLUP 6.46E-04 8.19

AX-95629937 A/G 5B 604022658 E4 5.44E-05 11.90

BLUP 1.72E-04 10.38

AX-94711022 A/G 6B 252383444 E3 6.42E-04 6.32

E4 7.36E-04 6.06

AX-94578940 A/C 7D 627323708 E3 4.63E-04 6.58

BLUP 8.40E-04 5.91

KP AX-94400331 C/T 5D 330891375 E4 9.09E-04 7.75

BLUP 7.48E-04 7.89

AX-94509671 A/C 5D 331402475 E2 5.55E-04 7.97

BLUP 5.72E-05 10.49

TKW AX-94393836 C/T 1A 208219190 E4 1.73E-04 10.66

E5 5.95E-04 8.68

aSuperior alleles are underlined.
bChr, chromosome.
cPhenotypic variance explained by the MTAs.

by genetic factors. Correlation analysis indicated that KL, KW,
KDR, and KP contributed to TKW (Figure 2), suggesting that
kernel size traits should be targeted for improving kernel weight
and yield in wheat.

Since the rich germplasm resources contain substantial genetic
variations and superior alleles (Walsh, 1981), we collected a
diverse set of bread wheat accessions from eight different
ecological regions in China and America that provides the
basis for identifying MTAs. To reduce spurious associations
between markers and traits, it was necessary to evaluate
the genetic structure of the population before performing
GWAS. The presence of four subpopulations in this associated
population was confirmed by population structure and diversity
analyses (Figure 3).

Stable Marker-Trait Associations
To ensure the accuracy of the association results, we used
the MLM model with population structure and kinship. This
approach has been widely used in previous studies and was able

to efficiently control false positives (Ain et al., 2015; Zuo et al.,
2019; Alemu et al., 2020). As a result, a total of 146 significant
MTAs were identified for the five kernel traits (Supplementary
Table 2). Of these, 12 MTAs were repeatedly detected in multiple
environments (Table 2), which were considered stable MTAs.
Accordingly, nine SNP markers were involved in these MTAs.
Three SNP markers of them were simultaneously correlated with
multiple traits. For example, two SNP markers, namely, AX-
94400331 and AX-94509671 were significantly associated with
KL and KP, and another marker, namely, AX-94393836 was
significantly associated with KW and TKW.

Some studies have performed QTL mapping for wheat kernel
traits using different molecular markers (Ramya et al., 2010;
Okamoto et al., 2013; Cui et al., 2014). In this study, 12 stable
MTAs were identified and compared with earlier studies while
taking into account the correlations among traits, of which five
MTAs were co-localized with QTLs for kernel traits previously
reported. The SNP marker AX-94393836 associated with KW and
TKW on chromosome 1A was mapped within the confidence
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FIGURE 5 | Box plot for phenotypic values of two allelic groups belonging to the associated markers identified under BLUP environments. The significant difference
between the phenotype of two allelic groups was analyzed by T-test (∗∗P ≤ 0.01; ∗∗∗P ≤ 0.001; ∗∗∗∗P ≤ 0.0001). The X-axis shows the two alleles for each SNP
marker, and the Y-axis shows the phenotypic values of kernel traits.

FIGURE 6 | The mean of KL, KDR, and KP for wheat accessions with 0–2 superior alleles in different environments. The different letters are significantly different at
P < 0.05 according to Duncan’s multiple range test.

interval (wmc24∼wmc278) of a TKW QTL (QTkw.ncl-1A.1)
reported by Ramya et al. (2010) and co-localized with a QTL
(QTkw-1A.1) for TKW reported by Cui et al. (2014). Both AX-
95629937 and AX-94578940 that were associated with KDR co-
localized with QTkw-5B.1 on chromosome 5B for KL and QTkw-
7D.2 on chromosome 7D for TKW, respectively, as reported by
Cui et al. (2014). In addition, the KL locus AX-95248961 on
chromosome 5D was near to a QTL (QTkw-7D.2) for hundred

grain weight reported in Okamoto et al. (2013). Notably, the
remaining seven MTAs were not reported previously and are
likely novel loci for kernel traits.

Discovery of Superior Alleles
In this study, we identified 12 stable MTAs in multiple
environments based on the GWAS results. The superior
alleles identified from these MTAs were of greater importance.
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TABLE 3 | Candidate genes underlying the significant markers associated with kernel traits.

Trait SNP marker Chr Postion (bp) Gene postion (bp) Gene ID Functional annotation

KL AX-95248961 5D 6450092 6444885–6450213 TraesCS5D02G011900 Hydroxysteroid dehydrogenase, putative

AX-94400331 5D 330891375 330889652–330899414 TraesCS5D02G223200 Serine protease HtrA-like

AX-94509671 5D 331402475 331402389–331406349 TraesCS5D02G223700 Ethylene-responsive transcription factor

KW AX-94393836 1A 208219190 208208304–208219356 TraesCS1A02G135300 P-loop containing nucleoside triphosphate hydrolases
superfamily protein

AX-94438072 5D 561626204 561625578–561630640 TraesCS5D02G657200LC Chromosomal replication initiator protein DnaA

KDR AX-94409249 3B 126000659 125995818–125996030 TraesCS3B02G139500 Rotundifolia-like protein

AX-95629937 5B 604022658 604021148–604023499 TraesCS5B02G428200 MD-2-related lipid recognition domain-containing protein/ML
domain-containing protein

AX-94711022 6B 252383444 252385913–252388254 TraesCS6B02G323800LC F-box protein (DUF295)

AX-94578940 7D 627323708 627322122–627328145 TraesCS7D02G535400 1,4-α-glucan branching enzyme

KP AX-94400331 5D 330891375 330889652–330899414 TraesCS5D02G223200 Serine protease HtrA-like

AX-94509671 5D 331402475 331402389–331406349 TraesCS5D02G223700 Ethylene-responsive transcription factor

TKW AX-94393836 1A 208219190 208208304–208219356 TraesCS1A02G135300 P-loop containing nucleoside triphosphate hydrolases
superfamily protein

FIGURE 7 | Relative expression level of different tissues obtained from qRT-PCR analysis. Roots, stems, and leaves were collected at the three-leaf stage. Spikes
were collected at developing (length: 40–60 mm) and anthesis. Grains were collected at 5, 10, and 20 days after anthesis (DAA). Data are the mean ± standard
deviation of three biological replicates. The different letters are significantly different at P < 0.05 according to Duncan’s multiple range test.

Therefore, we compared the average BLUP value of phenotype
regulated by superior and inferior alleles based on six MTAs, and
all superior alleles showed positive effects on KL, KP, and KDR.
In particular, the superior allele TT for AX-94400331 and CC for
AX-94509671 simultaneously showed highly positive effects on
KL and KP (Figure 6).

Exploring superior alleles is very valuable for wheat breeding
programs. Although the contribution of a single marker
in influencing phenotypic variation might be small, the
combination of superior alleles from different markers can
have much larger effects in a single variety (Li et al., 2020).
In our study, phenotype scores for KL, KDR, and KP were

found to be positively correlated with the number of superior
alleles, suggesting that pyramiding superior alleles improved
wheat kernel traits performance. With the development of
sequencing technology, allelic pyramiding becomes more
feasible and powerful.

Potential Candidate Genes for the Kernel
Traits
In wheat, several genes have been identified that are related to
kernel size and weight. For example, TaCYP78A3, which encodes
cytochrome P450 CYP78A3, has a significant effect on kernel
size by affecting seed coat cell number, and its silencing can
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cause an 11% decrease in wheat kernel size (Ma et al., 2015).
In addition, TaGW2 encodes E3 RING ligase, which affects
thousand kernel weight by influencing kernel length and width
(Simmonds et al., 2016; Zhang et al., 2018). In this study, a total
of nine candidate genes were functionally annotated based on the
Chinese Spring wheat reference genome (IWGSC RefSeq v1.1)
(Table 3). Using qRT-PCR analysis, four promising genes were
strongly expressed in developing grain at different growth stages
(Figure 7), which were considered as potential candidate genes to
control kernel traits.

We predicted four potential candidate genes for kernel traits.
The marker AX-95629937 was associated with KDR in E4 and
BLUP, with a potential candidate gene TraesCS5B02G428200
on chromosome 5B encoding the MD-2-related lipid
recognition/ML domain-containing protein. The MD-2-
related lipid recognition domain is defined as an ML protein
(Inohara and Nuñez, 2002). Hakenjos et al. (2013) identified ML3
as a NEDD8- and ubiquitin-modified protein in Arabidopsis
(Arabidopsis thaliana), which was also conjugated to ubiquitin
pathway with a critical role in controlling seed size in plants
(Li and Li, 2014).

The gene TraesCS6B02G323800LC on chromosome 6B
underlying the marker AX-94711022 was associated with KDR in
E3 and E4 environments. The gene encoded the F-box protein,
which is involved in diverse hormone signal transduction and
cellular processes (Kuroda et al., 2002). Li et al. (2011) found that
LARGER PANICLE (LP), which encodes an F-box protein and is
involved in the regulation of cytokinin levels, can improve rice
yield by regulating panicle structure.

The marker AX-94509671 was associated with KL in all
environments except E1 and E6 and with KP in E2 and
BLUP. A potential candidate gene TraesCS5D02G223700
encoding ethylene-responsive transcription factor (ERF)
was found near the physical map position of AX-
94509671 on chromosome 5D. ERF is a plant-specific
transcription factor involved in plant growth and development
processes (Jin and Liu, 2008). Xu et al. (2016) reported
that OsERF interacts with a transcription factor (OsNF-
YB1) specifically expressed in the aleurone layer of the
endosperm. This process affected kernel filling and endosperm
development, regulating rice kernel size and weight. Li
et al. (2017) found that the transcription factor ZmEREB94
regulates several starch-synthetic genes, further affecting
endosperm development.

The marker AX-94578940 associated with KDR in the
E3 environment and BLUP corresponded to a candidate
gene TraesCS7D02G535400 (7D) encoding the 1,4-α-glucan
branching enzyme (GBE). GBE is the key enzyme that
catalyzes the formation of α-1,6-linked branch in starch and
belongs to the glycoside hydrolase 13 (GH13) family (Xia
et al., 2021). In tapioca and maize, GBE treatment led to
molecular restructuring of starch, resulting in a change in
the amylose and amylopectin content of starch. This suggests
that GBE is important for starch modification (Li et al.,
2016a,b; Ren et al., 2018). We speculated that the above four
genes might be very important in influencing kernel size and
weight in wheat.

CONCLUSION

In this study, GWAS for kernel traits was performed on a diverse
panel of 198 bread wheat accessions, genotyped with the 35K
SNP iSelect chip array. As a result, 146 significant MTAs were
identified for five kernel traits. Of these, 12 stable significant
MTAs were identified in different environments. Six superior
alleles of nine major SNP markers showed positive effects on KL,
KP, and KDR. Four potential candidate genes were predicted to
be highly expressed in the developing grain at different growth
stages. The results provide not only new insights into the genetic
basis of kernel traits in wheat but also diagnostic makers that can
be used for marker-assisted selection in wheat breeding.
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