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Genes are subject to birth and death during the long evolutionary period. Here, young
and old duplicate genes were identified in Vernicia fordii. We performed integrative
analyses, including expression pattern, gene complexity, evolution, and functional
divergence between young and old duplicate genes. Compared with young genes,
old genes have higher values of Ka and Ks, lower Ka/Ks values, and lower average
intrinsic structural disorder (ISD) values. Gene ontology and RNA-seq suggested that
most young and old duplicate genes contained asymmetric functions. Only old duplicate
genes are likely to participate in response to Fusarium wilt infection and exhibit divergent
expression patterns. Our data suggest that young genes differ from older genes not
only by evolutionary properties but also by their function and structure. These results
highlighted the characteristics and diversification of the young and old genes in V. fordii
and provided a systematic analysis of these genes in the V. fordii genome.
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INTRODUCTION

Like all organisms, genes also undergo birth and death during the long evolutionary period.
Following a gene duplication event, two identical copies of the ancestral gene perform exactly
the same function, which may result in the death of some genes (Ota and Nei, 1994; Nei et al.,
1997). According to the order of genes generation, they can be classified as old genes and young
genes. Young genes retention may be closely related to the accommodation of environmental
changes compared to old genes (Kaessmann, 2010; Song et al., 2019). Gene retroposition, horizontal
transfer, duplication, recombination, or originating from non-genic sequences may be the source
of these genes (Long et al., 2003, 2013; Kaessmann, 2010). So far, many researchers have studied
the relationship between expression patterns and evolutionary patterns of young and old genes.
Compared to old genes, young genes have a higher intrinsic structural disorder (ISD), shorter gene
length, lower histone modification, lower gene expression level, more relaxed purifying selection,
and faster evolutionary rate (Wolf et al., 2009; Capra et al., 2010; Vishnoi et al., 2010; Cui et al.,
2015; Wang et al., 2016; Banerjee and Chakraborty, 2017; Wilson et al., 2017; Song et al., 2019). Old
genes usually play an important role in the growth and development of organisms. In contrast, most
young genes may not be necessary for plant growth and development, but a few of them may acquire
new essential functions in the survival of new environments (Chen et al., 2010, 2012). Young genes
tend to evolve more quickly and experience weaker purifying selection than old genes. Additionally,
for young genes, duplicates experience weaker stronger translational selection than singletons and
old genes (Yin et al., 2016).

Frontiers in Plant Science | www.frontiersin.org 1 June 2022 | Volume 13 | Article 902649

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.902649
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2022.902649
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.902649&domain=pdf&date_stamp=2022-06-20
https://www.frontiersin.org/articles/10.3389/fpls.2022.902649/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-902649 June 20, 2022 Time: 14:48 # 2

Jiang et al. Young and Old Duplicate Genes

So far, although there are many studies on the characteristics
of young and old genes, both of function and characteristics of
young and old duplicate genes produced by gene duplication
events are still excluded. Compared with animals, plants have
experienced one or more whole-genome duplication (WGD)
events (Schranz et al., 2012). In addition, some plants have
also undergone small-scale duplication (SSD) events along
with their growth and development (Conant and Wolfe, 2008;
Cao et al., 2019c). In general, duplicates that are retained by
SSD are mainly involved in cell death, stress response, and
metabolism, while duplicates formed by WGD participate in
signal transduction, kinases, and development (Maere et al.,
2005; Pareek et al., 2006; Corrochano et al., 2016). Although the
genes produced by WGD and SSD may differ in their function,
gene duplication events will produce new copies (i.e., young
genes) that cause subfunctionalization or neofunctionalization to
promote adaptive evolution and increase relative fitness in plants
(Gottlieb, 1982; Flagel and Wendel, 2009; Van De Peer et al.,
2017).

Vernicia fordii, as a unique industrial oil tree species in China,
is a monecious plant with wide distribution and many varieties
(Cao et al., 2019b). There are great differences in the yield of tung
oil among different V. fordii varieties. Young and old duplicate
genes may plant a significant role in this process. Previous
researchers have sequenced the whole genome and RNA-seq of
V. fordii (Chen et al., 2016; Cui et al., 2018; Liu et al., 2019),
so we analyzed the characteristics of young and old duplicating
genes in V. fordii. According to the synonymous substitution
ratio (Ks) value for V. fordii, the young and old duplicate gene
pairs were classified in the present study. We also compared gene
complexity, gene expression patterns, and evolutionary patterns
between young and old duplicate genes in V. fordii. This study
may help us to further understand the functional divergence and
evolution of duplicate genes in V. fordii.

MATERIALS AND METHODS

Identification of Young and Old Duplicate
Genes in Vernicia fordii
To identify the duplicate genes in V. fordii, we used the strict
evaluation criteria as follows: (1) E-value ≤ 10−10, (2) identity
>80%, and (3) length of aligned sequences >80% of the length of
each sequence, as described by Clevenger et al. (2016) and Song
et al. (2019). The young and old duplicate genes from V. fordii
using a method described in Song et al. (2019). Briefly, the top
and bottom 25% of Ks values for gene pairs were defined as old
and young duplicate gene pairs, respectively (Song et al., 2019).

Chromosomal Location, Gene Ontology,
Sequence Complex, and Substitution
Rates
The chromosomal location of V. fordii genes was obtained
from the V. fordii genomic annotation file. According to the
sequencing name, the chromosomal location of each young and
old duplicate gene was determined in V. fordii genome. The

TABLE 1 | Comparison of gene expression levels between old and young
duplicate genes in Vernicia fordii.

Young duplicate genesa Old duplicate genesa P-value

Stem 0.32992 ± 1.69659 1.29889 ± 19.01985 0.4732

Root 0.23075 ± 2.38534 0.26472 ± 3.32038 0.1732

Leaf 0.17276 ± 1.32728 0.54662 ± 5.19718 0.8877

10_WAF 0.16166 ± 0.93073 0.20305 ± 0.84959 0.641

15_WAF 0.61856 ± 9.47926 0.21273 ± 0.88024 0.7041

20_WAF 0.25948 ± 1.57819 0.22043 ± 1.60837 0.6372

25_WAF 0.21053 ± 2.19179 −0.03856 ± 5.21426 0.2906

30_WAF −0.08646 ± 4.57126 0.03024 ± 8.43142 0.4939

C1 0.22886 ± 0.87381 0.09930 ± 0.82954 0.007285

C2 0.13126 ± 2.83309 0.18950 ± 1.12121 0.1539

C3 0.20570 ± 3.37712 0.17215 ± 2.26439 0.0423

C4 0.22757 ± 0.92811 −0.09541 ± 9.72672 0.1998

X1 0.39927 ± 2.21567 0.26412 ± 1.19283 0.05955

X2 0.22806 ± 1.96253 0.23484 ± 1.15092 0.09925

X3 0.22942 ± 4.14480 0.22514 ± 1.26084 0.7747

X4 0.24818 ± 1.52190 0.37369 ± 5.79896 0.1583

CX 0.40889 ± 2.65661 0.43914 ± 4.12942 0.137

Expression_
breadth

12.93952 ± 4.48514 12.91720 ± 4.56255 0.000173

aMean ± SD. 10_WAF, 15_WAF, 20_WAF, 25_WAF, and 30_WAF represent 10, 15,
20, and 25 weeks after flowering, respectively. C1, C2, C3, and C4 represent 30,
20, 10, 1 days before female flowering, respectively. X1, X2, X3, and X4 represent
30, 20, 10, 1 days before male flowering, respectively. CX means hermaphrodite.

gene ontology for each young and old duplicate gene pair was
generated using Blast2GO software against the NR database
(Conesa et al., 2005). Ka/Ks (non-synonymous to synonymous
substitution ratio), Ka, and Ks were determined using the aligned
CDS in the Codeml procedure PAML software (version 4.4) all
alignment gaps were deleted (Yang, 2007). Polypeptide length
and Fop (frequency of optimal codons), for the young and old
duplicate gene pairs were calculated using CodonW software
(version 1.4.2).1 GC1 (GC content at the first codon site), GC2
(GC content at the second codon site), and GC3 (GC content at
the third codon site) were estimated using an in-house Perl script.
The IUPred2A online tool was used to estimate ISD with default
parameters (Mészáros et al., 2018).

RNA-Seq Data
The raw sequences for 17 different tissues (PRJNA483508 and
PRJNA445068) were filtered using the cutadapt software (version
1.8.1) (Martin, 2011). The high-quality reads were mapped to
the V. fordii genome using HISAT2 software (version 2.1.0) with
default parameters (Pertea et al., 2016). The StringTie software
(version 2.0) was used to obtain FPKM (fragments per kilobase of
exon model per million reads mapped) values for all young and
old duplicate genes (Pertea et al., 2015, 2016). Gene-expression
breadth is a measure of the number of tissues where a gene
matched at least one tissue, and this value was also calculated in
V. fordii (Jordan et al., 2005; Cao et al., 2019a).

The raw sequences for V. fordii root tissue infected by
Fusarium wilt into three periods, including 2 dpi (i.e., the early

1http://codonw.sourceforge.net/
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FIGURE 1 | Comparison of intrinsic structural disorder (ISD) between young
and old duplicate genes in Vernicia fordii. IUPred2A was used to estimate the
ISD value with default parameters.

stage), 8 dpi (i.e., the subsequent stage), and 13 dpi (i.e., the final
stage), each with three biological replicates, obtained from NCBI
Gene Expression Omnibus with accession number GSE80228
(Chen et al., 2016). The DESeq package was used to determine
the differentially expressed transcription factors (DETs) with a
fold-change ≥ 2 and p-value ≤ 0.05 (Love et al., 2014).

RESULTS

Comparison of Young and Old Duplicate
Genes in Vernicia fordii
According to the Ks values, we considered 463 and 465 duplicate
gene pairs to be old duplicate genes (Ks: 1.3860–1.9935) and
young duplicate genes (Ks: 0.0077–0.9489). Zhang et al. (2019)
clarified that Jatropha curcas and V. fordii divergence occurred
about 34.55 million years ago (Mya) (Ks = 0.52). These data
suggested that young duplicate genes in V. fordii were formed
before the divergence of J. curcas and V. fordii, and old duplicate
genes in V. fordii were formed after the divergence of J. curcas and
V. fordii.

Subsequently, we investigated gene complexity, gene
expression, and evolution patterns between young and old
duplicate gene pairs, and found that these parameters differed
between these genes. Young duplicate genes were expressed
at higher levels in most tissues than old duplicate genes, and
the gene expression breadth of young duplicate genes was also
greater than old duplicate genes (Table 1). For codon usage bias,
we found that there were similarities between young and old
duplicate genes. The GC1 and GC3 content of young duplicate
genes was found to be lower than that of old duplicate genes, and
the polypeptide length of young duplicate genes was shorter than

TABLE 2 | Comparison of gene complexity and substitution rate between young
and old duplicate genes in Vernicia fordii.

Young duplicate genesa Old duplicate genesa P-value

Fop 0.36932 ± 0.03604 0.37620 ± 0.03576 0.003657

AA 380.13282 ± 262.40793 416.40538 ± 248.39721 0.0004001

GC1 49.19326 ± 4.69717 49.27901 ± 4.02039 0.8523

GC2 41.03073 ± 5.65408 40.07084 ± 5.02216 0.006975

GC3 36.50951 ± 5.79104 38.48259 ± 5.70046 2.06E-07

Ka 0.47117 ± 0.36448 0.38031 ± 0.26312 0.0003212

Ks 0.68886 ± 0.20766 1.60683 ± 0.16657 2.20E-16

Ka/Ks 0.84187 ± 1.05294 0.23830 ± 0.16605 2.20E-16

aMean ± SD; AA, polypeptide length; Fop, frequency of optimal codons; GC1/2/3,
GC content at the first/second/third codon site; Ka/Ks, non-synonymous to
synonymous substitution ratio; Ka, non-synonymous substitution rate per non-
synonymous site; Ks, synonymous substitution rate per synonymous site.

that of old duplicate genes. For ISD of proteins, the average ISD
value of young duplicate genes was less than old duplicate genes
(Figure 1). When Ka, Ks, and Ka/Ks were compared between
young and old duplicate gene pairs, the values of Ka and Ks were
higher for old duplicate gene pairs than for young duplicate gene
pairs. However, the value of Ka/Ks for young duplicate gene pairs
was higher than that of old duplicate gene pairs.

Previous studies have confirmed that there are different
correlations among the gene complexity, expression pattern, and
Ka and Ks between young and old duplicate genes (Song et al.,
2019). To further understand this phenomenon in V. fordii,
we performed a correlation analysis between young and old
duplicate genes (Table 2 and Supplementary Figure 1). In young
duplicate genes, there was no correlation between Ka, Ks, Ka/Ks,
and the gene expression level of 17 different tissues. However, Ka
and Ka/Ks have negatively correlated the gene expression level
of 17 different tissues in old duplicate genes. We also noted that
there are positive correlations among gene expression levels of 17
different tissues, and codon usage bias, gene expression breadth
and GC3, and were negatively correlated GC2 in young duplicate
genes. In old duplicate genes, the gene expression levels in 17
different tissues were positively correlated with gene-expression
breadth, and were negatively correlated with GC2. However,
codon usage bias, GC1, and GC3 were only positively correlated
with the gene-expression level in partial tissues.

Comparison of Gene Ontology Between
Old and Young Duplicate Genes
Gene ontology terms are currently widely used by many
researchers to understand the function and biological significance
of genes (Botstein et al., 2000; Song et al., 2019). To gain insight
into the potential functional divergence between young and
old duplicate genes, we performed GO analyses of these genes
in V. fordii. Compared to the old duplicate genes, the young
duplicate genes contained more numbers of GO terms. We also
noted that the GO types in young duplicate genes were more
than that in old duplicate genes (Supplementary Figure 2 and
Supplementary Tables 1–3). In the cellular component, young
duplicate genes included more GO-specific terms associated with
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FIGURE 2 | The location and expression analyses of young and old duplicate genes in Vernicia fordii. The green and orange represent the positional information of
old and young duplicate genes on chromosomes in V. fordii, respectively. Blue and red represent the low and high expression levels of duplicate genes under
Fusarium wilt disease, respectively. The outermost ring indicates F3, followed by F2, F1, and F0.

FIGURE 3 | Expression divergence analyses of young and old duplicate
genes during Vernicia fordii different tissues and/or development stages. The
divergence and similarity between expression profiles of duplicate genes by
using pearson’s correlation coefficient (r).

“membrane,” while old duplicate genes contained more GO-
specific terms associated with “protein complex.” In the biological
processes, young duplicate genes were more likely to mainly

participate in “multi-organism cellular process,” but old duplicate
genes were more mainly involved in “transport regulation” and
“stress response.” In the molecular function, young duplicate
genes preferentially carried out the “catalytic activity” function,
while old duplicate genes are mainly involved in the “molecular
adaptor” or “cyclin-dependent protein kinase activity” function
(Supplementary Tables 1–3). Taken together, the analysis of
GO terms suggests that young and old duplicate genes contain
potential functional divergence during evolution.

Location and Expression Divergence
Analyses of Old and Young Duplicate
Genes in Vernicia fordii
To further understand the chromosomal location of young and
old duplicate genes, we obtained the GFF3 annotation file and
performed location analysis in V. fordii (Figure 2). Our study
suggested that young and old duplicate genes were mainly
located in the end and beginning of chromosomes. In young
and old duplicate genes, we found that 437 and 450 duplicate
gene pairs were distributed among different chromosomes in
V. fordii, respectively. Remarkably, a higher density of young
and old duplicate genes was found on some chromosomes, such
as chromosome 5 contained the highest number of duplicate
genes (260), followed by chromosome 0 (214). In young duplicate
genes, the highest number of old duplicate genes were mainly
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FIGURE 4 | Young duplicate genes involved in response to Fusarium wilt disease stress. The same color font suggests that a duplicate gene was simultaneously
involved in Fusarium wilt disease stress over more than one periods.

located in chromosome 5 (123) and chromosome 0 (106),
respectively. However, old duplicate genes were located in
chromosome 5 (137) and chromosome 9 (110), respectively.

To further understand the degree of expression similarity
between young and old duplicate genes, we analyzed the Pearson’s
correlation coefficient (r) of each duplicate genes during V. fordii
different tissues and/or development stages (Figure 3). The
expression correlations for young duplicate genes demonstrated
that the average value was r = 0.048, ranging from −0.069 to
1.000. By way of contrast, the correlations of old duplicate genes
demonstrated a relatively low average value of 0.039 within a
broad range of −0.119 to 1.000. However, the Mann–Whitney
U-test found no significant difference between the two average
r values (p = 0.55), which may be due to the relatively small
number of samples. These data may further reflect some degree
of ongoing functional divergence between duplicate genes during
the long evolutionary period.

Differential Gene Expression Between
Young and Old Duplicate Genes Under
Fusarium Wilt Disease
Vernicia fordii can produce biomass diesel, which is a promising
industrial crop (Zhang et al., 2014; Liu et al., 2016). However,
Fusarium wilt has caused devastating damage to V. fordii tress
(Chen et al., 2016). To further understand the role of young
and old duplicate genes in the resistance to Fusarium wilt,
we performed a transcriptome analysis. A total of 72.79%

(674/926) young and 82.80% (770/930) old genes expressed in
the resistance to Fusarium wilt, indicating that these genes might
play important roles in the resistance to Fusarium wilt (Figure 2).
Compared to the young duplicate genes, the number of old
duplicate genes was large, indicating that these genes involved
in resistance to Fusarium wilt were not rapid expanded by
duplication events during evolution.

To determine the young and old genes with differential gene
expression (DGE) during stages under Fusarium wilt disease, a
significance threshold of 0.01 was applied using DESeq package.
We revealed the differential expression modes between the young
and old duplicate genes (Figures 4, 5). For old genes, we
found that 25 and 58 genes were repressed and upregulated,
respectively, at the early stage (F1 vs. F0), subsequent stage (F2
vs. F0), and finally stage (F3 vs. F0) after infection. However, for
young genes, only 13 and 19 genes were repressed and induced,
respectively, at the early stage (F1 vs. F0, F2 vs. F0, and F3
vs. F0) after infection. These results suggested that old genes
might play a more important role in the resistance to Fusarium
wilt than young genes. Remarkably, no young duplicate genes
were observed in any three time periods. However, four old
duplicate genes were detected at least one time period. Further,
a divergent expression pattern was found in these old duplicate
genes. The divergent expression patterns indicated that young
and old duplicate genes contain different regulatory mechanisms
in response to Fusarium wilt infection. Taken together, our study
suggested that asymmetric function was found in young and old
duplicate gene pairs under Fusarium wilt infection.
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FIGURE 5 | Old duplicate genes involved in response to Fusarium wilt disease stress. The same color font suggests that a duplicate gene was simultaneously
involved in Fusarium wilt disease stress over more than one periods.
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DISCUSSION

Characteristics of the Young and Old
Genes in Vernicia fordii
Surprisingly, there are few studies focused on young and old
duplicate genes in plant genomes. Previous studies indicated
that gene expression patterns are correlated with evolutionary
patterns between young and old genes (Wolf et al., 2009;
Cui et al., 2015; Gossmann et al., 2016). Unlike these studies,
our analyses focused on gene complexity, expression profiles,
functional divergence, and evolutionary patterns of young and
old duplicate genes in V. fordii. In the present study, we found
some interesting phenomena, including: (1) Young duplicate
genes contained lower gene-expression levels than old duplicate
genes; (2) Young duplicate genes possessed shorter polypeptide
length than old duplicate genes; and (3) Young duplicate genes
had relaxed purifying selection and lower ISD value than old
duplicate genes. These data suggested that young and old
duplicate genes differ not only in evolutionary patterns but also
in expression profiles, selection pressure, and gene complexity,
consistent with the results of articles published in animals, fungi
and plants (Arendsee et al., 2014; Cui et al., 2015; Banerjee
and Chakraborty, 2017; Wilson et al., 2017). For example,
Song et al. (2019) found that there are no correlation between
selective pressure and gene expression level, but selective pressure
negatively correlated with the gene-expression level of old genes.

Previous studies have shown that the old genes were mainly
influenced by natural selection, but young genes undergone
multiple selection pressures (Vishnoi et al., 2010; Yin et al.,
2016). Additionally, young genes were unstably expressed,
while old genes were stably expressed and played essential
functions in organisms (Chen et al., 2010, 2012; Hanada
et al., 2018). Compared to the young genes, old genes have
undergone strong purifying selection, which may help them
maintain protein structure stability. In the present study,
Ka and Ka/Ks of old duplicate genes negatively correlated
with the gene expression, but no correlation was found
between Ka, Ks, Ka/Ks, and the gene expression level in
young duplicate genes. Remarkably, we found that the gene
expression level of young duplicate genes was positively
correlated with Fop, while was not correlated with Fop of
old duplicate genes. These data suggested that although we
used Ks values to classify young and old genes, most of the
characteristics of these genes were consistent with previous
studies, further confirming that the use of Ks values was a
relatively reliable method for identification of young and old
duplicate genes.

Functional Analysis of the Young and Old
Genes in Vernicia fordii
As a hemi-biotrophic root pathogen, F. oxysporum infects
manly plants, such as Musa nana, Solanum lycopersicum,
cotton, and V. fordii (Michielse and Rep, 2009). Tung
wilt disease caused by F. oxysporum is considered to be
the most deadly disease of V. fordii. To determine the
potential function of young and old genes in the resistance

to Fusarium wilt, a transcriptome analysis was performed
during pathogen infection. In the young genes, most genes
(72.79%, 674/926), especially transcription factors, are expressed
in the resistance to Fusarium wilt. This phenomenon also
exists in the old genes (82.80%, 770/930), which might
indicate strong positive selection to maintain transcription
factors. The comparative analysis revealed that the majority of
duplicated genes, whether the young or old genes, presented
similar expression patterns, and only a few duplicate genes
presented divergent expression trends during pathogen infection.
These data indicated that the most duplicate genes shared
a similar function in resistance to pathogen infection, and
only a few genes play the decisive roles by showing divergent
expression trends.

Compared to young duplicate genes, the number of old
duplicate genes was relatively small. However, the old duplicate
genes were preferentially responded to biotic stress by GO
terms results. The transcriptome analysis also suggested that
old duplicate genes are involved in the response to Fusarium
wilt. Previous studies showed that V. fordii has undergone
only an ancient WGD, while not experienced a recent WGD
event (Tang et al., 2016; Cao et al., 2019b). In the present
study, old duplicate genes were mainly produced in an ancient
whole genome duplication event. The climate of the earth has
undergone tremendous changes in ancient times. The changing
environment has increased biodiversity, including the number
of parasites and microorganisms. In this case, plants adapt to
parasites or pathogenic infections by increasing the resistance of
the resistant biotic genes. In the present study, more old duplicate
genes were authenticated during stages under Fusarium wilt
disease. We propose that these genes that respond to biotic stress
were increasingly produced in V. fordii, which was supported by
the finding that old duplicate genes have participated in response
to Fusarium wilt.

CONCLUSION

In the present study, the properties of young and old duplicate
genes were analyzed in V. fordii for the first time. Firstly, we
generated a systematic investigation of young and old genes
in V. fordii, which revealed common properties between our
results and previous published papers. Next, we performed GO
terms and examined the expression patterns of young and old
duplicate genes in V. fordii, which suggested most young and
old duplicate genes contained asymmetric function. These results
will contribute to reveal the evolution and functional divergence
of duplicate genes in V. fordii, and the identified important
duplicate genes will provide key information to reveal targets for
controlling wilt disease in V. fordii.
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