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Editorial on the Research Topic

Benchmarking 3D-Models of Root Growth, Architecture and Functioning

Three-dimensional models of root system development and functioning have evolved as important
tools that aid designing agricultural management schemes for improved resource use efficiency
and selecting root traits for optimizing plant performance in specific environments (Benes
et al., 2020). For their reliable application, benchmarking of such so-called functional-structural
root architecture models (FSRM) is urgently needed. Similar relevant benchmarking initiatives
have been performed for crop models (AgMIP), reactive transport models (Steefel et al., 2015),
or models of water flow and solute transport in soils (Vanderborght et al., 2005). FSRMs
generally solve flow and transport equations in the soil and in root system, and couple them via
different approaches. Differences between different models’ outputs might arise from differences
in mathematical formulation of the processes and their coupling, in the numerical scheme, but
also from coding errors. Consequently, potential errors might propagate into the plant and soil
interaction simulations relying on an accurate simulation of root architecture development for
describing root water and solute uptake processes. This Research Topic set out to shed some light
on the extent of potential uncertainty due to these different factors.

Benchmarking is an emerging procedure to measure performance of models against a set
of defined standards (Luo et al., 2012). In this issue, Schnepf et al. announced a “Call for
Participation: Collaborative Benchmarking of Functional-Structural Root Architecture Models. The
Case of Root Water Uptake”. They designed benchmark problems for root growth models,
soil water flow models, root water flow models, and for water flow in the coupled soil-root
system. All the benchmarks and corresponding reference solutions were published in the form of
Jupyter Notebooks on the GitHub repository https://github.com/RSA-benchmarks/collaborative-
comparison. Several groups that develop such functional-structural root architecture models have
contributed with their solutions to the benchmark problems on this GitHub repository, and it may
provide orientation for future model developments as well. The benchmarks follow a multi-step
approach with growing level of complexity regarding both the number of processes accounted for
and the dimension of the system. The first set of benchmarks is about individual modules only.
The scenarios are simple, potentially solvable with analytical solutions, and the goal is to build
trust in accuracy of the individual models. The second set of benchmarks is about the fully coupled
models, with a focus on comparison of numerical representation of agreed-upon equations and
process representations. In the third set of benchmarks, models do not have to have the same
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process representations. Evaluations of those are only possible
against available data sets and by comparing the different
model outputs.

In this issue, Khare et al. further extended the benchmark
problem Schnepf et al. which is about root water uptake
from a drying soil. They showed in a grid convergence study
that the additional resistance to water flow toward the root
surface caused by a dry rhizosphere must be considered for
dry soil or else root water uptake is significantly overestimated.
Simulations were performed with dumux-rosi. Solutions to the
problem of dry rhizosphere are presented in Khare et al.,
but also in (Schröder et al., 2009a,b; Beudez et al., 2013;
Mai et al., 2019; Koch et al., 2021). All of those solutions
include a way to determine sub-resolution scale (with respect
to the soil grid) rhizosphere water potential gradients in a
computationally efficient way. The alternative is grid refinement
but this comes at high computational costs as also discussed in
Khare et al..

As part of this issue, soil compaction due to agricultural
traffic and resulting mechanical and hydric stresses and their
effect on root water uptake were simulated by de Moraes
et al. using CRootBox (Schnepf et al., 2018) coupled with a
1-dimension soil water flow model. The model simulations
could elucidate the feedback between root function and local
soil stresses at the field scale for a Brazilian Oxisol. Here,
the reference is not a mathematical reference solution but
a reference data set. For field-scale simulations, FSRMs are
often coupled to models that have 1-dimensional soil modules,
e.g., crop models (Wu et al., 2015; Seidel et al., 2022). From
a known 3D root hydraulic architecture, 1-dimensional sink
terms can be derived (e.g. as shown in Vanderborght et al.,
2021).

Model simulations may elucidate the contributions of
different root types to overall plant nutrient uptake. Using
OpenSimRoot (Postma et al., 2017), Gonzalez et al. indicated
in this issue that nodal roots contribute most to P uptake
by rice plants, followed by L-type lateral roots, S-type laterals
and root hairs, but these strategies have different carbon costs.
Implications for improving adaption to P deficiency in rice
breeding are discussed. These results have to be also seen in light
of the respective soil P and water content (De Bauw et al., 2020).

The longitudinal pattern of root aerenchyma formation
modeled by the Ti-Gompertz model helped to deeply understand
the relationship between the anatomical traits and physiological
function in rice adventitious roots (Chen et al., as part of this
issue). Such data will help to further develop models that include
information on the root anatomy such as MECHA (Heymans
et al., 2021) and GRANAR (Heymans et al., 2019).

Through this Research Topic, we continue to provide the
opportunity to participate in the development and application
of suitable benchmarks. This exercise allows us to point out
sources of inaccuracies, knowledge gaps and to pin-point current
challenges in mathematical model development of FSRM’s.
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