AUTHOR=An Feifei , Xiao Xinhui , Chen Ting , Xue Jingjing , Luo Xiuqin , Ou Wenjun , Li Kaimian , Cai Jie , Chen Songbi TITLE=Systematic Analysis of bHLH Transcription Factors in Cassava Uncovers Their Roles in Postharvest Physiological Deterioration and Cyanogenic Glycosides Biosynthesis JOURNAL=Frontiers in Plant Science VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.901128 DOI=10.3389/fpls.2022.901128 ISSN=1664-462X ABSTRACT=

The basic helix-loop-helix (bHLH) proteins are a large superfamily of transcription factors, and play a central role in a wide range of metabolic, physiological, and developmental processes in higher organisms. However, systematic investigation of bHLH gene family in cassava (Manihot esculenta Crantz) has not been reported. In the present study, we performed a genome-wide survey and identified 148 MebHLHs genes were unevenly harbored in 18 chromosomes. Through phylogenetic analyses along with Arabidopsis counterparts, these MebHLHs genes were divided into 19 groups, and each gene contains a similar structure and conserved motifs. Moreover, many cis-acting regulatory elements related to various defense and stress responses showed in MebHLH genes. Interestingly, transcriptome data analyses unveiled 117 MebHLH genes during postharvest physiological deterioration (PPD) process of cassava tuberous roots, while 65 MebHLH genes showed significantly change. Meanwhile, the relative quantitative analysis of 15 MebHLH genes demonstrated that they were sensitive to PPD, suggesting they may involve in PPD process regulation. Cyanogenic glucosides (CGs) biosynthesis during PPD process was increased, silencing of MebHLH72 and MebHLH114 showed that linamarin content was significantly decreased in the leaves. To summarize, the genome-wide identification and expression profiling of MebHLH candidates pave a new avenue for uderstanding their function in PPD and CGs biosynthesis, which will accelerate the improvement of PPD tolerance and decrease CGs content in cassava tuberous roots.