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High-throughput phenotyping of yield-related traits is meaningful and necessary for
rice breeding and genetic study. The conventional method for rice yield-related trait
evaluation faces the problems of rice threshing difficulties, measurement process
complexity, and low efficiency. To solve these problems, a novel intelligent system, which
includes an integrated threshing unit, grain conveyor-imaging units, threshed panicle
conveyor-imaging unit, and specialized image analysis software has been proposed to
achieve rice yield trait evaluation with high throughput and high accuracy. To improve
the threshed panicle detection accuracy, the Region of Interest Align, Convolution
Batch normalization activation with Leaky Relu module, Squeeze-and-Excitation unit,
and optimal anchor size have been adopted to optimize the Faster-RCNN architecture,
termed ‘TPanicle-RCNN,’ and the new model achieved F1 score 0.929 with an increase
of 0.044, which was robust to indica and japonica varieties. Additionally, AI cloud
computing was adopted, which dramatically reduced the system cost and improved
flexibility. To evaluate the system accuracy and efficiency, 504 panicle samples were
tested, and the total spikelet measurement error decreased from 11.44 to 2.99% with
threshed panicle compensation. The average measuring efficiency was approximately
40 s per sample, which was approximately twenty times more efficient than manual
measurement. In this study, an automatic and intelligent system for rice yield-related
trait evaluation was developed, which would provide an efficient and reliable tool for rice
breeding and genetic research.

Keywords: rice panicle, yield traits, high-throughput, Faster-RCNN, cloud computation

INTRODUCTION

Rice is the staple food for over half of the world’s population (Zhang, 2007; Sandhu et al., 2019), the
yield of which is of great significance to human security and development (Tester and Langridge,
2010). In rice research, the evaluation of rice yield-related traits is an essential step for rice breeding
(Qian et al., 2016; Yang et al., 2020) and functional gene analysis (Sakamoto and Matsuoka, 2008).
Generally, rice yield is determined by crucial factors, including the number of panicles (Xing and
Zhang, 2010), the number of filled spikelet’s (Borrell et al., 2014), and 1,000 grain weight (Richards,
2000). However, the traditional method for rice yield-related trait evaluation is manual and faces
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the problems of rice threshing difficulties, measurement process
complexity, and low efficiency. Therefore, an efficient and reliable
tool for rice yield-related trait evaluation is urgently needed.

With the rapid development of machine vision, a growing
number of image-based technologies have been applied in
agriculture (Sankaran et al., 2010; Rebolledo et al., 2016;
Confalonieri et al., 2017), and several studies on rice yield-
related trait evaluation have been reported. Since it is difficult
to thresh all the spikelet’s in the panicle, most of the studies
focus on grain traits measurement. ImageJ, a Java-based open
source software, was used for isolated grain trait measurement
(Igathinathane et al., 2009), and Smart Grain, an open source
software, was released for grain trait measurement in complicated
situations (Tanabata et al., 2012). Duan developed a yield traits
scorer for automatic extraction of yield-related traits with high
throughput (Duan et al., 2011). However, panicle threshing
performance is still a bottleneck that some unfilled spikelet’s
would remain in the threshed panicle, which would have a
great negative effect on the measurement of rice yield-related
traits. Some researchers have attempted to directly analyze rice
panicles without threshing processes. Sandhu proposed a method
for rice panicle maturity evaluation based on three-dimensional
point cloud construction and analysis (Sandhu et al., 2019). Hu
developed a 22 yield-related trait extraction method based on
X-ray computed tomography imaging (Hu et al., 2020). P-TRAP,
a commercial software program, was designed for yield spread-
related trait analysis (Al-Tam et al., 2013). However, the low
measurement efficiency and high cost had a negative impact on
the practical application. Thus, an automatic panicle analysis
system with high efficiency and high accuracy would have great
application prospects.

According to existing research, there are generally two ways
to obtain rice yield traits. The most common method was to
investigate the grain traits by threshing the panicle manually
(Yang et al., 2014), because the unfilled spikelet’s were hard to
be completely taken off by the threshing machine, which limited
the efficiency and accuracy of rice yield traits extraction. On the
other hand, the X-ray technology was able to be used for filled and
unfilled spikelet’s identification (Hu et al., 2020), but it is difficult
to be widely used in practical rice yield traits extraction, because
of the high cost, low efficiency, and radiation. In order to solve the
problem of residual panicle spikelet’s by threshing machine, we
promote a new way with threshed panicle compensation, which
would identify the number of residual spikelet’s in the threshed
panicle and compensate it into the evaluation of spikelet yield
traits. In order to achieve it, a robust and reliable method for
threshed panicle identification is needed.

In recent years, artificial intelligence technology has been
significantly promoted and widely used in agriculture (Chen
et al., 2018; Escamilla-Garcia et al., 2020; van Klompenburg et al.,
2020; Dhaka et al., 2021; Kattenborn et al., 2021). Sun developed
a soybean yield prediction model based on a convolutional
neural network (Sun et al., 2019) and a long short-term memory
network (Hochreiter and Schmidhuber, 1997). Zhou analyzed
drone images for maize leaf coverage based on the Deeplabv3
plus model (Zhou et al., 2019). Object detection is an important
research field of deep learning image processing, which is widely

used in various agricultural scenes. The state-of-the-art methods
can be categorized into two main types: one-stage methods
and two stage-methods. One-stage methods prioritize inference
speed, and example models include YOLO, SSD, and Retina
(Liu et al., 2016; Redmon et al., 2016; Lin et al., 2020). Two-
stage methods prioritize detection accuracy, and example models
include Faster R-CNN, Mask R-CNN, and Cascade R-CNN
(Ren et al., 2015; He et al., 2017; Cai et al., 2018). Faster
RCNN is a classical two-stage object detector consisting of object
proposal, feature extraction, and bounding box regression, which
formulates detection as a coarse-to-fine process. The Deep–Fruits
model was proposed for fruit identification based on Faster-
RCNN (Sa et al., 2016). Faster-RCNN has also been applied for
pest detection (Shen et al., 2018; He et al., 2020; Li et al., 2021) and
panicle spikelet counting (Wu et al., 2019; Deng et al., 2021; Yu
et al., 2021). Therefore, we adopted a two-stage detector, Faster
R-CNN, as the basis for the threshed panicle detection. However,
the current Faster R-CNN detector has shown weak performances
with small and overlapped objects (Tong et al., 2020), and the
grain size is approximately 30× 60 pixels in the threshed panicle
image of 2,048 × 4,096 pixels. Building on these preliminary
observations, appropriate improvement for the Faster R-CNN
architecture should be performed to achieve accurate detection
of the threshed panicle.

The aim of this study is to build an automatic and
intelligent system for rice yield trait evaluation. Firstly, a new
deep learning architecture was proposed to achieve threshed
panicle compensation on the basis of the Faster R-CNN
architecture, termed ‘TPanicle-RCNN.’ Then, equipped with
automatic control, machine vision, and deep learning algorithms,
we developed a novel intelligent system, which includes an
integrated threshing unit, grain conveyor-imaging units, and
threshed panicle conveyor-imaging unit, and specialized image
analysis software. Finally, the threshed panicle compensation was
performed to achieve automatic and accurate acquisition of rice
yield-related traits.

MATERIALS AND METHODS

System Design
The system sketch is shown in Figure 1A, which mainly consists
of the panicle threshing unit, servo air separator, and three
conveyor imaging units. The threshing unit is derived from
a semi-feeding drum thresher (TSL-150A, Top Cloud-AGRI,
China) and is driven by a servo motor (Panasonic, Japan). The
operator holds the panicle and puts it into the thresher; as a
result, all the filled spikelet’s and most of the unfilled spikelet’s
are threshed from the panicle. Then, the threshed spikelet’s
spread out on the first conveyor by the vibration feeder. The
servo air separator is designed with a cross-flow fan and is
fixed between two grain conveyor lines; as a result, the filled
spikelet’s are separated from the unfilled spikelet’s. The conveyor-
imaging units are constructed with a panicle conveyor line
and two grain conveyor lines; as a result, images of threshed
panicles, total spikelet’s, and filled spikelet’s are obtained, which
were grayscale images saved in PNG format. Finally, the filled

Frontiers in Plant Science | www.frontiersin.org 2 July 2022 | Volume 13 | Article 900408

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-900408 July 20, 2022 Time: 10:55 # 3

Huang et al. Rice Yield Trait Extraction

spikelet’s and unfilled spikelet’s are individually collected from the
specific outlets.

The details of the conveyor imaging units are shown in
Figure 1B. The linear camera (SG-11-02K40-00-R, DASLA,

Canada) is equipped with a 28 mm lens (Nikon, Japan), the
charge-coupled device (CCD) size is 14µm× 2048, and the
field of vision (FOV) is 204.8 mm with a pixel resolution of
100µm. Motion control is conducted by a programmable logic

FIGURE 1 | System sketch of automatic rice yield-related trait evaluation: (A) system composition details and (B) conveyor imaging unit.

FIGURE 2 | System workflow for yield related trait measurement.
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FIGURE 3 | Software workflow in the system: (A) system control, (B) image acquisition, (C) image analysis, (D) cloud communication, and (E) result exhibition.

FIGURE 4 | Pipeline for the grain image analysis.
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controller (PLC, Omron, Japan) programed by CX-Programmer
9.5 (Omron, Japan). The workstation m415 (Lenovo, China)
is equipped with an i5-7500 CPU, 8 GB memory, and 1 T
hard disk, and the Alibaba cloud (Alibabacloud) is adopted,
with the configuration of a Tesla M40, 16 GB memory, and 30
GB cloud storage.

System Workflow
The system workflow is depicted in Figure 2: (1) First, the
operator started the system and inputs the barcode. (2) Second,
the panicle is held and put into the thresher after which the
threshed panicle is placed on the fourth conveyor line for image
acquisition, while all the threshed grains spread out onto the first
conveyor line with a spikelet’s feeder for image acquisition. (3)
Then, the grains go through a wind separator that blows the
unfilled spikelet’s away, while the filled spikelet’s falls onto the
second conveyor for image acquisition. (4) Next, all the filled
spikelet’s are collected and weighed by the third conveyor and
weighing device. (5) Finally, the images of threshed panicles,
total spikelet’s, and filled spikelet’s are analyzed by specific
local algorithms and cloud-deployed deep learning models for
yield-related trait evaluation. The system workflow is shown in
Supplementary Video 1.

Software Design
The software workflow in the system is shown in Figure 3 and
was developed to achieve the functions of PLC communication,
image acquisition, image analysis, and data storage. First, PLC
communication was designed to control the panicle thresher,
vibration feeder, conveyor lines, and wind separator, as shown in
Figure 3A. Second, image acquisition was achieved by the NI-
Vision module (National Instruments, United States) to obtain
images of threshed panicles, total spikelet’s, and filled spikelet’s,
as shown in Figure 3B. The image analysis algorithms were
written in C + + and complied with the Dynamic Link Library
(DLL), which was invoked by the user software developed by
LabVIEW 8.6 (National Instruments, United States), and the
threshed panicle identification model was trained in the local
server and deployed in the Alibaba cloud. Finally, as shown
in Figure 3E, the measurement results were displayed on the
software interface, and the data were saved in one Excel file.

Pipeline for the Grain Image Analysis
The grain image analysis pipeline is presented in Figure 4.
First, background subtraction was conducted to enhance the
foreground contrast shown in Figure 4B. Second, a fixed
threshold was applied to obtain the binary image shown in

FIGURE 5 | Block diagram of the TPanicle-RCNN model. The dotted red rectangles indicate the model improvements.
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Figure 4C. Because of continuous linear scanning, the grain was
probably distributed on two adjacent images; therefore, sequence
image stitching was implemented based on the bottom connected
region shown in Figure 4D, and a binary image with complete
grains (Figure 4E) was obtained. Then, the impurity removal
algorithm was carried out based on the optimal thresholds of the
area and length width ratio (LWR), as shown in Figure 4F, which
was determined by the distribution of the grain size and a large
number of experiments. Next, ellipse detection was used to obtain

the isolated grain image (Figure 4G) and touching grain image
(Figure 4H), and the range of minor and major axis lengths was
set according to grain size; the minimum match score was set to
800, while 1,000 represented a perfect match.

Based on the above image processing, the number of
connected regions in the isolated grain image was taken as the
isolated spikelet number, while the areas of the connected regions
in the touching grain image were divided by the average area of
isolated grains, and the sum of the results was regarded as the

FIGURE 6 | The prototype of an automatic rice yield-related trait evaluation system, (A) system hardware composition, (B) system internal structure, and (C) system
software interface.
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touching spikelet number. The total number was calculated by
adding the isolated spikelet number and touching the spikelet
number. The filled spikelet number could also be calculated.
Moreover, the grain shape parameters were extracted by the
following contour computation method based on the filled
isolated grain image. The Euclidean distance between the two
farthest points of the contour is regarded as the grain length
(GL), and the maximum perpendicular distance is regarded as the
grain width (GW).

Pipeline for the Threshed Panicle Analysis
Since Faster-RCNN is a classical two-stage object detector that
formulates detection as a coarse-to-fine process, the deep learning
architecture for threshed panicle analysis was proposed on
the basis of Faster-RCNN, termed ‘TPanicle-RCNN,’ while two
feature extraction networks, VGG (Simonyan and Zisserman,
2014) and RESNET (He et al., 2016), were studied. To construct
the model, 1,072 rice panicles, including 536 indica and 536
japonica panicles, were threshed by the threshing unit, a total
of 1,072 threshed panicle images were captured and manually
labeled with Labelimg (LabelImg.), and all the ground-truth
bounding boxes and annotation files saved in the PASCAL VOC
data format (Krizhevsky et al., 2012). Then the dataset was
divided into a training set and a test set at a ratio of 4:1, with
half indica and half japonica in each data set. Then, the datasets
were augmented four times by image flipping and brightness
adjustment, while 3,432 training images and 856 testing images
were obtained. All the training and testing data are available
at https://pan.baidu.com/s/1-XawHGseIc5bboVOP48Fkw?pwd=
153w with the extraction code ‘153w’ for non-commercial
research purposes.

Model Improvement
The Block diagram of the TPanicle-RCNN model is depicted
in Figure 5, while the red rectangles indicate the model
improvements compared with the original Faster R-CNN
architecture. The RoIPool operation had adopted two
quantization processes, which would result in a deviation
of the ultimate box, while the location error would put a great
negative effect on the threshed panicle detection, especially
when the grains were close or slightly overlapped. To improve
it, the Region of Interest Align (RoIAlign) designed in Mask
R-CNN architecture, was applied to calculate the exact values
of the candidate-box coordinates in this method. The original
Faster R-CNN architecture used nine anchors to detect regional
proposals consisting of three scales 1282, 2562, and 5122, and
three aspect ratios, 1:1, 1:2, and 2:1, which were not suitable
for the small object detection. Therefore the scale vectors were
optimized to 322, 642, and 1282 based on the sizes of the grain.
The integration of Convolution, Batch normalization, and Leaky
Relu (CBL) was used to replace the traditional convolution and
activation in the Res101 network (Wu and He, 2018), which
was helpful to speed up the training efficiency and improve
the accuracy. Moreover, the squeeze-and-excitation unit had
been embedded into the head and tail of the feature extraction
net Res101[48], and the channel attention layer had merged
global average pooling and maximum pooling, which was

able to enhance the effective information and improve model
accuracy. In conclusion, the RoIAlign, CBL module, Squeeze-
and-Excitation unit, and optimal anchor size had been adopted
in the TPanicle-RCNN model.

Model Training
Pytorch 1.7.1 was adopted as a deep learning framework, and
python 3.6 was applied. Since the training dataset was small,
the fine-tuning training technique had been applied. The Faster-
RCNN and TPanicle-RCNN models were initialized with pre-
trained weights obtained by training the ImageNet dataset (Ioffe
and Szegedy, 2015). And then the models were trained on the
3,432 training set to further optimize the pre-trained net. During
the fine-tuning stage, the batch-size was set to four to achieve the
maximum utilization of graphic processing unit GPU memory.
The intersection-over-union (IoU) was set to 0.5, which means
that when its IoU was ≥ 0.5, the predicted bounding box was
regarded as positive. The number of region proposals was set
to 600, the shortest side of the image was set to 1,000 pixels,
and the longest side of the image was set to 2,000 pixels, in
accordance with grain number and image size. Other parameters
were configured by the default settings of the Faster R-CNN
network. Finally, the optimal model was deployed on Alibaba
cloud for threshed panicle analysis, and the spikelet number was
returned as the total spikelet compensation.

System Evaluation
To evaluate the threshed panicle model performance, 856 testing
images were tested, and the indicators of precision, recall, PR
curve, F1 values, and average precision (AP) were used, the
calculations of which are shown in Equations 1–4. TP represents
the true positive targets, where the targets were correctly
identified, FP represents the false positive targets, where the
background was identified as the target, and FN represents the
false negative targets, where the targets were missed.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 =
2× Precision× Recall

Precision+ Recall
(3)

AP =
∫ 1

0
P(r)dr (4)

To evaluate the system accuracy, 504 randomly selected
panicle samples were tested, and the results of the system
measurement were compared with manual measurements,
including the threshed panicle spikelet number (TPSN), unfilled
spikelet number, and filled spikelet number, and the mean value
of three manual measurements was taken as the ground truth.
Additionally, the indicators of R square, the mean absolute
percentage error (MAPE), and the root mean square error
(RMSE) were computed using Equations 5–7 to evaluate the
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system performance. Additionally, 200 randomly selected panicle
samples were tested to evaluate the system efficiency.

R2
=

∑n
i=1(Xai − Xm)2∑n
i=1(Xmi − Xm)2

(5)

MAPE =
1
n

n∑
i=1

|Xai − Xmi|

Xmi
(6)

RMSE =

√√√√ 1
n

n∑
i=1

(Xai − Xmi)2 (7)

where n is the total number of measurements; Xmi is the manual
measurement results; Xai is the system measurement results; and
Xm is the mean of the manual measurements.

RESULTS

The prototype of the automatic rice yield-related trait evaluation
system is shown in Figure 6. The system hardware composition
is shown in Figure 6A, and the details of the system’s internal
structure are depicted in Figure 6B, while the system software
interface is exhibited in Figure 6C. From the results, the specific
functions of system hardware and software were realized, and
images of threshed panicles, total spikelet’s, and filled spikelet’s
were analyzed for rice yield-related traits, including the total
spikelet number, seed setting rate, grain shape, and grain weight.
To demonstrate the system, the performance with different
object detection models and rice varieties were studied, and
furthermore, the accuracy and efficiency of the system were
evaluated in detail.

Evaluation of Models on the Testing
Dataset
The models were evaluated by the 856 testing dataset, while
comparisons of precision–recall curves of Faster R-CNN and
TPanicle-RCNN models are shown in Figure 7, which showed
that the average precision (AP) with the IoU ≥ 0.5 was
0.836, 0.873, 0.903 for the Faster-RCNN based on vgg16

TABLE 1 | The performance of the threshed panicle identification models.

Class Data Model Recall Precision F1

Indica 428 Faster-RCNN 0.832 0.856 0.844

TPanicle-RCNN 0.881 0.900 0.890

Japonica 428 Faster-RCNN 0.914 0.936 0.925

TPanicle-RCNN 0.975 0.958 0.967

(Figure 7A), resl01 (Figure 7B), and TPanicle-RCNN based
on ResNet101 (Figure 7C), respectively. The results indicated
that the res101 network had better performance than vgg16
in the feature extraction of small objects, therefore the Faster-
RCNN improvement was based on ResNet101. Based on the
advantages of RoIAlign, CBL module, Squeeze-and-Excitation
unit, and optimal anchor size, the precision of TPanicle-RCNN
was significantly greater than that of the original Faster R-CNN
under the same recall conditions for threshed panicle, and the AP
has reached 0.903, with an increase of 0.03. With the confidence
threshold set as 0.5, the F1 value of improved Faster-RCNN was
0.929, an increase of 0.044.

The Performance for Indica and
Japonica
The threshed panicle identification performance for the indica
and japonica varieties in the testing dataset was analyzed to
evaluate the reliability and flexibility of the system, and the results
are shown in Table 1 with 428 indica and 428 japonica samples.
With the Faster-RCNN based on ResNet101, the recall, precision,
and F1 scores were 0.832, 0.856, and 0.844 for indica varieties,
while the recall, precision, and F1 scores were 0.914, 0.936,
and 0.925 for japonica varieties, respectively. With the TPanicle-
RCNN, the recall, precision, and F1 scores were 0.881, 0.900, and
0.891 for indica varieties, while the recall, precision, and F1 scores
were 0.975, 0.958, and 0.967 for indica varieties, respectively.
From the results, the TPanicle-RCNN yielded better performance
than the original Faster-RCNN in general, the improvements in
recall, and precision was 0.049, 0.044 for indica, and 0.061, 0.018
for japonica, which indicated that the TPanicle-RCNN was able
to greatly improve the recall rate and recognition accuracy of
the threshed panicle. Additionally, the models performed better

FIGURE 7 | Comparisons of precision–recall curves, (A) Faster-RCNN based on vgg16, (B) Faster-RCNN based on ResNet101, (C) TPanicle-RCNN based on
ResNet101.
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on the japonica varieties than the indica varieties, because the
spikelet number in the japonica threshed panicles was obviously
less than that in the indica threshed panicles, which led to an
increase in the recall rate, and in the results, the average gap
between the F1 values was 0.076 for the improved Faster-RCNN.

The threshed panicle spikelet number (TPSN) was measured
manually and identified by the model inference, while the scatter
plots of manual vs. model measurement and error distribution
diagrams for the 428 indica and 428 japonica rice samples
are shown in Figure 8, without positive and negative sample
division based on IoU. From the results, the R2 and RMSE of
the improved Faster-RCNN were 0.968 and 1.18, respectively,
for the indica varieties, with an improvement of 0.014 and
53%. Meanwhile, the R2 and RMSE of the improved Faster-
RCNN were 0.981 and 0.690, respectively, for the japonica
varieties, with an improvement of 0.015 and 61.23%. The results
demonstrated high consistency with manual measurements and
a significant improvement compared with the original Faster-
RCNN. The error distribution diagrams also indicated that
the error distribution was normal in general, and 80% of
identification errors constituted fewer than 2 spikelet’s. On the
basis of these results, the error distribution of indica varieties was
more discrete than that of japonica, and the improved Faster-
RCNN has greatly decreased the error, which was preferred and
used in the system.

Accuracy of the Automatic Rice
Yield-Related Trait Evaluation System
To test the system accuracy, 504 randomly selected panicle
samples were measured, and the scatter plots of manual vs. system
measurements are shown in Figure 9. From the results, yield-
related traits, including total spikelet number and seed setting

rate, were mainly analyzed to evaluate the effect of threshed
panicle compensation. If threshed panicle compensation was not
conducted, the R2 and MAPE of the total spikelet measurement
were 0.96 and 11.44%, respectively, which were improved to 0.99
and 2.99% by threshed panicle compensation. Additionally, the
R2 and MAPE of the seed setting rate measurement were 0.92
and 8.84%, respectively, which were improved to 0.98 and 3.47%
by threshed panicle compensation. In conclusion, the accuracy of
the entire system was significantly improved by threshed panicle
compensation, enhancing the reliability of the automatic rice
yield-related trait evaluation system.

System Efficiency Evaluation
To evaluate the system efficiency, 200 randomly selected panicle
samples were tested, while the time costs of panicle threshing,
image acquisition, and image analysis were recorded individually.
The results proved that the average efficiency was approximately
40 s, in which the time costs of panicle threshing, panicle
image acquisition, and image analysis were approximately 25,
5, and 10 s, respectively, as shown in Figure 10. Additionally,
the spikelet image analysis was performed in parallel with the
panicle analysis, in which the time cost was approximately 4 s.
Therefore, the whole system efficiency was approximately 40 sper
panicle, which was approximately 20 times more efficient than
manual measurement.

DISCUSSION

The results demonstrated that the system measurement accuracy
mainly depended on the threshed panicle compensation, which
had a high correlation with the threshing effect. To evaluate the

FIGURE 8 | (A,B) Threshed panicle spikelet number scatter plots of manual versus model measurement and error distribution diagrams for indica rice samples with
Faster-RCNN measurement (Brichet et al., 2017), TPanicle-RCNN measurement (C,D), and japonica rice samples with Faster-RCNN measurement (E,F),
TPanicle-RCNN measurement (G,H).
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FIGURE 9 | Scatter plots of manual versus system measurements for yield-related trait evaluation: (A) total spikelet measurement without threshed panicle
compensation, (B) total spikelet measurement with threshed panicle compensation, (C) seed setting rate measurement without threshed panicle compensation, and
(D) seed setting rate measurement with threshed panicle compensation.

threshing effect, the spikelet’s in the threshed panicle, unfilled
spikelet outlet, and filled spikelet outlet were counted manually
to obtain the threshing error percentage, and the results of
504 panicle samples are shown in Figure 11. The threshing
results demonstrated that the filled spikelet’s were able to be
threshed well but a few unfilled spikelet’s remained in the panicle,
and the average spikelet number in the threshed panicle was
10.48, which led to a 9.37% average threshing error percentage.
Additionally, the results showed great fluctuation in the threshing
performance due to the panicle type and threshing time. In
general, the threshing error contributed 81.9% of the total spikelet
measurement error, while the threshed panicle compensation
decreased the threshing error by 90.18%, which was of great
significance to automatic yield-related trait evaluation.

Compared with the original Faster-RCNN architecture, it
was demonstrated that the TPanicle-RCNN had significantly
increased the performance, and the detailed prediction cases are
shown in Figure 12, including indica varieties (Figure 12A)
and japonica varieties (Figure 12B). The results proved that the
CBL module, Squeeze-and-Excitation unit, and optimal anchor
size were able to help extract more effective features, so as
to improve the model accuracy, while the RoIAlign was able
to significantly improve the regression accuracy of the target
box. Therefore the TPanicle-RCNN had performed a higher
recall rate and grain position accuracy, which was indicated
by the red arrow in Figure 12. Regarding the performance
of the japonica and indica varieties, the results showed that
the spikelet’s in indica threshed panicles were dense, and the
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FIGURE 10 | Efficiency evaluation with 200 randomly selected panicle samples.

FIGURE 11 | Automatic threshing performance of the residual spikelet number and threshing error percentage.

threshed panicle structure was more complex, while the japonica
panicles were easier to thresh. Therefore, the recall rate and
precision value of indica varieties were lower than that of
japonica varieties. Overall, the TPanicle-RCNN had a better
performance of adaptability and reliability, regardless of panicle
varieties and density.

According to the time cost of each step, the system efficiency
was mainly decided by the threshing time, and the share of
threshed panicle image inference was approximately one in eight,
which indicated that the cloud computing mode did not distinctly
decrease the system efficiency. In contrast, cloud computing
dramatically reduced the system cost and improved the system
flexibility. Thus, this study demonstrated a novel automatic
system for rice yield-related trait evaluation with high accuracy

and efficiency, which was of great significance to rice breeding
and genetic research.

In the past studies on rice yield traits evaluation, it was
difficult to balance the accuracy, automation, and practicality.
For example, using X-ray computed tomography to analyze
rice panicle traits could reach an R2 of 0.98 for grain number
(Hu et al., 2020). However, this method required 2 min to
scan and reconstruct each panicle, while the cost and radiation
risk limited the practical application. We have also tried to
design threshing equipment that could improve the threshing
performance, and the threshing error is about 5%. However, the
complicated mechanical structure and threshing error limited
its popularization (Huang et al., 2013). Therefore, the existing
research and equipment are still unable to meet the needs of
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FIGURE 12 | Threshed panicle identification of the indica (A) and japonica (B) subspecies for the Faster-RCNN model and TPanicle-RCNN model. The red arrow
indicates the comparison of the identification results by different models.

the practical rice yield traits evaluation with high accuracy and
efficiency. In this research, we have demonstrated an intelligent
method that could solve the threshing problem by threshed
panicle compensation, and provide an efficient and reliable tool
for rice breeding and genetic research.

CONCLUSION

This study developed a novel automatic system, for rice yield-
related trait evaluation based on the technologies of automatic
control, machine vision, and deep learning, in which the
threshing problem has been skillfully solved by threshed panicle
compensation. Moreover, a new deep learning architecture
for threshed panicle analysis was proposed on the basis of

Faster-RCNN, termed ‘TPanicle-RCNN’ and deployed in the
cloud, which increased automation and improved measurement
accuracy. The TPanicle-RCNN was improved by integration
of the RoIAlign, CBL module, Squeeze-and-Excitation unit,
and optimal anchor size, while various datasets were used to
evaluate the threshed panicle identification model. The results
indicated that the TPanicle-RCNN showed good performance
on both japonica and indica varieties, while the F1 score
was 0.929 with an increase of 0.044. To evaluate the system
accuracy, 504 panicle samples were tested, and the total spikelet
measurement error decreased from 11.44 to 2.99% with threshed
panicle compensation. The results also proved that the system
measurement was approximately 20 times more efficient than
manual measurement and that cloud computing dramatically
reduced the system cost and improved the system flexibility. In
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conclusion, this study provides a novel and powerful tool for
phenotyping yield-related traits that will benefit rice breeding and
genetic research in the future.
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