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Soybean is one of the important food, feed, and biofuel crops in the world.
Soybean genome modification by genetic transformation has been carried out for trait
improvement for more than 4 decades. However, compared to other major crops
such as rice, soybean is still recalcitrant to genetic transformation, and transgenic
soybean production has been hampered by limitations such as low transformation
efficiency and genotype specificity, and prolonged and tedious protocols. The primary
goal in soybean transformation over the last decade is to achieve high efficiency and
genotype flexibility. Soybean transformation has been improved by modifying tissue
culture conditions such as selection of explant types, adjustment of culture medium
components and choice of selection reagents, as well as better understanding the
transformation mechanisms of specific approaches such as Agrobacterium infection.
Transgenesis-based breeding of soybean varieties with new traits is now possible by
development of improved protocols. In this review, we summarize the developments in
soybean genetic transformation to date, especially focusing on the progress made using
Agrobacterium-mediated methods and biolistic methods over the past decade. We also
discuss current challenges and future directions.

Keywords: soybean transformation, transformation efficiency, genotype, Agrobacterium, biolistic method,
genome editing

INTRODUCTION

Soybean [Glycine max (L.) Merrill] is a legume crop belonging to the family of Leguminosae, a
subfamily of Papilionoideae. Soybean is grown worldwide and is one of the most important crop
plants for its high seed oil and protein content, and for its capability to fix atmospheric nitrogen
by symbioses with soil-borne microorganisms. Recent studies on high-quality reference genome
sequencing of a United States variety, Williams82 (Schmutz et al., 2010), a Japanese variety, Enrei
(Shimomura et al., 2015), a Chinese cultivar, Zhonghuang13, and a wild soybean, W05 (Shen et al.,
2018; Xie et al., 2019) have estimated that there exist a total of 46,430 protein-coding genes in
soybean, 70% more than that in Arabidopsis. Soybean is an ancient polyploidy (palaeopolyploid)
plant with a highly duplicated genome. Nearly 75% of the genes are present in multiple copies,
representing a threefold redundancy due to its long evolutionary history (Schmutz et al., 2010).
Some repetitive sequence families may be species-specific (Morgante et al., 1997). Several other
databases have been developed, including an expressed sequence tag (EST) database, full-length
cDNAs and cDNA microarrays (Stacey et al., 2004; Umezawa et al., 2008), and a haplotype map
(GmHapMap) (Torkamaneh et al., 2019). These resources provide a wide range of opportunities
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for soybean improvement by marker-assisted breeding and
with transgenic and genome editing approaches, and for
understanding gene function through various forward and
reverse genetic approaches. Most of these approaches are reliant
on high-throughput transformation systems.

Genetic transformations allow for various genes of interest to
be introduced and expressed in cells of living organisms, which
can also overcome barriers of sexual incompatibility. Soybean
genetic transformation was originally developed in late 1980s.
The first fertile transgenic soybeans were produced by either
regeneration of cotyledonary nodes infected with Agrobacterium
tumefaciens (Hinchee et al., 1988) or by particle bombardment
using meristems of immature soybean seeds (Mccabe et al., 1988).
The development of soybean transgenic methods before 2013
has previously been extensively reviewed (Homrich et al., 2012;
Yamada et al., 2012; Lee et al., 2013; Mariashibu et al., 2013).
Soybean improvements using these transformation methods have
been continued over the last 30 years. Since the first transgenic
herbicide-resistant soybean product was commercialized in the
mid 1990s, soybean has become one of the most important
crops improved using modern biotechnology and one of the
major commercially grown transgenic plants around the world.
Genetically modified (GM) soybean, especially the GM Roundup
Ready soybean resistant to glyphosate herbicides, has been grown
in many countries including the United States, Argentina, and
Brazil (Pagano and Miransari, 2016), which has made it a leading
biotech crop. This soybean variety allows for growers to spray
herbicides to kill any weeds in the field while not killing the
soybean crop1. It was reported that about 105 million hectares
of GM soybean was grown in 2017, and that about 272 million
metric tons of seeds were produced, which accounted for 80%
of all soybean production in the world (Voora et al., 2020).
Genetic engineering has been conducted to enhance the protein
quality of soybean by altering biosynthetic feedback pathways
that increase lysine and sulfur-containing amino acids (Falco
et al., 1995). Many types of GM soybeans have improved traits
such as increased oleic acid content, decreased linolenic acid
content, delayed flowering time, modified plant architecture and
increased yield (Yamada et al., 2012). With increasing soybean
demands around the world, especially from China, developing
GM soybean varieties with high quality and yield is the main task
for soybean researchers and breeders. Recently, genome editing
(GE) technologies, especially the clustered regularly interspaced
short palindromic repeats (CRISPR)/CRISPR-associated (Cas)
technology, have been used for studying soybean genetics and
commercial trait development (reviewed in Xu et al., 2020).
However, using genome editing technologies on plants has
been heavily dependent on efficient transformation systems and
regeneration of plants containing edited events (Ran et al.,
2017; Gao, 2021). Therefore, an efficient and genotype-flexible
transformation system is key to realizing soybean improvement
using these new technologies. Unfortunately, soybean remains
recalcitrant to routine transformations compared to other
major cultivated crops such as rice (Chen et al., 2018b). Low
transformation frequency and genotype inflexibility are major

1https://www.sourcewatch.org/index.php?title=SourceWatch

hurdles that limit soybean transgenesis and breeding. In this
review, we will summarize the major achievements that have
been made in this field since 2013, and describe current best
methods used for achieving stable and transient transformations
in soybean. We also describe the remaining challenges that need
to be addressed.

CURRENT TRANSFORMATION
METHODS DEVELOPED FOR SOYBEAN

Various transformation methods have been developed for
soybean. Here, we will summarize each transformation method
and its ability to produce either stable transgenic plants or
transient events used for soybean research (Figure 1).

Tissue-Specific or Transient
Transformation Systems for in vivo
Assays
Transient assays are used for a variety of studies including the
functional genomics of in vivo gene expression and subcellular
gene localization, and determination of genome editing
efficiency. For soybean, Agrobacterium rhizogenes-mediated
transformation, protoplast transfection, Agro-infiltration,
and electroporation have been developed. Agrobacterium
transformation and protoplast transfection are frequently
performed for transient assays.

Agrobacterium rhizogenes-Mediated Transformation
Agrobacterium rhizogenes-mediated transformation leads to
development of a hairy-root phenotype. This method relies
on co-transfer of T-DNAs from the Ri plasmid and a binary
vector containing a gene of interest into the plant genome
(Christey, 2001; Broothaerts et al., 2005). Large numbers of
transgenic hairy-roots can be obtained in the absence of
exogenous plant growth regulators (Collier et al., 2005), and
each represents an independent transformation event (Kereszt
et al., 2007). The relatively short timeframe (approximately 6–
8 weeks) for recovering transformants is a major advantage
for screening genes and promoters or expressing foreign genes
in a stably transformed plant as a bioreactor (Cho et al.,
2000; Bahramnejad et al., 2019). This method is also used for
studying functional genomics in soybean roots. This approach
has been used to characterize promoters (Hernandez-Garcia
et al., 2009; Li et al., 2014), propagation of nematodes (Cho et al.,
2000), symbiotic interactions (Hayashi et al., 2012), pathogenic
interactions (Li et al., 2010), gene silencing by RNA interference
(RNAi) (Subramanian et al., 2004), and recently for measuring
genome editing activity (Du et al., 2016; Cheng et al., 2021).
Recently, a reporter gene AtMyb75, encoding an R2R3 type
MYB transcription factor, was ectopically expressed in hairy
roots-mediated by A. rhizogenes and induced purple/red colored
anthocyanin accumulation in soybean hairy roots. This is a
convenient, non-destructive, low cost, directly visual selection
of transgenic hairy roots (Fan et al., 2020). Several efficient
transformation protocols have been developed for studying
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FIGURE 1 | Current available genetic transformation methods for soybean. The left part with greenish color shows transformation methods to produce stable whole
plants. The right part with yellowish color shows transformation methods for transient assay.

functional genomics and root biology (Kereszt et al., 2007; Kuma
et al., 2015; Chen et al., 2018a,c; Fan et al., 2020; Song et al., 2021).

Protoplast Transfection
The first genetic transformation of soybean protoplasts was
achieved by electroporation by Lin et al. (1987). Dhir et al. (1992)
was the first to report the transformation of immature cotyledon-
derived protoplasts and regeneration of transgenic plants
from calli derived from electroporation-transfected protoplasts.
Protoplasts could be a good explant for transformation if an
efficient regeneration system is established, especially since a large
number of protoplasts can be transfected at a time and many
forms of genetic materials such as DNA, RNA, and protein can
be delivered. Unfortunately, protoplast transfection has not yet
been conducted for soybean transgenic plant production. The
main challenge is achieving protoplast regeneration, which has
yet to be reported in soybean. Protoplast-based transfection has
been mainly conducted to evaluate gene functions (Yi et al.,
2010; Faria et al., 2011; Kidokoro et al., 2015; Xiong et al., 2019),
screen promoters (Sultana et al., 2019), and validate vectors
for GE (Sun et al., 2015; Demorest et al., 2016; Do et al.,
2019; Patil et al., 2022). Recently, Wu and Hanzawa (2018)

developed a method to isolate protoplasts from leaves of soybean
seedlings and established a PEG-mediated transfection method
that can achieve high transfection efficiency compared to other
transient assays.

Agro-Infiltration
Agrobacteria can be infiltrated into the intercellular space of plant
tissues to permit the delivery of genes from different organisms
into plant genomes (Grimsley et al., 1986). Ever since this method
was successfully established for soybean (King et al., 2015), it has
been used for virus-induced gene silencing (VIGS) (Kim et al.,
2016) and expression of hairpin RNA for RNAi against two-spot
spider mites (Dubey et al., 2017).

Agrobacterium tumefaciens-Mediated
Transformation
Except for stable transformation, A. tumefaciens is used to carry
out transformation for soybean transient assay. Kun et al. (2017)
established an Agrobacterium-mediated transient system using
calli induced from hypocotyl explants. It has been successfully
used in many specific assays including Western blot and Co-
IP assay for protein analysis. The system is genotype-flexible
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FIGURE 2 | General procedure of Agrobacterium-mediated and biolistic soybean transformation. The route following the green arrows is the Agrobacterium
tumefaciens-mediated transformation procedure. The route following the red arrows is the biolistic transformation procedure. The route following the blue arrows in
the frame with broken blue line shows Agrobacterium rhizogenes-mediated transformation for transient assay.

and cost-saving. However, it takes a couple of months to
complete the assay.

Electroporation
Electroporation is a technique that utilizes a high intensity
electric pulse to create transient pores in the cell membrane,
thereby facilitating the uptake of macromolecules such as DNA.
Christou et al. (1988) conducted electroporation to deliver
constructs into soybean calli and showed stable integration
of genes but did not succeed in regenerating plants. Later,
Chowrira et al. (1995) reported on electroporation of intact nodal

meristems which avoided the soybean tissue culture process
completely, but no transgenic plants have been recovered.

Transformation Systems for Stable
Transgenic Plants
Agrobacterium-mediated transformation and biolistic methods,
and in planta transformation and protoplast transfection
methods have been applied for generation of transgenic soybean
plants. Among these methods, the A. tumefaciens-mediated and
biolistic methods are the two major platforms for stable soybean
transformation. The general transformation procedure of both
methods is shown in Figure 2. The other methods mentioned
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above are used less because of relatively low efficiency and the
specific technique and equipment required in these methods.

A. tumefaciens-Mediated Transformation
A. tumefaciens-mediated transformation of soybean was first
initiated using cotyledonary nodes by Hinchee et al. (1988). Since
the system was established based on regeneration of mature or
immature seed explants, the simplicity and relatively high TF
of the method have made it a favorite method for soybean.
Relatively high efficient Agrobacterium-mediated transformation
protocol has been gradually developed through improving factors
such as using an appropriate Agrobacterium strain, a good
explant, culture media with adequate antioxidant chemicals and
combinations of appropriate plant growth regulators for a specific
soybean genotype (reviewed in Yamada et al., 2012; Lee et al.,
2013; Li et al., 2017; Table 1). Key elements of the progress are
summarized in a later section. Main advantages of Agrobacterium
transformation include relatively high ratio of single-copy gene
insertion, relative simplicity of the transformation procedure, and
low cost (Hwang et al., 2017). However, there is a limitation in
delivery of genetic material. It delivers DNA plasmids but cannot
deliver DNA fragments, RNAs, or proteins.

Biolistic Transformation
Biolistic transformation, known as gene gun or particle
bombardment, delivers small tungsten or gold particles coated
with desired genes to target plant cells (Christou et al.,
1988). Since an electrical-discharge gene gun was first used in
soybean to regenerate a fertile transgenic plant (Mccabe et al.,
1988), gene delivery to meristematic soybean cells by particle
bombardment has been considered to be more genotype-flexible
for transfer of foreign DNA into soybean (Homrich et al., 2012).
Recently, embryogenic callus based biolistic method becomes
more popular due to its relatively higher efficiency compared
to other explants and its directly delivering way which meets
the need for genome editing using RNA and RNPs editing
reagents for recovery of DNA-free edited events. In comparison
to the A. tumefaciens-mediated method, the biolistic method
offers benefits with their capacity to transform organelles and
deliver RNA, proteins, nanoparticles, dyes, and complexes to cells
(Klein et al., 1987; Liang et al., 2017). The drawback is mainly
high transgene copy and relatively high cost, and its application
has been restricted in limited soybean genotypes because
of unavailable meristematic explants. Compared to plasmid
bombardment, utilization of specific constructs including linear
minimal expression cassettes (MECs) in biolistic transformation
enables the production of plants carrying much simpler patterns
of transgene integration, which has been confirmed in plants
such as wheat (Ismagul et al., 2018). The major progress in
soybean biolistic transformation is presented in a later section
and summarized in Table 1.

Other Stable Transformation Methods
A. rhizogenes-Mediated Transformation
Transgenic plants can also be produced by regeneration of
hairy roots transformed with A. rhizogenes. Success of stable
transformation has been reported in many plant species

(Christey, 2001). In soybean, stable soybean transgenic plants
were produced from hairy roots using primary-node explants
infected by a disarmed A. rhizogenes strain SHA17 (Olhoft et al.,
2007) and the several reports of targeted mutation events using
genome editing also have been obtained from hairy roots through
A. rhizogenes-mediated transformation (Curtin et al., 2011; Haun
et al., 2014; Demorest et al., 2016). However, genotype inflexibility
has been the main hurdle for using the method in soybean.

In-Planta Gene Transformation
This is an alternative method in which Agrobacterium is used
to infect explants, but it does not involve in vitro culture and
regeneration of plant cells or tissues (Kalbande and Patil, 2016),
thereby reducing time and labor cost, and, most importantly,
avoiding somaclonal variation occurrence during in vitro culture-
mediated genetic transformation and regeneration. In soybean,
an Agrobacterium suspension is directly injected into the ovary
(Liu et al., 2009), axillary meristematic region of germinated
seedling (Chee et al., 1989), or stigma in which exogenous DNA
was introduced into cells via the “pollen-tube-pathway” (Hu and
Wang, 1999). Transgenic events could be obtained from progeny
seeds. Liu et al. (2009) reported the transfer of a minimal linear
marker-free and vector-free smGFP cassette into soybean by
pollen tube-mediated gene transfer. Mangena (2019) summarized
the progress made in in planta transformation and formulated
a simple protocol using in planta Agrobacterium injection of
seedlings. Although this could be a tissue culture bypass method
and attempts for new ways are made from time to time, its
efficiency has been very low and it is often not repeatable. This
method has not been widely used.

Transformation Using a New Bacterium
Recently a novel bacterium, Ochrobactrum haywardense H1
(Oh H1), was discovered and it is capable of efficient plant
transformation (Cho et al., 2022). Ochrobactrum is able to
host for Agrobacterium-derived vir and T-DNA and helps
to deliver transgenes in soybean. Oh H1-8 generated high-
quality transgenic events by single-copy, plasmid backbone-free
insertion at frequencies higher than those of Agrobacterium
strains. It achieved high transformation efficiency in several
soybean genotypes, which can be up to 35%. The application of
the new bacterium-mediated transformation in soybean needs to
be evaluated further.

PROGRESS MADE TO IMPROVE
SOYBEAN TRANSFORMATION OVER
THE LAST DECADE

Since 2010, increasing the transformation frequency (TF)
has been the main focus for soybean transformation
improvement. Several major factors affecting soybean TF
based on Agrobacterium-mediated transformation have been
identified, and progress has been made in establishing a high-
throughput transformation system (Zhang et al., 2014; Arun
et al., 2015, 2016; Yang X. F. et al., 2016; Li et al., 2017; Chen et al.,
2018b; Karthik et al., 2020; Pareddy et al., 2020). Some confirmed
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TABLE 1 | Progress of soybean stable genetic transformation approaches for whole transgenic plants.

Method Explant Genotype Selectable
marker/agent

Physical treatment Specific chemicals in
medium

Agro-strain Available TF (%) References

Agrobacterium Immature cotyledon PI283332 and Peking NptII/G418 Wounding \ EHA101 and
LBA4404

\ Parrott et al., 1989

Jack Hph/Hygromycin B Wounding AS EHA105 0.03 Yan et al., 2000

Jack, Williams, Ina,
Macon, Dwight, and
Rend

Hph/Hygromycin B Wounding; orientation
of explant (downward
of the adaxial side)

AS KYRT1 1.3 (1.1–1.7) (Jack) Ko et al., 2003

Mature cotyledonary
node

Delmar, Maple Presto,
and Peking

NptII/Kanamycin \ \ A208 \ Hinchee et al.,
1988

28 genotypes NptII/Kanamycin Wounding and
sonication

AS KYRT1 1–2 Meurer et al., 1998

A3237 Bar/Glufosinate Wounding AS, glutamine, and
asparagine

EHA101 and
EHA105

0.9 Zhang et al., 1999

12 genotypes NptII/Kanamycin Wounding \ A281, C58, ACH5,
and EHA105

0.4 (one genotype) Donaldson and
Simmonds, 2000

Bert Bar/Glufosinate Wounding AS and L-cysteine AGL1 2.1 Olhoft and Somers,
2001

12 genotypes Bar/Glufosinate,
Hph/Hygromycin B,
and NptII/Kanamycin

Wounding AS, D-cysteine, and other
thiol compounds

AGL1, LBA4404,
GV3101, EHA105,
and EHA101

\ Olhoft et al., 2001

12 genotypes Bar/Glufosinate Wounding AS, L-cysteine, DTT,
asparagine, and glutamine

EHA101 2–6.3 (glufosinate)
0–2.9 (bialaphos)

Paz et al., 2004

Williams82 Bar/Glufosinate Wounding AS and L-cysteine EHA101 5.9 Zeng et al., 2004

5 genotypes (Chinese
soybean)

Hph/Hygromycin B Wounding AS, Silwet L-77, and
L-cysteine, asparagine, and
L-pyroglutamic acid

EHA105 3.8–11.7 Liu et al., 2008

Kariyutaka Bar/Glufosinate or
Basta

Wounding (micro brush) Silwet L-77 EHA105 4.4 Yamada et al.,
2010

PK416, JS90-41, Hara
Soy, Co1, and Co2

Hph/Hygromycin B Sonication and vacuum
infiltration, wounding
(hypodermic needle)

AS, DTT, L-cysteine, and
sodium thiosulfate (STS)

LBA4404, EHA101,
and EHA105

13.3–18.6 Arun et al., 2015

JS-335 Bar/Glufosinate Sonication and vacuum
infiltration

AS, DTT, L-cysteine, and
STS

EHA105 12.6 (10.5–16.2,
J8335-bar);

Hada et al., 2018

Jack and Zhonghuang
10

G2Epsps/Glyphosate Sonication Silwet L-77, AS, DTT,
L-cysteine, and Na2S2O3

Ag10 2.9–5.7 Guo et al., 2015

Jidou17 NptII/Kanamycin Sonication DDT, L-cysteine, sodium
thiosulfate, and
α-Aminooxyacetic acid

EHA105 \ Zhang et al., 2016

7 genotypes Bar/Glufosinate Wounding α-lipoic acid (α-LA), DTT,
L-cysteine, AgNO3,
glutamine, and asparagine

EHA101 14.7 Yang J. et al., 2016

Half-seed Bert Hph/Hygromycin B Wounding AS, DTT, L-cysteine, and
STS

LBA4404 and
EHA105

16.4 (9.4–26.2
LBA4404); 14
(9.4–26.2 EHA105)

Olhoft et al., 2003
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TABLE 1 | (Continued)

Method Explant Genotype Selectable
marker/agent

Physical treatment Specific chemicals in
medium

Agro-strain Available TF (%) References

Thorne, Williams,
Williams79, and
Williams82

Bar/Glufosinate Wounding AS, L-cysteine, and DTT EHA101 3.8 (1.4–8.7) Paz et al., 2006

7 genotypes Hph/Hygromycin B Wounding
(multi-needle)

AS, DTT, L-cysteine, and
STS

LBA4404 \ Zhang and Xue,
2019

5 US (Williams82) and 5
Chinese genotypes

Bar/Glufosinate Wounding AS, DTT, and L-cysteine EHA105 0–6.71 Jia et al., 2015

7 genotypes Bar/Glufosinate Wounding L-cysteine and DTT EHA105 0.5 (0–0.9) Sato et al., 2007

7 genotypes Hph/Hygromycin B Wounding
(multi-needle)

AS, DTT, L-cysteine, and
STS

LBA4404 \ Zhang and Xue,
2019

5 US (Williams82) and 5
Chinese genotypes

Bar/Glufosinate Wounding AS, DTT, and L-cysteine EHA105 0–6.71 Jia et al., 2015

7 genotypes Bar/Glufosinate Wounding L-cysteine and DTT EHA105 0.5 (0–0.9) Sato et al., 2007

DS97–12 Hph/Hygromycin B Sonication and vacuum
infiltration

Polyamine (spermidine,
spermine, and putrescine)

EHA105 29.3 Arun et al., 2016

Williams82 Bar/Glufosinate Wounding AS, L-cysteine, and DDT EHA101 1.0–3.5 (35s or NOS
promoter)

Testroet et al., 2017

8 genotypes Bar/Glufosinate Wounding AS, DDT, STS, L-cysteine,
AgNO3, L-asparagine,
L-pyroglutamic acid, and
L-ascorbic acid

EHA101 7.3–10.0 Li et al., 2017

Jack, Williams82,
Zigongdongdou, and
Heihe27

Bar/Glufosinate Wounding DTT, AS, L-asparagine, and
L-glutamine

EHA101 7.6 (2.6–11.1) Chen et al., 2018b

DS-9712 NptII/Kanamycin Sonication and vacuum
infiltration

AS and L-cysteine EHA105 14.51 Hada et al., 2018

PUSA 9712 Bar/Basta \ SNP EHA101 34.6 Karthik et al., 2020

Maverick and 20
proprietary elite lines

Pat/Glufosinate Wounding L-asparagine and
L-pyroglutamic acid

EHA101 and
EHA105

18.7 (12.1–23.0) Pareddy et al.,
2020

whole cotyledonary
node

ZhongHuang13 NptII/Kanamycin Wounding L-cysteine EHA105 23.1 Zhang et al., 2014

Calluses induced from
either cot-node

5 genotypes Bar/Glufosinate \ AS, DTT, L-cysteine, and
STS

AGL1 1.3 (0.3–4.3) Hong et al., 2007

Hypocotyls Heinong44 NptII/Kanamycin \ AS, L-cysteine, DTT,
AgNO3, and STS

EHA105 9.3 Wang and Xu, 2008

Embryogenic cell
suspension

Chapman Hph/Hygromycin B Sonication AS EHA105 \ Trick and Finer,
1998

Embryogenic axes P29T50,
P33T50,93Y21,
DM118, and 98C21

SpcN/Spectinomycin Sonication AS and DDT Ochrobactrum
haywardense H1

35 Cho et al., 2022
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TABLE 1 | (Continued)

Method Explant Genotype Selectable
marker/agent

Gene Gun/particle Treatment Construct form Available TF (%)
(comment)

References

Biolistic method Immature embryo axis Williams82 and
Mandarin Ottawa

NptII/Kanamycin Electrical,
arc-discharge gun/Gold
particles

Plasmid DNA Mccabe et al.,
1988

Williams82 NptII/Kanamycin PDS 1000/Tungsten Plasmid DNA Sato et al., 1993

Somatic embryogenic
suspension

Fayette Hph/Hygromycin B DuPont Biolistics TM
Particle Delivery System
(Model BPG)/Tungsten
particles

Plasmid DNA 0.4 Finer and
Mcmullen, 1991

Fayette Npt II/G418 PDS 1000/Tungsten
particles

Plasmid DNA Four plants per
bombarded flask

Sato et al., 1993

Fayette Hph/Hygromycin B PDS 1000/Tungsten
particles

Multiple plasmid
DNA

\(co-transformation) Hadi et al., 1996

\ Hph/Hygromycin B PDS 1000/Tungsten
particles

Plasmid DNA \(protocol) Finer and Larkin,
2008

\ Hph/Hygromycin B PDS 1000/Tungsten
particles

Plasmid DNA \(protocol) Finer, 2016

93B86 Hph/Hygromycin B and
Als/Chlorsulfuron

PDS 1000/Gold
particles

Plasmid DNA and
DNA fragment

\(targeted insertion) Li et al., 2015

Mature embryo axis BR-16, Doko RC,
BR-91, and Conquista

AHAS/Imazapyr HPHMAS/Tungsten \ Plasmid DNA 0.1–7.8 Aragão et al., 2000

BR-16, BR-91, Celeste,
Conquista, Doko RC,
Nina, Indiana, and
Itaipu

AHAS/Imazapyr PDS1000/Tungsten Plasmid DNA ≤0.2 (protocol) Rech et al., 2008

Conquista AHAS/Imazapyr HPHMAS/Tungsten \ DNA fragments 0.8 Vianna et al., 2011

INCASoy-36 Cp4epsps/Glyphosate PDS 1000/Tungsten Plasmid DNA 6 Soto et al., 2017

Immature embryo Maverick Hph/Hygromycin B,
DSM2/Glufosinate

Cold treatment and
plasmolysis

Plasmid DNA 2–5.5 (hph) and 1–2.7
(DSM2)

Chennareddy et al.,
2018

(1) HPHMAS: The high-pressure helium-driven microparticle acceleration system. (2) \ means not available. (3) Protocol means the reference is a published protocol.
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positive elements in Agrobacterium-mediated transformation
protocols have also been applied for enhancing soybean biolistic
transformation (Table 1).

Agrobacterium-Mediated Transformation
Soybean transgenic plant production still relies on
Agrobacterium-mediated transformation (Figure 2 and Table 1).
Recently, high TFs of over 10% have been obtained in more
and more soybean genotypes using improved protocols (Zhang
et al., 2014; Arun et al., 2015, 2016; Yang X. F. et al., 2016; Li
et al., 2017; Chen et al., 2018b; Karthik et al., 2020; Pareddy et al.,
2020). The enhancement of TF is based on changes in several
factors, including explant, selectable marker, and culture medium
composition such as antioxidants, of these protocols (Table 1).

Adjustment of Infection Method and Improving
Regeneration
Reducing the explant tissue browning and necrosis caused by
Agrobacterium enhances construct delivery and regeneration
of transformed cells. Changing the ways for preparation of
Agrobacterium infection solutions and co-cultivation media, and
modifying infection methods can achieve this goal and eventually
increase transformation efficiency. Addition of antioxidants such
as dithiothreitol (DTT) in infection solutions and extending co-
cultivation time to 5 days achieved an infection efficiency of more
than 96% and, hence, increased TF (Li et al., 2017). Infection
solutions prepared with a two-round overnight culture of
Agrobacterium using AB minimal media in second round culture
significantly increased transformation frequency in comparison
with the culture using normal YEP medium (Pareddy et al., 2020).
It was also found to be beneficial to A. tumefaciens infection
when the co-cultivation temperature for soybean transformation
was set to 23◦C under dim light (Yang X. F. et al., 2016).
The same group also demonstrated to alleviate explant necrosis
and significantly improve the transformation efficiency when
antioxidants alone such as α-lipoic acid (α-LA, 0.12 mM) and
silver nitrate (AgNO3, 20 µM), or combinations of antioxidants
such as L-cysteine (1 mM) + DTT (3.3 mM) + AgNO3 (20 µM),
and L-cysteine (1 mM) + DTT (3.3 mM), were added in the
solid co-cultivation medium. For improving regeneration, it was
found that adding 6-benzylaminopurine (BAP) in a germinating
medium could significantly increase regeneration efficiency,
which led to enhancement of TF; the optimal BAP concentration
for shoot formation was 0.5 mg/L (Zhang et al., 2014). More
examples are presented in Table 1.

Genotype Effect and Explant Choice
In the tissue culture-based transformation process, the
composition of culture media and susceptibility of selected
explants to Agrobacterium influence soybean transgenic
frequency. A highly efficient in vitro culturing system
and regeneration of cells susceptible to Agrobacterium are
prerequisites for a reliable transformation protocol. Until now,
the TF for most tested genotypes of soybean has remained quite
low at a level mostly below 5% when conducting Agrobacterium-
mediated transformation [summarized in Yamada et al. (2012),
Jia et al. (2015), and Li et al. (2017); Table 1]. Since 2000, many

research groups have used model soybean varieties such as Jack,
Bert, and Williams serials and other specific genotypes because
of their amenability to transformation (Olhoft and Somers, 2001;
Olhoft et al., 2001, 2003; Paz et al., 2004, 2006; Zeng et al., 2004;
Luth et al., 2015). Recently, soybean transformations with high
TFs have been reported using specific genotypes. For example,
it was claimed 23.1% with Zhonghuang13 (Zhang et al., 2014)
and an average of 14% TF for a local Indian genotype, DS-9712
(Hada et al., 2018). Improvement based on Agrobacterium-
mediated soybean transformation has been made to expand
target genotypes from conventional model varieties to many elite
varieties (Ko et al., 2003; Yi and Yu, 2006; Sato et al., 2007; Song
et al., 2013; Arun et al., 2015; Pareddy et al., 2020). For example,
over 5% TF for more than 10 varieties was achieved with a robust
protocol (Pareddy et al., 2020).

Since Hinchee et al. (1988) obtained transgenic events,
the cotyledonary node of mature seeds has been the most
favorite explant used for Agrobacterium-mediated soybean
transformation using many other explants such as embryonic
tips and calli (Figure 3). Cotyledonary node regions have axillary
meristems at the junction between cotyledon and hypocotyl,
which can proliferate and regenerate by the formation of
multiple adventitious shoots on a culture medium containing
cytokinin. Successful transformation has been achieved using
similar organogenesis from various explants, which include
germination seeds (Chee et al., 1989), embryonic shoot tips
(Martinell et al., 2002; Liu et al., 2004), cotyledonary nodes from
immature seeds (Parrott et al., 1989; Yan et al., 2000; Ko et al.,
2003), cotyledonary nodes from mature seeds (Meurer et al.,
1998; Zhang et al., 1999; Donaldson and Simmonds, 2000; Olhoft
and Somers, 2001; Olhoft et al., 2001; Paz et al., 2004; Zeng
et al., 2004; Liu et al., 2008), half-seeds (Paz et al., 2006; Pareddy
et al., 2020), whole cotyledonary nodes (Zhang et al., 2014) and
hypocotyls (Dan and Reichert, 1998; Liu et al., 2004; Wang
and Xu, 2008), and other explants with different regeneration
procedures such as calli induced from geminated seedlings (Hong
et al., 2007) and embryogenic suspension cultures (Trick and
Finer, 1998). However, successful and repeatable production of
transgenic soybean via Agrobacterium-mediated transformation
has mainly been based on protocols with explants containing
cotyledonary nodes from young seedlings and imbibed mature
seeds (Zhang et al., 1999; Olhoft et al., 2003; Paz et al., 2006).
Recently, half-seeds have gradually become the trend for explants
since (Paz et al., 2006) their first use, because half-seed explants
possess advantages to have more nutrition supply for shoot
regeneration compared to cotyledonary nodes and to be prepared
within a short time (less than 1 day) due to using imbibed
seeds, which reduces the period of total regeneration and labor
cost. Based on descriptions of explants in several reports (Paz
et al., 2006; Pareddy et al., 2020), half-seed, whole cotyledon,
and split seed explants can now be put under the same category
of half-seed explants. Obtaining TFs of over 10% for soybean
with half-seed explants have been demonstrated in many reports
(Zhang et al., 2014; Arun et al., 2016; Li et al., 2017; Chen et al.,
2018b; Hada et al., 2018) (Table 1). The highest TF of 34.6%
has been obtained using these explants together with nitric oxide
treatment in a co-cultivation medium in the protocol made by
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FIGURE 3 | Types of explants used for soybean transformation. (A) Germination seed. (B) Embryonic shoot tips. (C) Cotyledonary nodes from immature seeds.
(D) Cotyledonary nodes from mature seeds (yellow cotyledon means use cotyledon directly from mature seed; the green one means use mature cotyledon after
germination under light). (E) Whole cotyledonary node. (F) Half-seed. (G) Hypocotyl. (H) Callus induced from geminated seedlings. (I) Embryogenic suspension
cultures.

Karthik et al. (2020). Some specific explant treatments such as
sonication in combination with vacuum infiltration, sonication in
combination with surfactant, or just sonication (Mariashibu et al.,
2013; Arun et al., 2015; Guo et al., 2015; Zhang et al., 2016; Hada
et al., 2018), and pre-wounding with a multi-needle consisting of
30 thin fibers (Xue et al., 2006) or a micro-brush (Yamada et al.,
2010) were also used before Agrobacterium infection to increase
infection rate and TFs, because these treatments facilitate the
penetration of Agrobacterium into plant tissues and increase the
contact between plant cells and the bacterium, and stimulate the
infection ability of the bacterium, which leads to T-DNA transfer
into plant cells.

Addition of Antioxidants in Medium
Antioxidants, in general, are known to reduce pathogen-induced
programed cell death (Mittler et al., 1999). These include
inhibitors of polyphenol oxidases (PPOs) and peroxidases
(PODs) through the action of their thiol group, such as

compounds L-cysteine, DTT, and sodium thiosulfate. They
are commonly used to reduce enzymatic browning in food
processing caused by deposition of tannins (Nicolas et al.,
1994; Ghidelli et al., 2014). Polyvinylpyrrolidone (PVP), DTT,
L-cysteine, glutathione, α-LA, L-ascorbic acid, and citric acid
have been confirmed to decrease tissue necrosis of explants
used for Agrobacterium-mediated transformation (Barampuram
and Zhang, 2011). Either one or more than 2 of the chemicals
have been used in soybean transformation (Olhoft and Somers,
2001; Olhoft et al., 2003; Paz et al., 2004; Yi and Yu, 2006;
Liu et al., 2008). L-cysteine and DTT have been frequently
used in soybean transformation since its first use by Olhoft
et al. (2001). Reports clearly showed that there was less
browning on the cut and damaged surfaces of the hypocotyl,
cotyledon node region, and on the cotyledon of explants, which
increased the TF of stable transformations (Olhoft et al., 2001,
2003; Paz et al., 2004; Li et al., 2017). A high average TF
of 12.7% resulted from the combination of L-cysteine and
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DTT, which was significantly greater than that of either L-
cysteine or DTT alone (Olhoft et al., 2003). The positive effect
has been continuously confirmed in recent reports (Table 1).
Another type of antioxidants is a group of sulfur-containing
compounds involved in several multienzyme complexes such
as α-LA. These include pyruvate dehydrogenase, α-ketoglutarte
dehydrogenase, branched-chain ketoacid dehydrogenase, and
glycine decarboxylase (Dan et al., 2009). Adding the antioxidant
α-LA in a co-cultivation medium could increase transient GUS
expression and increased the percentage of shoot induction (Yang
X. F. et al., 2016). In this report, 0.12 mM α-LA was found to
be the most useful for alleviating browning and necrosis. Other
antioxidants conventionally used in plant tissue culture, such
as ascorbic acid, PVP, and citric acid, may promote soybean
transformation efficiency, but their roles have not yet been made
clear (Li et al., 2017). Plant hormone-like antioxidants such as
sodium nitroprusside (SNP), a nitric oxide (NO) donor, play
varied roles in growth and development of plants. Nitric oxide
is involved in cell metabolism and morphogenesis and acts as
a signaling molecule in response to various biotic and abiotic
stresses (Verma et al., 2020), and can alleviate abiotic stress threat
in plants reacting quickly with ROS. SNP significantly enhanced
regeneration and development rate of soybean plants (Karthik
et al., 2019); addition of SNP also significantly increased soybean
TF by up to 34.6% with the half-seed method (Karthik et al.,
2020).

Addition of Other Chemicals in Culture Medium
Except for antibiotics, chemicals related to host defense response,
ethylene inhibitors, surfactants, demethylating reagents,
polyamines, and antagonist α-aminooxyacetic acid (AOA) are
proved to have a positive effect on improving TF. L-glutamine
and L-asparagine are types of chemicals that weaken host defense
responses. It has been reported that the addition of L-glutamine
into a culture medium alone or in combination with a cold shock
pretreatment could enhance Agrobacterium transformation
efficiency (Zhang et al., 2013). Although the mechanism is
still not clear, L-glutamine could play a role in lessening host
defense responses by attenuating the expression of certain
pathogenesis-related genes (PRs), and potentially improve the
efficiency of Agrobacterium-mediated plant transformation
(Zhang et al., 2013, 2014). It was demonstrated that TF was
significantly increased in soybean when additional L-glutamine
or L-asparagine alone, or both of them were added in all culture
media (Chen et al., 2018b). The TF was 8.8 ± 1.5 (L-glutamine),
5.9 ± 2.1% (L-asparagine), 11 ± 0 (both), and 3.5 ± 2.4%
(without any one of them). Ethylene inhibitors such as AgNO3
have a positive effect on transformation. It has been reported that
Ag+ interferes with the binding of ethylene receptor sites and
helps reduce ethylene production by promotion of polyamine
biosynthesis (Roustan et al., 1990). The main function of AgNO3
is to eliminate the potential danger to plant cells and tissues
in liverwort caused by ethylene (Beyer, 1979). It has already
been confirmed to promote somatic embryo production and
shoot regeneration in wheat and maize (Carvalho et al., 1997;
Fernandez et al., 1999). This effect has been proved to improve
soybean TF (Olhoft et al., 2004; Li et al., 2017). A nearly 10%

TF with genotype Heilong44 was reported when BAP and
AgNO3 were added into a culture medium (Wang and Xu,
2008). Surfactants such as SilwetL-77 and pluronic acid F68
also increase TF, which initially showed to enhance T-DNA
delivery in wheat Agrobacterium-mediated transformation when
added into an inoculation medium (Cheng et al., 1997). This
was also confirmed in soybean transformation. It was reported
that adding SilwetL-77 to an infection medium coupled with
hygromycin-based selection strategies led to transformation
efficiencies ranging from 3.8 to 11.7% in Chinese soybean
varieties (Liu et al., 2008). SilwetL-77 has been frequently
used to increase soybean TF (Yamada et al., 2010; Guo et al.,
2015). Surfactants may enhance T-DNA delivery by aiding
A. tumefaciens attachment and/or by elimination of certain
substances that inhibit A. tumefaciens attachment (Opabode,
2006). Polyamines enhance plant cell differentiation, induce
totipotency, and increase cell division (Rakesh et al., 2021).
Addition of polyamines in the plant transformation process
leads to vir gene induction and T-DNA transfer, and increases
transformation efficiency (Kumar and Rajam, 2005). As high
as 29.3% TF in soybean has been achieved by addition of
spermidine, spermine, and putrescine in a culture medium
compared with its counterparts (14.6%) and with respective
plant growth regulator (PGR) alone (Arun et al., 2016).
Demethylating reagents commonly applied in epigenetic
research such as 5-azacytidine (5-Azac), significantly improve
the transient transfection efficiency and transgene expression
level in low-efficiency genotypes. Treatment with 5-Azac
improved the shoot regeneration efficiency in low-efficiency
genotypes during the process of Agrobacterium-mediated
soybean transformation. This indicates that lower methylation
level in transgenes contributed to enhance shoot regeneration
in Agrobacterium-mediated soybean transformation (Zhao et al.,
2019b). Antagonist AOA relieves the structural membrane
barriers of Agrobacterium entering cells, hinders the perception
of intercellular signal transmission, and thus effectively
alleviates defense responses and increases the susceptibility
of cells to Agrobacterium infection. Combined use of AOA
and sonication treatments (novel method) greatly improved
T-DNA delivery efficiency in soybean (Zhang et al., 2015,
2016).

Refining Selection Agents
The most frequently used selectable markers in both the
somatic embryogenesis- and organogenesis-based soybean
transformation methods are genes conferring resistance
to herbicides or antibiotics so as to reduce escape rate
significantly. The selectable markers include bar and pat
genes conferring resistance to phosphinothricin, the active
ingredient in BASTA and bialaphos herbicides (Zhang et al.,
1999; Olhoft and Somers, 2001; Olhoft et al., 2001; Paz et al.,
2004; Testroet et al., 2017; Pareddy et al., 2020), EPSPS (5-
enolpyruvylshikimate-3-phosphate synthase) genes conferring
resistance to the herbicide glyphosate (Martinell et al., 1999;
Clemente et al., 2000; Yao, 2001; Guo et al., 2015; Xiao
et al., 2019), and the nptII gene conferring resistance to the
antibiotics kanamycin (Homrich et al., 2012) and hph or hpt II
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(hygromycin phosphotransferase) genes conferring resistance
to hygromycin B (Yan et al., 2000; Ko et al., 2003; Olhoft
et al., 2003; Liu et al., 2008). Recently, Hph and Bar or Pat
have been proven to be the most favorite selectable markers
(Table 1). An average transformation frequency as high as
29.3% was achieved with the half-seed (Arun et al., 2016)
and 13.3–18.6% with cotyledonary node explant (Arun et al.,
2015) employing hygromycin B selection, which is better than
or comparable with that by Olhoft et al. (2003). Glufosinate
has also been used as a selection agent based on the bar or
the pat gene and initially had less than 10% TF in soybean
transformations involving the half-seed (Paz et al., 2006) and
embryo tip (Dang and Wei, 2007) explants. Recently TFs
of over 10% have been obtained with cotyledonary nodes
(Hada et al., 2014; Yang X. F. et al., 2016) and half-seeds (Li
et al., 2017; Chen et al., 2018b; Pareddy et al., 2020). A 34.6%
TF was reported using a protocol with addition of sodium
nitroprusside (SNP) when Basta was sprayed for selection
(Karthik et al., 2020). Since an epsps/glyphosate selection based
protocol is established (Martinell et al., 1999), glyphosate
has gradually been incorporated into transformation as a
selectable agent and has shown its beneficial side for high
stringency. In order to quickly and efficiently screen glyphosate-
tolerant events, a rapid and convenient spotting method was
established for screening regenerated glyphosate-tolerant T0
plantlets (Guo et al., 2020a). In this report, an optimized
Agrobacterium-mediated soybean transformation system
with rapid and effective selection of transformed cells was
developed, with TFs ranging from 2.9 to 5.6%. Especially, 96%
regenerated T0 plantlets showed clear tolerance to glyphosate
and their transgenic nature were confirmed by molecular
analysis. Spectinomycin was also used as a selective agent
to obtain transgenic soybean when the aminoglycoside-3′′-
adenylyltransferase gene (aadA) was used as a selectable marker
(Martinell et al., 2002). The spectinomycin selection protocol
demonstrated higher frequency of transformation, a shorter
period of time needed to complete each protocol, and lower
cost compared with the glyphosate selective protocol. Soybean
transformation using a GFP as a detection marker was also
reported, and transgenic plants could be identified at an early
stage, although the frequency was not high (2.5%) (Yang
S. et al., 2019). Combined with a normal selectable marker
and a selection agent, GmFAST (fluorescence-accumulating
seed technology) has recently been developed to identify
homologous transgenic seeds. It is a marker composed of a
soybean seed-specific promoter coupled to the OLE1-GFP gene,
which encodes a GFP fusion of the oil-body membrane protein
OLEOSIN1 of Arabidopsis thaliana and is a time-saving and
efficient method to produce homologous transgenic events
(Iwabuchi et al., 2020).

Generally, the efficiency of Agrobacterium-mediated
transformation in soybean has been enhanced by improving both
Agrobacterium infection and explant regeneration. Addition of
antioxidants such as DDT, L-cysteine, and NO in a co-cultivation
medium and some infection-assisting specific chemicals
including surfactants and AgNO3, and some regeneration-
promoting elements such as polyamines (Table 1), plays an

important role in the improvement. All of the measures have
facilitated Agrobacterium to transform the meristematic region
of soybean explants. Recently, a specific Agrobacterium-mediated
protocol was reported, which conducted bombardment to make
wounding and reduce the lab work time to only 2 days in
the transformation process and kept the rest time to grow T0
plants in a glasshouse (Paes de Melo et al., 2020). Transgenic
events were screened using a swab to spread glufosinate solution
on leaves of putative events and the TF reached nearly 10%.
This method avoided many tissue culture steps and may be a
cost-saving protocol.

Biolistic Transformation
Since Mccabe et al. (1988) reported the first transgenic soybean
plant using the biolistic method, many reports of soybean biolistic
transformation have been published and the development of
this method in the first 25 years has been reviewed by
Homrich et al. (2012), Lee et al. (2013), Mariashibu et al.
(2013), and Mangena et al. (2017). Initially, meristems of
soybean tissues as the target tissue were used for bombardment
such as embryonic axes of immature and mature seeds (Sato
et al., 1993; Aragão et al., 2000; Rech et al., 2008; Soto
et al., 2017). In later studies, somatic embryos (Finer and
Mcmullen, 1991; Finer and Larkin, 2008; Finer, 2016) were
the most frequently used explants for biolistic transformation.
However, chimeric transgenic plants were produced because
of multiple cell layers (L1, L2, and L3) in the original
apical meristem of soybean (Christou, 1990; Christou and
Mccabe, 1992). Fortunately, using secondary somatic embryos
and new selective markers such as EPSPS has eliminated
transgenic chimeras (Sato et al., 1993; Martinell et al., 1999).
Somatic embryo regeneration and proliferation were initiated
either on semi-solid media (Parrott et al., 1989) or liquid
suspension culture media (Finer and Nagasawa, 1988). Co-
transformation of multiple plasmids or multiple gene inserts
in same constructs with selectable markers has been achieved
(Hadi et al., 1996; Li et al., 2015). Since 2010, factors such
as explant type, abiotic stress treatment, selectable marker, and
tissue culture method have been the main focus to improve
biolistic transformation TF, and reliable protocols for the
biolistic method with embryogenesis-based explant have been
developed to produce a reasonable number of transgenic plants
(Table 1). For example, a TF of up to 6% was achieved with
cp4epsps as selectable marker when embryonic axes of mature
seeds of the INCASoy-36 Cuban cultivar were bombarded
(Soto et al., 2017). Chennareddy et al. (2018) combined an
immature half-seed explant with an intact embryonic axis,
cold and plasmolysis pre-treatment, and a specific somatic
embryogenic callus regeneration medium in their protocol.
They achieved 5% TF with HPH/hygromycin selection and
2.7% with DSM2/glufosinate selection. A selection system
using NPTII/G418 was developed for a biolistic-transformed
embryogenic callus rather than the most used HPH/hygromycin
system and similar TF in comparison with the HPH system
was obtained (Itaya et al., 2018). The current status is that
soybean biolistic transformation still relies on an embryogenic
callus, since it is the prerequisite for establishing a robust
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transformation system for a specific genotype. Selection for
the amenability of an embryogenic callus induced from local
elite varieties (genotypes) is the main focus (Joyner et al.,
2010; Abbasi et al., 2016; Islam et al., 2017; Raza et al.,
2020). An improved biolistic soybean transformation protocol
was published using an embryogenic callus induced from an
immature cotyledon explant (Finer, 2016), which is a robust
one and can produce quite a lot of transgenic plants within 6–
9 months.

RECENT APPLICATIONS OF SOYBEAN
TRANSFORMATION FOR TRAIT
IMPROVEMENT

Transgenic technology has been used to improve soybean
agronomic traits, which include yield component, grain quality,
and biotic and abiotic stress tolerance, and economic traits
such as oil and biofuel quality, and specific chemical content
in seed for human health, and other traits. Trait improvements
through forward and reverse genetic approaches in the last
5 years are summarized in Table 2; i.e., downregulation of
the pyruvate dehydrogenase kinase gene GmPDHK through
RNAi made an average of 42.2% protein content in seeds of
transgenic plants, which is significantly increased compared
with the non-transgenic control (Jones et al., 2020). Soybean
seeds with linolenic acid content in excess of 50% of the total
oil have been generated by increasing the expression of the
FAD3 gene, which encodes the enzyme that converts linoleic
acid to linolenic acid (Yeom et al., 2020). Overexpressing the
GmmiR156b (Squamosa promoter-binding protein-like, SPL)
gene in soybean and transgenic plants produced significantly
increased numbers of long branches, nodes, and pods that
exhibited increased 100-seed weight, resulting in a 46–63%
increase in yield per plant and no significant impact on plant
height in a growth room or under field conditions (Sun
et al., 2019). Stable GmMYB14-overexpressing (GmMYB14-OE)
transgenic soybean plants demonstrate semi-dwarfism and a
compact plant architecture associated with decreased cell size,
causing decreased plant height, internode length, leaf area,
leaf petiole length, and leaf petiole angle, and improved yield
in high density and drought tolerance under field conditions
(Chen et al., 2021b). Salt-tolerant transgenic soybean and its
applications in field are summarized in a review (Cao et al.,
2018). Resistance to soybean cyst nematode (SCN; Heterodera
glycines) in stably transformed soybean plants is enhanced
by downregulation of the HgY25 and HgPrp17 genes, which
are related to reproduction and fitness (Tian et al., 2019).
Overexpression of PAC1 and GmKR3, a TIR–NBS–LRR-type
R gene, can increase multiple virus resistance in transgenic
soybean and, thus, provide an efficient control strategy against
RNA viruses such as SMV, BCMV, WMV, and BPMV (Xun
et al., 2019). Overexpression of GmDR1 [Glycine max disease
resistance 1 (Glyma.10G094800)] led to enhanced resistance
not only against F. virguliforme but also against spider mites
(Tetranychus urticae, Koch), soybean aphids (Aphis glycines,
Matsumura), and SCN (Ngaki et al., 2021). Many types of

herbicide-resistant transgenic soybean, such as glyphosate-
resistant, dicamba-, and 2,4-D-resistant, are grown widely in
the United States (Nandula, 2019). Transgenic soybean plays
an important role in soybean production worldwide now, and
transgenic soybean covers 50% of the global transgenic crop
area, occupying 94.1 million ha (Nandula, 2019). Therefore, a
better soybean transformation system is the base for soybean
improvement through transgenic technology.

CHALLENGES AND FUTURE
DIRECTIONS IN SOYBEAN
TRANSFORMATION

Although much effort has been made to improve the
transformation systems for soybean, there are some challenges
such as genotype flexibility, low transformation frequency, time
to time chimerism in T0 transgenic plants, and availability of a
system for new breeding technologies such as genome editing.

Genotype Flexibility
Like in other recalcitrant plant species, genotype inflexibility
has been an obstacle that restricted the scope of soybean
transformation. The ideal soybean transformation target material
for trait improvement would be any elite variety with
excellent agronomic characteristics. However, most reliable
transformations are still based on specific genotypes although
genotypes amenable to transformation have expanded to some
preferred genotypes. For example, in the early stage, successful
Agrobacterium-mediated transformation occurred in several
genotypes and their derivatives such as Williams, Williams79,
and Williams82 (Paz et al., 2004, 2006). High-efficiency
Agrobacterium-mediated transformation is only achieved in a
limited number of elite lines (Zhang et al., 2014; Arun et al.,
2015, 2016; Yang J. et al., 2016; Li et al., 2017; Chen et al.,
2018b). High-efficiency genotypes possess greater susceptibility
to Agrobacterium infection, which has been confirmed in many
reports (Jia et al., 2015; Yang J. et al., 2016; Yang X. F. et al.,
2016; Zhao et al., 2019b). The competency of cotyledons of
seeds to Agrobacterium infection and the ability to regenerate
plants are key factors. These may be determined by cell defense
response, including attachment of A. tumefaciens to plant
cells, plant signals sensed by A. tumefaciens, regulating vir
gene expression, T-DNA/virulence protein transport or initial
contact of A. tumefaciens to plants and cytoplasmic trafficking,
and nuclear import of T-DNA and effector proteins (Hwang
et al., 2017). An important step to enhance the transformation
efficiency of recalcitrant genotypes is to improve the genotypes’
susceptibility to Agrobacterium infection. Many commonly used
treatments to increase transformation efficiency such as heat
shock, cold shock, antioxidants, and hypoxia may act by
suppression of cellular response to Agrobacterium infection
(Zhang et al., 2013). Combinations of various positive factors
discovered or developed recently have promoted Agrobacterium-
mediated soybean transformation to extend genotype scope
(Table 1). For example, transgenic events have been obtained
from 19 out of 20 genotypes based on an improved protocol

Frontiers in Plant Science | www.frontiersin.org 13 June 2022 | Volume 13 | Article 900318

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-900318
June

9,2022
Tim

e:15:24
#

14

Xu
etal.

S
oybean

Transform
ation

TABLE 2 | Summary of transgenic approaches for soybean trait improvement and functional genomics in the last 5 years.

Target traits Transgene Source of gene Delivery method Effect on trait or function Genotype References

Seed components and
quality

Seed protein and amino acid Zmδ-zeins and Zmγ-zein Z. mays A. tumefaciens Increase 27% the methionine content Williams82 Kim and Krishnan, 2019

Zmβ-zein Z. mays A. tumefaciens Increase 15% the methionine content Jack Guo et al., 2020b

GmPDHK G. max Biolistic method Increase average 42.2% protein content Jack Jones et al., 2020

Glyma.10G38760a G. max A. tumefaciens Increase sulfur amino acid content Maverick Kim et al., 2020

Oil GmFAD2-1B G. max A. tumefaciens Increase oleic acid content Williams82 Yang J. et al., 2018

GmSDP1-1 G. max A. tumefaciens Increase oil content Kariyutak Kanai et al., 2019

PfFAD3-1 P. fendleri A. tumefaciens Increase α-linolenic acid production Kwangankong Yeom et al., 2020

GmOLEO1 G. max A. tumefaciens Increase 10.6% seed oil content and enriched smaller OBs Williams82 Zhang et al., 2019a

GmWRI1b G. max A. tumefaciens Increases total seed oil production \ Guo et al., 2020c

Glyma.13G30950 G. max A. tumefaciens Increase seed pods and oil production Kariyutaka Iwabuchi et al., 2020

GmDGAT2A G. max A. tumefaciens Increase oil production and α-linoleic acid content P03 Jing et al., 2021

GmZF392 G. max A. tumefaciens Increase seed oil accumulation Jack Lu et al., 2021

GmWRI1a G. max A. tumefaciens Increase seed oil content Dongnong50 Wang Z. et al., 2022

AhDGAT3 A. hypogaea A. tumefaciens Increase oleic acid and total fatty acid Jack Xu et al., 2022

Bioreactor rhBMP2 H. sapiens Biolistic method Result in production of bone morphogenetic protein BMP2 BRS16 Queiroz et al., 2019

The lunasin gene G. max A. tumefaciens Result in production of bioactive lunasin peptide \ Hao et al., 2020

The hIFN-γ gene H. sapiens A. tumefaciens Result in production of human IFN-γ protein Williams Mehrizadeh et al., 2021

Phytate content GmIPK2 G. max A. tumefaciens Result in production of low phytate Pusa-16 Punjabi et al., 2018

GmMIPS1 G. max A. tumefaciens Regulate phytate biosynthesis DS-9712 Kumar et al., 2019

EcMappA E. coli A. tumefaciens Result in production of a thermostable phytase Wandou-28 Zhao et al., 2019c

Specific chemical compounds ZmGB1 Z. mays A. tumefaciens Increase glycinebetaine content A5403, A4922, A3469, and
A3244

Castiglioni et al., 2018

GmCHI1A G. max A. tumefaciens Increase seed isoflavones DT2008 Nguyen et al., 2020

GmMATE1 G. max A. tumefaciens Increase seed isoflavones C08 and W05 Ng et al., 2021

GmMYB176 and
GmbZIP5

G. max A. rhizogenes Increase seed isoflavones Harosoy63 Anguraj Vadivel et al., 2021

Agronomic traits

Seed yield and plant biomass GmPT7 G. max A. tumefaciens Increase symbiotic N2 fixation and yield HN66 Chen et al., 2019b

GmmiR156b G. max A. tumefaciens Improve the shoot architecture and yield Williams82 Sun et al., 2019

psNTP9 P. sativum A. tumefaciens Increase soybean yield Williams82 Veerappa et al., 2019

GmWRI1b G. max A. tumefaciens Improve plant architecture and associated yield parameters,
and increases total seed oil production

\ Guo et al., 2020c

HaHB4 H. annuus A. tumefaciens Enhance drought tolerance with yield reduced Williams82 Ribichich et al., 2020

GmMYB14 G. max A. tumefaciens Enhance high-density yield and drought tolerance Tianlong1 Chen et al., 2021b

ZmSOC1 Z. mays A. tumefaciens Increase soybean yield Jack Han et al., 2021

GmFULa G. max A. tumefaciens Increase soybean yield Zigongdongdou Yue et al., 2021

GmHSP17.9 G. max A. rhizogenes Increase nodule number, nodule fresh weight, and seed yield Williams82 Yang et al., 2022

(Continued)
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TABLE 2 | (Continued)

Target traits Transgene Source of gene Delivery method Effect on trait or function Genotype References

Plant architecture GmIDL2a and GmIDL4a G. max A. rhizogenes Increase the lateral roots densities of the primary roots XIAOLIDOU Liu C. et al., 2018

GmmiR156b G. max A. tumefaciens Improve the shoot architecture and yield Williams82 Sun et al., 2019

GmYUC2a G. max A. rhizogenes Delay nodule development and a reduced number of nodules Williams82 Wang et al., 2019c

GmGASA32 G. max A. rhizogenes Increase plant height Williams82 Chen et al., 2020b

GmWRI1b G. max A. tumefaciens Improve plant architecture and associated yield parameters,
and increases total seed oil production

\ Guo et al., 2020c

Glyma.13G30950 G. max A. tumefaciens Increase seed pods and oil production Kariyutaka Iwabuchi et al., 2020

GmPIF4b G. max var. Bragg A. tumefaciens Affect plant morphology and accelerating reproductive phase
transitions

Bragg Arya et al., 2021

AtBIC1 A. thaliana A. tumefaciens Increase plant height Kwangankong Cho et al., 2021

GmDIR27 G. max A. tumefaciens Increase pod dehiscence Williams82 Ma X. et al., 2021

GA2ox8A and GA2ox8B G. max A. tumefaciens Decrease trailing growth and shoot length W05 Wang et al., 2021d

GmGAMYB G. max A. tumefaciens Promote flowering and increase plant height DongNong50 Yang et al., 2021

GmBICs G. max A. tumefaciens Increase stem elongation TianLong1 Mu et al., 2022

Iron, nitrogen, and phosphorus
use efficiency

GmbHLH57 and
GmbHLH300

G. max A. rhizogenes Enhance Fe uptake and increase the Fe content in plants Williams82 Li et al., 2018

GmPT7 G. max A. tumefaciens Enhance symbiotic N2 fixation and yield HN66 Chen et al., 2019b

GmWRI1s G. max A. rhizogenes Increase nodule numbers Tianlong1 Chen et al., 2020a

GmPAP12 G. max A. rhizogenes Increase nodule numbers Williams82 Wang et al., 2020d

GmAAP6a G. max A. tumefaciens Enhance tolerance to low nitrogen and improve seed nitrogen
status

Tianlong1 Liu et al., 2020

GmMDH12 G. max A. tumefaciens Decrease nodule size and mediates malate synthesis YC03-3 Zhu et al., 2021

GmNMHC5 G. max A. tumefaciens Increase nodulation Jack Wang W. et al., 2022

GmNINs G. max A. rhizogenes Decrease nodule numbers Williams82 and Huachun6 Fu et al., 2022

GmD27c G. max A. rhizogenes Increase nodule numbers Tianlong1 Rehman et al., 2022

GmSPX8 G. max A. rhizogenes Increase nodule number, nodule fresh weight, and nitrogenase
activity

Zhonghuang15 Xing et al., 2022

GmHSP17.9 G. max A. rhizogenes Increase nodule number, nodule fresh weight, and seed yield Williams82 Yang et al., 2022

EsPHT1;4 E. salsugineum A. tumefaciens Increase tolerance to low phosphorus stress YD22 Yang et al., 2020b

GmETO1 G. max A. tumefaciens Enhance Pi deficiency tolerance NN94156 and Bogao Zhang H. et al., 2020

Flowering time GmFT1a and GmFT2a/5a G. max A. tumefaciens GmFT1a and GmFT2a/5a have opposite roles in controlling
flowering

Zigongdongdou and Heihe27 Liu W. et al., 2018

GmFT2b G. max A. tumefaciens Promote flowering Jack Chen et al., 2020c

GmGAMYB G. max A. tumefaciens Promote flowering and increase of plant height DongNong50 Yang et al., 2021

E1 (Glyma06g23026) G. max A. tumefaciens Promote flowering Zigongdongdou Liu et al., 2022a

Abiotic and biotic traits

Nematode resistance HgY25 H. glycines Biolistic method Enhance resistance to soybean cyst nematodes Jack Tian et al., 2019

(Continued)
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TABLE 2 | (Continued)

Target traits Transgene Source of gene Delivery method Effect on trait or function Genotype References

BtCry14Ab B. thuringiensis Biolistic method Enhance resistance to soybean cyst nematodes Jack Kahn et al., 2021

GmSYP31A G. max A. tumefaciens Enhance resistance to soybean cyst nematodes Williams82 Wang et al., 2021b

Hg-rps23, Hg-snb1, and
Hg-cpn1

H. glycines A. tumefaciens Enhance resistance to soybean cyst nematodes Williams82 Zhang et al., 2022c

Insect resistance BtCry8-like gene B. thuringiensis A. tumefaciens Result in resistance to Holotrichia parallela Jinong28 Qin et al., 2019

BtCry1Ia5 B. thuringiensis A. tumefaciens Result in resistance to Spodoptera littoralis Giza21 and Giza111 Moghaieb et al., 2019

Virus resistance The coat protein gene of
MYMIV

Mung bean yellow
mosaic India virus
(MYMIV)

A. tumefaciens Result in resistance to yellow mosaic viruses JS335 Kumari et al., 2018

SMV P3 cistron fragment
(2,529–2,830 nt)

SMV SC3 A. tumefaciens Enhance resistance to multiple Potyvirus strains and isolates Shennong9 and Williams82 Yang X. et al., 2018

GmeIF4E G. max A. tumefaciens Result in resistance to multiple potyvirids Tianlong1 Gao et al., 2020

The AC2 gene MYMIV A. tumefaciens Enhance MYMIV resistance JS335 Ramesh et al., 2019

GmKR3 G. max A. tumefaciens Result in resistance to multiple viruses Jack Xun et al., 2019

The protein kinase PBS1 TuMV A. tumefaciens Enhance potyvirus resistance Williams82 Pottinger et al., 2020

GmVma12 G. max A. tumefaciens Enhance SMV resistance Tianlong1 Luan et al., 2020

GmST1 G. max A. tumefaciens Enhance resistance to soybean mosaic virus strains G2
and G3

Dongnong93−046 Zhao et al., 2021

GmNF-YC4-2 G. max A. tumefaciens Result in broad disease resistance for bacterial, viral,
and fungal infections

Williams82 O’Conner et al., 2021

Fungal disease resistance hrpZm P. syringae A. tumefaciens Enhance tolerance to Phytophthora root and stem rot caused
by P. sojae

Williams82 and Shennong9 Du et al., 2018

AtPSS1 A. thaliana A. tumefaciens Result inresistance to F. virguliforme Williams82 Wang et al., 2018a

GmCHI1A G. max A. rhizogenes Result in resistance to P. sojae Williams82 (carrying Rps 1k) Zhou et al., 2018

GmPI4L G. max A. tumefaciens Result in resistance to P. sojae Dongnong50 Chen et al., 2019c

Hrf2 X. oryzaepv.
oryzicola

A. tumefaciens Result in resistance to P. sojae Shennong9 Niu et al., 2019

GmSnRK1.1 G. max A. tumefaciens Result in resistance to P. sojae Suinong10 Wang et al., 2019a

GmC4H1 G. max A. rhizogenes Result in resistance to P. sojae Conrad Yan et al., 2019

TaOXO T. aestivum A. tumefaciens Enhance resistance to sclerotinia stem rot Willams82 Yang X. et al., 2019

GmMYB29A2 G. max A. rhizogenes Result in resistance to P. sojae Harosoy, H63, Williams, and
W82

Jahan et al., 2020

NmDef02 N. megalosiphon Biolistic method Enhance resistance to soybean rust and anthracnose DT-84 Soto et al., 2020

CmCH1 C. minitans A. tumefaciens Enhanced resistance to Sclerotiniasclerotiorum Williams82 Yang et al., 2020c

GmDR1 G. max A. tumefaciens Result in broad spectrum immunity against fungal disease Williams82 Ngaki et al., 2021

AtFOLT1 A. thaliana A. tumefaciens Enhance resistance to broad-spectrum disease Williams82 Kambakam et al., 2021

NLR gene G. max O. haywardense Result in broad-spectrum resistance to P. sojae 93Y21 Wang et al., 2021c

GmTNL16 G. max A. rhizogenes Enhance resistance to P. sojae Williams Li et al., 2022

GmNAC1 G. max A. tumefaciens Enhance resistance to P. sojae Tianlong1 and Suinong10 Yu et al., 2022
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TABLE 2 | (Continued)

Target traits Transgene Source of
gene

Delivery method Effect on trait or function Genotype References

Herbicide tolerance G10-EPSPS D. radiodurans A. tumefaciens Result in glyphosate tolerance Zhongdou32 Xiao et al., 2019

G2-EPSPS and
G10-EPSPS

P. fluorescens
G2

A. tumefaciens Result in glyphosate tolerance Jack Guo et al., 2020a

Cytochrome P450
geneP450-N-Z1

C. dactylon A. tumefaciens Result in multiple herbicides tolerance Tianlong1 Zheng et al., 2022

Drought tolerance PgTIP1 P. ginseng A. tumefaciens Enhance both salt and drought tolerance Hybrid strain 4076 An et al., 2018

GmPIP2;9 G. max A. tumefaciens Increase drought tolerance Williams82 Lu et al., 2018

AtABF3 A. thaliana A. tumefaciens Enhance drought tolerance Kwangankong Kim et al., 2018

GmWRKY12 G. max A. rhizogenes Increase drought and salt tolerance Williams82 Shi et al., 2018

GmBIN2 G. max A. rhizogenes Enhance tolerance to salt and drought Dongnong50 Wang et al., 2018b

GmBiP G. max A. tumefaciens Enhance drought tolerance Conquista Coutinho et al., 2019

AtYUCCA6 A. thaliana A. tumefaciens Enhance drought tolerance Kwangankong Park et al., 2019

GmWRKY54 G. max A. rhizogenes Enhance drought tolerance Williams82 Wei W. et al., 2019

FvC5SD F. velutipes A. tumefaciens Enhance drought stress tolerance Shennong9 Zhang et al., 2019b

GmNFYA5 G. max A. rhizogenes Enhance drought tolerance Williams82 Ma et al., 2020

AtNCED3 A. thaliana A. tumefaciens Enhance drought tolerance BRS184 Molinari et al., 2020

GmDREB2 G. max A. tumefaciens Enhance drought tolerance DT84 Pham et al., 2020

At1Kinase A. thaliana A. tumefaciens Increase tolerance to water deficit stress Williams82 Shanmugam et al., 2020

HaHB4 H. annuus A. tumefaciens Enhance drought tolerance with yield reduced Williams82 Ribichich et al., 2020

GmNAC8 G. max A. tumefaciens Enhance drought tolerance Tianlong1 Yang et al., 2020a

GmbZIP2 G. max A. tumefaciens Enhance tolerance to salt, drought, or cold condition Williams82 Yang et al., 2020d

GmbZIP15 G. max A. tumefaciens Decrease tolerance to drought and salt tolerance C03-3 Zhang M. et al., 2020

Gmgma-miR398c G. max A. rhizogenes Negatively regulate drought tolerance Williams82 Zhou et al., 2020

GmNTF2B-1 G. max A. rhizogenes Enhance drought tolerance Williams82 Chen et al., 2021a

GmMYB14 G. max A. tumefaciens Enhance high-density yield and drought tolerance Tianlong1 Chen et al., 2021b

GmTGA15 G. max A. rhizogenes Enhance drought tolerance Williams82 Chen et al., 2021c

GmPI-PLC7 G. max A. rhizogenes Increase drought and salt tolerance Williams82 Chen et al., 2021d

GmCIPK2 G. max A. tumefaciens Enhance drought tolerance Williams82 Xu et al., 2021

GsPOD40 G. max A. tumefaciens Enhance drought tolerance PI342618B/DTP and Tianlong1Aleem et al., 2022

GmDREB1 G. max A. tumefaciens Enhance drought tolerance P3 Chen et al., 2022

sHSP26 G. max A. tumefaciens Enhance drought tolerance Jinong18 Liu et al., 2022b

GmDREB2 G. max A. tumefaciens Enhance drought tolerance BRS283 Marinho et al., 2022

GmEF8 G. max A. rhizogenes Enhance drought and heat tolerance Williams82 Zhang et al., 2022a
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TABLE 2 | (Continued)

Target traits Transgene Source of
gene

Delivery method Effect on trait or function Genotype References

Salt and other stress tolerance PgTIP1 P. ginseng A. tumefaciens Enhance both salt and drought tolerance Hybrid strain 4076 An et al., 2018

ZmGB1 Z. mays A. tumefaciens Enhance tolerance to abiotic stress \ Castiglioni et al., 2018

GmWRKY12 G. max A. rhizogenes Increase drought and salt tolerance Williams82 Shi et al., 2018

AtXTH31 A. thaliana A. tumefaciens Enhance tolerance to flooding stress Maverick Song et al., 2018

GmBIN2 G. max A. rhizogenes Enhance tolerance to salt and drought Dongnong50 Wang et al., 2018b

MsWRKY11 M. sativa
(alfalfa)

A. tumefaciens Enhance salt tolerance Dongnong50 Wang et al., 2018c

GmHsp90A2 G. max A. tumefaciens Increase tolerance to heat stress Qihuang22 Huang et al., 2019

AtAVP1 and AtNHX1 A. thaliana A. tumefaciens Increase salt tolerance DT26 Nguyen N. T. et al., 2019

GmDREB-6 G. max A. tumefaciens Enhance salt tolerance DT84 Nguyen Q. H. et al., 2019

GsCLC-c2 G. soja A. tumefaciens Enhance salt tolerance N23674 Wei P. et al., 2019

GmERF135 G. max A. rhizogenes Enhance salt tolerance Tiefeng8 Zhao et al., 2019a

GmCDF1 G. max A. rhizogenes Negatively regulate salt tolerance Kefeng1 and Nannong1138–2 Zhang et al., 2019c

GmSAP16 G. max A. tumefaciens Enhance drought and salt tolerance Williams82 Zhang et al., 2019d

J G. max A. tumefaciens Increase salt tolerance Huaxia3 Cheng et al., 2020

GsSnRK1 G. soja A. tumefaciens Increase salt and alkaline stresses tolerance Dongnong50 Feng et al., 2020

GmMYB68 G. max A. tumefaciens Increase salt and alkaline stresses tolerance Williams82 He et al., 2020

Gs5PTase8 G. soja A. rhizogenes Enhance salt tolerance Mengjin1 and Union Jia et al., 2020

GsAAE3 G. soja A. rhizogenes Increase tolerance to Cd and Al stresses BW69 Xian et al., 2020

GmbZIP2 G. max A. tumefaciens Enhance tolerance to salt, drought, or cold condition Williams82 Yang et al., 2020d

GsJAZ2 G. soja
(G07256)

Biolistic method Enhance tolerance to alkaline stress HF55 Zhao et al., 2020

GmbZIP15 G. max A. tumefaciens Decrease tolerance to drought and salt tolerance C03-3 Zhang M. et al., 2020

GmPI-PLC7 G. max A. rhizogenes Increase drought and salt tolerance Williams82 Chen et al., 2021d

AgGlpF A. glaucus A. tumefaciens Enhance salt tolerance Williams82 Li et al., 2021a

GmNAC06 G. max A. rhizogenes Enhance salt tolerance Williams82 Li et al., 2021b

GsCLC-c2 G. soja A. tumefaciens Enhance Cl−/salt tolerance BB52 Liu et al., 2021

GsBET11a G. soja A. tumefaciens Enhance salt tolerance G07256 and Dongnong50 Sun X. et al., 2021

GmNHX5 G. max A. rhizogenes Enhance salt tolerance Jidou-7 Sun T. et al., 2021

GmAKT1 G. max A. rhizogenes Enhance salt tolerance Dongnong50 Wang et al., 2021e

GmbHLH3 G. max A. rhizogenes Enhance Cl−/salt tolerance N23674 Liu et al., 2022c

GmEF8 G. max A. rhizogenes Enhance drought and heat tolerance Williams82 Zhang et al., 2022a

\ means not available.
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(Pareddy et al., 2020) and 7 out of 8 genotypes (Zhao
et al., 2019b). One important progress in these reports is
that over 5% of TFs were obtained in nearly half of these
genotypes. The second factor that affects genotype flexibility is
the regeneration ability of donor genotypes, which restricts TFs
for both Agrobacterium-mediated and biolistic transformations.
Increasing the amenability of many soybean genotypes to
regenerate may be conducted by either adding some specific
chemicals in the culture medium described above or using plant
regeneration factors or regeneration booster genes. Significant
progress has been made to improve transformations from
various tissue types using plant regeneration factors such as
maize (Zea mays) morphogenic genes, Baby boom (BBM) and
Wuschel2 (WUS2) genes in maize plant (Lowe et al., 2016),
and plant growth regulators such as GROWTH-REGULATING
FACTORS (GRF) genes used in monocot and dicot species
including soybean (Gordon-Kamm et al., 2019; Debernardi
et al., 2020; Kong et al., 2020). Use of these genes significantly
increased transformation frequency and reduced genotype
obstacle for transformation, providing a good solution for
genotype-inflexibility bottleneck in transformation of crops
including soybean. For example, introducing AtGRF5 and
GRF5 orthologs into soybean cells could improve regeneration
and, hence, increase transformation TFs significantly (Kong
et al., 2020). GRFs can also enhance shoot organogenesis
and callus regeneration, which has been confirmed in dicots
including sugar beet, canola, and sunflower. Meanwhile, somatic
embryogenesis can be promoted using some genes introduced
into explants in soybean, such as soybean orthologs of the
Arabidopsis (A. thaliana) MADS box genes AGAMOUS-Like15
(GmAGL15) and GmAGL18, which can also expand soybean
genotypes suitable for transformation, especially for biolistic
transformation (Zheng and Perry, 2014). Transformation bypass
tissue culture such as in planta transformation is an alternative
way to overcome genotype inflexibility in soybean (Liu et al.,
2009; Mangena, 2019). Nanotechnology-based transformation
can also be employed to overcome host range limitation including
genotype inflexibility, and can simplify delivery way using
pollen channel, and highly increase efficiency (Wang and Zhao,
2019). By integration of multiple-omics technologies, genes
related to transformation efficiency should be discovered for
increasing transformation efficiency. Use of the novel bacterium
O. haywardense H1 may also increase the genotype scope for
transformation, since it was claimed to be less genotype sensitive
when it was used for soybean transformation (Cho et al., 2022).

Low Transformation Frequency
The average TF for varieties (genotypes) reported is lower than
5%, although improvements have been made by modifying
the main factors described above (Table 1). Since the biolistic
method tends to use an embryogenic callus as explant because
of less chimerism compare to an embryo axis, TFs for biolistic
transformation are dependent on the success of embryogenic
callus induction for a specific genotype. Therefore, the main
focus to improve TFs is to select genotypes that are amenable
to embryogenic callus induction, or to stimulate a genotype
to produce an embryogenic callus. As described above, the

regeneration booster provides a new way to induce an
embryogenic callus without genotype limitation, which has been
confirmed in monocot plants (Lowe et al., 2018; Gordon-
Kamm et al., 2019; Debernardi et al., 2020). Enhancement
of TFs for soybean Agrobacterium-mediated transformation is
mainly achieved by improving regeneration rates of explants
and increasing the susceptibility of explants to Agrobacterium.
Half-seed explants have been the major choice, because these
explants could provide more nutrition and less damage than
cotyledonary nodes (Table 1). Continuously modifying MS-based
culture medium composition (Murashige and Skoog, 1962),
especially by addition of chemicals discovered through the study
of omics, has played a big role in TF improvement, and has been
summarized in the section above. Combinations of many factors
have promoted the TFs of soybean transformation (Table 1).
More efforts should be made to increase the average TFs close
to that of other major crops. Again, the morphogenic genes
including GRFs described above may play an important role in
enhancing soybean transformation frequency.

Chimerism in T0 Transgenic Plant
Chimerism in legume transformation is fairly common, which
causes non-transmission of transgenes to subsequent generations
either completely or at a lower ratio expected by Mendelian
genetics. Therefore, minimizing chimerism in transgenic plants
is required to obtain transmission of transgenes to the T1
generation. In soybean, Agrobacterium-mediated transformation
of cotyledonary nodes by organogenesis has been extensively
conducted for transgenic production in research and commercial
product development (Barwale et al., 1986; Homrich et al., 2012;
Yamada et al., 2012; Lee et al., 2013; Mariashibu et al., 2013;
Mangena et al., 2017). Plant regeneration by organogenesis with
an explant containing an embryo axis may be the main cause,
since shoots regenerated from soybean shoot tips were derived
from 3 superimposed cellular layers (L1, L2, and L3) in the
original apical meristem (Christou, 1990; Christou and Mccabe,
1992). Transformed cells existed primarily in the L1 and L2 layers
but not in the L3 layer of the apical meristems of regenerated
shoots, indicating possible escape in the regenerated shoots
during transformation, and this chimerism has been confirmed
(Mccabe et al., 1988; Sato et al., 1993). Currently, the chimerism
in transgenic soybean is still a major concern in the research
community, and inheritance study has been always an important
part in transformation protocol development (Pareddy et al.,
2020). Improvement for reducing escapes or chimeric rate has
been made when strict select stringency was used, especially
some new selectable markers/reagents such as AHAS/imazapyr
(Aragão et al., 2000; Rech et al., 2008), EPSPS/glyphosate
(Martinell et al., 1999; Guo et al., 2015, 2020a; Soto et al., 2017),
and AADA/spectinomycin (Martinell et al., 2002). Meanwhile,
the modified protocols made use of specific explants, such as
somatic embryogenic calli, to reduce the chance of infection with
cells at the late development stage, and combined proper selection
of chemical agents with high stringency to decrease escape rate
dramatically, which led to more than 90% T0 transgenic plants
transmitting their transgenes into T1 generation (Soto et al.,
2017; Chennareddy et al., 2018; Guo et al., 2020a). Therefore,
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TABLE 3 | List of soybean genes edited for functional genetics study and trait improvement using genome editing technology.

Trait Gene/targeting location GE platform Delivery
method

Edited events Editing outcomes References

Yield

Plant architecture GmLHY1a (Glyma.16G017400), GmLHY1b (Glyma.07G048500), GmLHY2a
(Glyma.19G260900), and GmLHY2b (Glyma.03G261800)

CRISPR/Cas9 A. tumefaciens Whole plant Knockout (multiplex) Cheng et al., 2019

GmSPL9a (Glyma.02G177500), GmSPL9b (Glyma.09G113800), GmSPL9c
(Glyma.03G143100), and GmSPL9d (Glyma.19G146000)

CRISPR/Cas9 A. tumefaciens Whole plant Knockout (multiplex) Bao et al., 2019

GmAP1a (Glyma.16G091300), GmAP1b (Glyma.08G269800), GmAP1c
(Glyma.01G064200), and GmAP1d (Glyma.02G121600)

CRISPR/Cas9 A. tumefaciens Whole plant Knockout (multiplex) Chen et al., 2020d

Seed weight and
organ size

GmPPD1 (Glyma.10G244400) and GmPPD2 (Glyma.20G150000) CRISPR/Cas9 A. tumefaciens Whole plant Knockout (multiplex) Kanazashi et al., 2018

GmSWEET10a (Glyma.15G049200) and GmSWEET10b (Glyma.08G183500) CRISPR/Cas9 A. tumefaciens Whole plant Knockout (multiplex) Wang et al., 2020c

GmKIX8-1 (Glyma.17G112800) CRISPR/Cas9 A. tumefaciens Whole plant Knockout Nguyen et al., 2021

Seed number GmJAG1 (Glyma.20G25000) and GmJAG2 (Glyma.10G42020) CRISPR/Cas9 A. tumefaciens Whole plant Knockout (multiplex) Cai et al., 2021

Photoperiod GmFT2a (Glyma.16G26660) CRISPR/Cas9 A. tumefaciens Whole plant Knockout Cai et al., 2018

GmE1 (Glyma.06G207800) CRISPR/Cas9 A. tumefaciens Whole plant Knockout Han et al., 2019

GmFT2a (Glyma.16G26660) and GmFT5a (Glyma.16G04830) CRISPR/Cas9 A. tumefaciens Whole plant Knockout (multiplex) Cai et al., 2020b

GmFT2a (Glyma.16G150700) and GmFT4 (Glyma.08G363100) BE base editor A. tumefaciens Whole plant Base editing Cai et al., 2020a

GmFT2b (Glyma.16G26690) CRISPR/Cas9 A. tumefaciens Whole plant Knockout Chen et al., 2020c

GmAP1a (Glyma.16G091300), GmAP1b (Glyma.08G269800), GmAP1c
(Glyma.01G064200), and GmAP1d (Glyma.02G121600)

CRISPR/Cas9 A. tumefaciens Whole plant Knockout (multiplex) Chen et al., 2020d

GmPRR37 (Glyma.12G073900) CRISPR/Cas9 A. tumefaciens Whole plant Knockout Wang et al., 2020b

GmLUX1 (Glyma.12G060200) and GmLUX2 (Glyma.11G136600) CRISPR/Cas9 A. tumefaciens Whole plant Knockout (multiplex) Bu et al., 2021

GmLNK2a (Glyma.04G141400), GmLNK2b (Glyma.11G154700), GmLNK2c
(Glyma.13G199300), and GmLNK2d (Glyma.15G237600)

CRISPR/Cas9 A. tumefaciens Whole plant Knockout (multiplex) Li et al., 2021c

Nutrition and
quality

Storage protein Glyma.20G148400, Glyma.20G146200, Glyma.10G246300,
Glyma.20G148200, Glyma.10G037100, Glyma.03G163500,
Glyma.19G164900, Glyma.13G123500, and Glyma.19G164800

CRISPR/Cas9 A. rhizogenes Hairy root Knockout (multiplex) Li et al., 2019

Seed oil GmFAD2-1A (Glyma.10G278000) and GmFAD2-1B (Glyma.20G111000) TALENs A. rhizogenes
and disarmed
A. rhizogenes

Hairy root and
whole plant

Knockout (multiplex) Haun et al., 2014

GmFAD2-2 CRISPR/Cas9 A. tumefaciens Whole plant Knockout al Amin et al., 2019

GmFAD2-1A (Glyma.10G278000) ZFNs Biolistic method Whole plant Knock in (NHEJ) Bonawitz et al., 2019

GmFAD2-1A (Glyma.10G278000) and GmFAD2-1B (Glyma.20G111000) CRISPR/Cas9 A. tumefaciens Whole plant Knockout (multiplex) Do et al., 2019

GmGOLS1A (Glyma.03G222000) and GmGOLS1B (Glyma.19G219100) CRISPR/Cas9 A. tumefaciens Whole plant Knockout (multiplex) Le et al., 2020

GmFAD2–1A (Glyma.10G278000) and GmFAD2–2A (Glyma.19G147300) CRISPR/Cas9 A. tumefaciens Whole plant Knockout (multiplex) Wu et al., 2020

GmFATB1a (Glyma.05G012300) and GmFATB1b (Glyma.17G012400) CRISPR/Cas9 A. tumefaciens Whole plant Knockout (multiplex) Ma J. et al., 2021

Glyma.15G117700 CRISPR/Cas9 A. tumefaciens Whole plant Knockout Qu et al., 2021

Bean flavor-free
soybean

GmLox1 (Glyma.13G347600), GmLox2 (Glyma.13G347500), and GmLox3
(Glyma.15G026300)

CRISPR/Cas9 A. tumefaciens Whole plant Knockout (multiplex) Wang et al., 2020a
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TABLE 3 | (Continued)

Trait Gene/targeting location GE platform Delivery
method

Edited events Editing outcomes References

Disease
resistance

Cyst nematode
resistance

GmSyn12 (Glyma.12G194800), GmSyn13 (Glyma.13G307600), GmSyn16
(Glyma.16G154200), and GmSyn02 (Glyma.02G072900)

CRISPR/Cas9 A. rhizogenes Hairy root Knockout (multiplex) Dong et al., 2020

Rps1 families (Glyma.03G034400, Glyma.03G0034800, Glyma.03G039200,
Glyma.03G039500, Glyma.03G037100, Glyma.03G037300,
Glyma.03G037400, Glyma.03G037400, Glyma.03G037000,
Glyma.03G034500, Glyma.03G039300, Glyma.03G045700,
Glyma.03G043600, Glyma.03G045300, Glyma.03G043000,
Glyma.03G043500, Glyma.03G044000, Glyma.03G043200,
Glyma.03G045000, Glyma.03G046500, Glyma.03G047000,
Glyma.03G043900) and Rpp1L families (Glyma.18G281700,
Glyma.18G281600, Glyma.18G281500, and Glyma.18G280300)

CRISPR/Cas9 A. tumefaciens Whole plant Knockout (multiplex) Nagy et al., 2021

Rhg1-locus (Glyma.18G02270), DELLA18 (Glyma.18G040000), and DELLA11
(Glyma.11G216500)

CRISPR/Cas9 A. rhizogenes Hairy root Knockout (multiplex) Dong and Hudson, 2022

Insect resistance GmUGT (Glyma.07G110300) CRISPR/Cas9 A. tumefaciens Whole plant Knockout Zhang et al., 2022b

Abiotic stress
tolerance

Drought tolerance GmLHY1a (Glyma.16G017400), GmLHY1b (Glyma.07G048500), GmLHY2a
(Glyma.19G260900), and GmLHY2b (Glyma.03G261800)

CRISPR/Cas9 A. tumefaciens Whole plant Knockout (multiplex) Wang et al., 2021a

Salt tolerance GmNAC06 (Glyma06G21020) CRISPR/Cas9 A. rhizogenes Hairy root Knockout Li et al., 2021b

Nitrogen fixation

GmNSP1a (Glyma.07G039400) and GmNSP1b (Glyma.16G008200) CRISPR/Cas9 A. tumefaciens Whole plant Knockout (multiplex) He et al., 2021

Herbicide
resistance

GmALS1 (Glyma.04G37270.1), GmALS2 (Glyma.06G17790.1), GmALS3
(Glyma.13G31470.1), and GmALS4 (Glyma.15G07860.1)

CRISPR/Cas9 Biolistic method Whole plant Knockin (HDR) Li et al., 2015

Root nodulation GmRIC1 (Glyma.13G292300), GmRIC2 (Glyma.06G284100), GmRDN1-1
(Glyma.02G279600), GmRDN1-2 (Glyma.14G035100), and GmRDN1-3
(Glyma.20G040500)

CRISPR/Cas9 A. tumefaciens Whole plant Knockout (multiplex) Bai et al., 2020

GmSPL9d (Glyma.19G146000) and GmmiR156 CRISPR/Cas9 A. rhizogenes Hairy root Knockout (multiplex) Yun et al., 2022

Allergy reduction Gly m Bd 28K (Glyma.U020300) and Gly m Bd 30K (Glyma.08G116300) CRISPR/Cas9 A. tumefaciens Whole plant Knockout (multiplex) Sugano et al., 2020

GE platform
adoption in
soybean

GmDCL1a (Glyma.03G42290), GmDCL1b (Glyma.19G45060), GmDCL4a
(Glyma.17G11240), GmDCL4b (Glyma.13G22450), GmRDR6a
(Glyma.04G07150), GmRDR6b (Glyma.06G07250), and GmHEN1a
(Glyma.08G08650)

ZFNs A. rhizogenes Hairy root Knockout (multiplex) Curtin et al., 2011

GmDCL4a (Glyma.17G11240) and GmDCL4b (Glyma.13G22450) ZFNs A. rhizogenes Hairy root Knockout Sander et al., 2011

Bar transgene, GmFEI1 (Glyma.01G35390), GmFEI2 (Glyma.09G34940), and
GmSHR

CRISPR/Cas9 A. rhizogenes Hairy root Knockout (multiplex) Cai et al., 2015

GmGS (Glyma.18G04660 and Glyma.18G041100) and GmCHI20
(Glyma.20G38560 and Glyma.20G241500)

CRISPR/Cas9 A. rhizogenes Hairy root Knockout Michno et al., 2015

GFP transgene, Glyma07g14530, 01gDDM1 (Glyma.11G38150), 11gDDM1
(Glyma.11G07220), Glyma04g36150, Glyma06g18790, miR1509, and
miR1514

CRISPR/Cas9 A. rhizogenes Hairy root Knockout Jacobs et al., 2015
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TABLE 3 | (Continued)

Trait Gene/targeting location GE platform Delivery
method

Edited events Editing outcomes References

Glyma.06G14180, Glyma.08G02290, and Glyma.12G37050 CRISPR/Cas9 A. rhizogenes Hairy root Knockout (multiplex) Sun et al., 2015

GmPDS11 (Glyma.11G253000) and GmPDS18 (Glyma.18G003900) TALENs A. tumefaciens Whole plant Knockout Du et al., 2016

FAD2-1A (Glyma.10G42470) and FAD2-1B (Glyma.20G24530) CRISPR/AsCpf1 or
LpCpf1

Protoplast
transfection

Protoplast Knockout (RNP) Kim et al., 2017

GmIPK1 (Glyma.14G072200) and GmIPK2 (Glyma.12G240900) (STU and
TCTU system*)

CRISPR/Cas9 A. rhizogenes Hairy root Knockout (multiplex) Carrijo et al., 2021

Glyma.15G249000 and Glyma.13G259100 CRISPR/Cas9 A. rhizogenes Hairy root Knockout (multiplex) Luo et al., 2021

GmPDS11g (Glyma.11g253000) and GmPDS18g (Glyma.18g003900) CRISPR/Cas9 A. tumefaciens Whole plant Knockout (multiplex) Lu and Tian, 2022

Transgene-free
edited events

Target sites DD38 and DD51 CRISPR/Cas9 O. haywardense
H1-8

Targeted insertion Kumar et al., 2022

Gly m Bd 30K (Glyma.08G116300) CRISPR/Cas9 Biolistic method Whole plant Knockout Adachi et al., 2021

Egg cell promoter
driving Cas9

GmAGO7a (Glyma.01G053100) and GmAGO7b (Glyma.02G111600) CRISPR/Cas9 A. rhizogenes
andA.
tumefaciens

Hairy root and
whole plant

Knockout (multiplex) Zheng et al., 2020

Targeted deletions
of DNA fragments

GmFT2a (Glyma.16G26660) and GmFT5a (Glyma.16G04830) CRISPR/Cas9 A. tumefaciens Whole plant Knockout (4.5 kb in GmFT2a) Cai et al., 2018

Growth of soybean
trichomes

GmCPR5 (Glyma.06G145800) CRISPR/Cas9 Biolistic method Whole plant Knockout Campbell et al., 2019

Fertility GmMs1 (Glyma.13G114200) CRISPR/Cas9 Biolistic method Whole plant Knockout Nadeem et al., 2021

GmMs1 (Glyma.13G114200) CRISPR/Cas9 Biolistic method Whole plant Knockout Jiang et al., 2021

miRNA pathway
and small RNA
processing

GmDCL1a (Glyma.03G42290), GmDCL1b (Glyma.19G45060), GmDCL4a
(Glyma.17G11240), GmDCL4b (Glyma.13G22450), GmRDR6a
(Glyma.04G07150), GmRDR6b (Glyma.06G07250), GmHEN1a
(Glyma.08G08650), and GFP transgene

ZFNs A. rhizogenes Hairy root Knockout Curtin et al., 2011

GmDRB2a (Glyma.12G075700), GmDRB2b (Glyma.11G145900), GmDCL3a
(Glyma.04G057400), GmHEN1a (Glyma.08G081600), and GmHEN1b
(Glyma.05G126600)

CRISPR/Cas9 A. rhizogenes Hairy root Knockout (multiplex) Curtin et al., 2018

GmDCL2a (Glyma.09G025400), GmDCL2b (Glyma.09G025300), and
GmDCL3a (Glyma.04G057400)

TALENs Disarmed
A. rhizogenes

Whole plant Knockout (multiplex) Curtin et al., 2018

Sucrose export
related embryo
development

GmSWEET15a (Glyma.05G126600) and GmSWEET15b (Glyma.05G1266000) CRISPR/Cas9 A. tumefaciens Whole plant Knockout (multiplex) Wang et al., 2019b

Circadian
rhythmicity

GmLCLa1 (Glyma.16G01980), GmLCLa2 (Glyma.07G05410), GmLCLb1
(Glyma.03G42260), and GmLCLb2 (Glyma.19G45030)

CRISPR/Cas9 A. tumefaciens Whole plant Knockout (multiplex) Wang et al., 2020e

Soybean knockout
library

70 sgRNAs to target 102 genes CRISPR/Cas9 A. tumefaciens
(pooled)

Whole plant Knockout (multiplex) Bai et al., 2020

*STU, single transcriptional unit; SpCas9 and sgRNA are driven by only one promoter; and the two-component transcriptional unit (TCTU) in the conventional system, and SpCas9 and sgRNA are under the control of
different promoters.
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transgenic soybean with chimeric issues may due to insufficient
selection that existed in various protocols.

Development of Transformation Method
for New Breeding Technology
Genome editing is the recent advancement in genome
engineering, which has revolutionized crop research and
plant breeding. GE, through site-specific nucleases (SSNs),
can precisely make changes in targeted genome sequence
sites by disruption including insertion and deletion, base
changes, sequence replacement, and sequence insertion. SSNs
include zinc-finger nucleases (ZFNs), transcription activator-
like effector nucleases (TALENs), and CRISPR/CAS. GE is
a fast-developing technology that will potentially play an
important role in genomics study and will create opportunities
for rapid development of elite cultivars with desired traits.
The development of soybean GE has been reviewed in Xu
et al. (2020). Recent GE applications in soybean for trait
improvement have been summarized in Table 3. For example,
function analysis of photo period-related genes such as LHY
homologs, J and E1, and tof 16 (Time of Flowering 16) using
GE technology showed that more than 80% accessions in low
latitude harbor the mutations of tof16 and J, which suggests
that loss of functions of Tof16 and J is the major genetic basis
of soybean adaptation into tropics. Therefore, maturity and
yield traits can be quantitatively improved by modulating the
genetic complexity of various alleles of LHY homologs, J, and
E1 (Bu et al., 2021; Dong et al., 2021). The findings uncover the
adaptation trajectory of soybean from its temperate origin to
the tropics. Knockout of GmJAG1, which controls the number
of seeds per pod (NSPP), increases by over 8% the yield of
a Chinese variety, Huachun 6 (Cai et al., 2021). GmMs1 KO
events in soybean were created, which showed male sterility
phenotype (Jiang et al., 2021; Nadeem et al., 2021). SCN-resistant
mechanisms such as t-SNAREs binding Rhg1 α-SNAP (Dong
et al., 2020) and WI12Rhg 1 interacting with DELLAs (Dong
and Hudson, 2022) were found using GE as a tool. Targeted
chromosome cleavage by CRISPR/Cas9 can conceivably induce
rearrangements and, thus, emergence of new resistance gene
paralogs. CRISPR/Cas9-mediated chromosome rearrangements
in nucleotide-binding-site-leucine-rich-repeat (NBS-LRR) gene
families of soybean produced a new disease-resistant gene (Nagy
et al., 2021). Raffinose family oligosaccharides (RFOs) are major
soluble carbohydrates in soybean seeds that cannot be digested
by humans and other monogastric animals. Double mutation
events, knockouts in two soybean galactinol synthase (GOLS)
genes, GmGOLS1A and its homeolog GmGOLS1B, showed a
reduction in the total RFO content of soybean seeds from 64.7
to 41.95 mg/g dry weight, a 35.2% decrease (Le et al., 2020).
This product improved the soybean nutrition quality. Two
transcription systems were also tested in soybean including
the single transcriptional unit (STU), SpCas9 and sgRNA are
driven by only one promoter, and in the conventional system,
the two-component transcriptional unit (TCTU), SpCas9, is
under the control of a pol II promoter, and sgRNAs are under
the control of a pol III promoter. The results showed that

the STU is more efficient (Carrijo et al., 2021). Cpf1 (Cas12a)
systems have also been established in soybean for GE (Duan
et al., 2021; Kim and Choi, 2021). Meanwhile, different GE
systems for soybean have been established using specific editing
reagent delivery methods developed for soybean transformation,
which produce transgene-free GE events either with the biolistic
method (Adachi et al., 2021) and selectable marker-free GT
systems by O. haywardense H1-8-mediated delivery (Kumar
et al., 2022), or by organ-specific editing using an egg cell-
specific promoter (Zheng et al., 2020). All these GE studies
on soybean demonstrate that the ability to conduct genome
editing directly depends on plant transformation technologies,
since recovery of stable events with the target gene edited is
normally based on available transformation systems including
editing reagent delivery and edited event regeneration. GE
has the potential to avoid many regulatory issues regarding
transgenics if specific editing reagents are used. Based on the
CRISPR/CAS system, gRNA in the form of in vitro-synthesized
RNA molecule, together with Cas9 as DNA construct, can
be stably integrated into the host genome and constitutively
expressed, which might lead to a transgenic event for a GE
event. This issue can be resolved by introduction of editing
tools without genomic integration or transient expression.
Transgene-free or DNA-free edited events in many crops can
now be obtained either by delivering the RNA form of sgRNA
and Cas9 or Cas9 protein (RNP) using the biolistic method, or
by protoplast transfection (Chen et al., 2019a; Xu et al., 2020;
Gao, 2021; Kim and Choi, 2021). Transgene-free events can also
be recovered with the Agrobacterium-mediated method without
selection (Liang et al., 2017). However, genotype flexibility
limitation is a major issue for soybean GE in the biolistic method,
and low TF for some elite varieties is the main hurdle in the
Agrobacterium-mediated method.

CONCLUSION

As summarized above, development of soybean transformation
protocols, which pose genotype-flexibility and relatively high
efficiency and can easily be adapted in any laboratory, is still
a main task for researchers. Reducing biological restrictions
such as genotype dependence or tissue-specific and method
restrictions will eventually lead to transformation automation
and versatile and high throughput, which will facilitate the
application of next-generation breeding technologies such as
genome editing for soybean improvement. These goals may be
achieved with fast progress in fundamental research to unravel
basic biological process and genetic background, especially when
more regeneration regulators such as morphogenic genes are
identified. Transgenic soybean in which various genes can be
manipulated will accelerate the validation of gene function
in the context of complex gene networks at different plant
developmental stages, which will accelerate the understanding of
the mechanism of soybean cell regeneration, and it is beneficial
for us to modify transformation protocols. New technologies like
nanoparticle delivery also bring us hope to break through these
barriers as well as the transformation bypass method.
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