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In context of the climate change, major abiotic stresses faced by plants include

salt stress and drought stress. Though, plants have similar physiological mechanisms

to cope with these salt and drought stresses. The physiological and biochemical

response of native plants to the combined application of salinity and drought stresses

are still not well-understood. Thus, to investigate the combined effect of salinity

and drought stresses, an experiment was conducted on Salsola imbricata with four

levels of salinity and four drought intensities under the arid climatic conditions. The

experiment was conducted in a randomized complete block design with a split-plot

arrangement replicated three times. S. imbricata had been found resistant to different

levels of individual and combined salt and drought stresses. S. imbricata survived

till the end of the experiment. Salt and water stress did not show any significant

effects on shoot weight, shoot length, and root length. The drought stress affected the

photosynthetic rate, ion uptake and leaf water potential. However, salt stress helped to

counter this effect of drought stress. Thus, drought stress did not affect plant growth,

photosynthesis rate, and ion uptake when combined with salt stress. Increased Na+

and Cl− uptake under the salt stress helped in osmotic adjustment. Therefore, the

leaf water potential (LWP) decreased with increasing the salt stress from 5 dSm−1

until 15 dSm−1 and increased again at 20 dSm−1. At lower salt stress, ABA and

proline content declined with increasing the drought stress. However, at higher salt

stress, ABA content increased with increasing the drought stress. In conclusion, the salt

stress had been found to have a protective role to drought stress for S. imbricata. S.

imbricata utilized inorganic ion for osmotic adjustment at lower salinity stress but also

accumulate the organic solutes to balance the osmotic pressure of the ions in the vacuole
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under combined stress conditions. Due to the physical lush green appearance and less

maintenance requirements, S. imbricata can be recommended as a native substitute in

landscaping under the salt and drought stresses conditions.

Keywords: biochemical, drought, landscaping, native plants, salinity, physiological

INTRODUCTION

Agriculture is facing serious threats from abiotic factors such as
salt stress and drought stress (Wang et al., 2003). Environmental
fluctuations are rapidly increasing including salt and drought
stresses, limiting plant productivity by 10% of arable land
and more than 50% of major crops (Bartels and Sunkar,
2005). Globally, salt stress is affecting more specifically the
irrigated agricultural land, while drought is severely affecting the
agricultural crops (Zhu, 2002; Zamin et al., 2019a). Therefore,
studies on the plants’ response to salt and drought stresses are
of primary importance. Halophytes have the ability to withstand
and even benefit from salt and drought stresses conditions, which
are lethal to the cultivated crops (Zamin and Khattak, 2018).
Studying halophytes can lead to produce salt-tolerant crops
through genetic modification and effective breeding (Ben Amor
et al., 2005). These studies may also help to develop sustainable
arid landscapes with native plants, which can conserve drought
resources used for landscape irrigations (Zamin et al., 2018).

The effect of abiotic stresses including salt and water stresses
are often indistinguishable and interconnected. For example, salt
and drought stresses disrupt homeostasis and ion distribution
resulting from osmotic stress in the cell (Wang et al., 2003).
The plants physiological mechanisms to cope with salt and
drought stresses are similar up to some extent. The water
potential under salinity and drought decreases significantly
in the similar pattern because under salt stress the plants’
available water is also decreasing (Hasegawa et al., 2000).
The simultaneous incidence of different stresses has positive
or negative impacts on plant performance, depending on
the nature and duration of the stresses (Niinemets, 2010).
With the help of cross-tolerance, the plants have developed
some special mechanisms to adapt to one stress and become
resistant to some other stresses. This phenomenon is still an
important challenge for the researchers and the exact mechanism
of cross-tolerance is still not well-understood. Scientists are
still focusing to get stable multiple stress tolerant traits in
agronomical crops to improve yield, particularly in xeric
conditions (Bahmani and Maali-Amiri, 2017).

The photosynthesis is a primary process that is influenced by
the salt and drought stresses because of stomatal closure and
decreasing the net CO2 diffusion to the chloroplast (Gibberd
et al., 2002; Tezara et al., 2002; Anjum et al., 2011). However,
the salt or drought stress tolerance is mainly associated with
the maintenance of the net photosynthetic rate (Kumar et al.,
2000; Anjum et al., 2011). The leaf Na+ and Cl− concentrations
increase significantly with increasing electrical conductivity (EC)
of the irrigation water (Niu et al., 2012). The production of
reactive oxygen species (ROS) is significantly increased under
the salt and drought stresses (Miller et al., 2010). The ROS are

generated during the stress metabolism as a toxic by-product
and play an important role in signal transduction molecules
during the plant responses to abiotic stresses (Miller et al., 2008).
The overproduction of these ROS can cause oxidative damage
to plants (Smirnoff, 1998). Plants have developed antioxidant
defense mechanism, which can detoxify the adverse effect of ROS
(Caverzan et al., 2012) and protect plant cells from oxidative
damage by scavenging of ROS (Gill and Tuteja, 2010). Mostly,
the researchers have investigated the responses of cultivated crops
to salt and drought stresses on molecular levels (Umezawa et al.,
2004). The ROS scavenging capacity of cultivated plants has
been widely investigated by applying different stresses separately
(Sekmen et al., 2014).

Native plants have the potential not only resist to the
aforementioned stresses but also to provide many ecological
benefits (Alam et al., 2017; Zamin et al., 2019b). Compared to
cultivated relatives, native species have more ability to grow
under the salt and drought stresses conditions (Morales et al.,
2001; Fiedler, 2006; Stephens et al., 2006; Ochoa et al., 2009;
Zamin and Khattak, 2017). According to Garci et al. (2004),
many taxa are categorized as drought-resistant often based on
the anecdotal observations. The physiological and molecular
response of native plants to the combined application of salinity
and drought stress is still not well-understood (Harb et al., 2010).

Salsola imbricata (Forssk.) (Arabic name: (غضرب belonging
to the family Amaranthaceae is a perennial halophytic shrub
that grows in deserts and arid regions of the Arabian Peninsula,
southwestern Asia andNorth Africa. S. imbricata can also be used
as a model plant to study the cross-tolerance for salt and drought
stress and improve the stress resistance in many other plant
species. Moreover, studying desert plants like S. imbricata for
their field performance under the xeric conditions will provide
guidelines for their proper maintenance in landscapes. We
evaluated the field performance of S. imbricata under combined
salt and drought stresses condition and study underlying stress
resistance mechanism to overcome these stresses. Therefore, the
study aimed to explore the suitability of S. imbricata for urban
landscaping and to bring sustainability in landscaping.

MATERIALS AND METHODS

Research Site
The field experiment to study the eco-physiological response of
S. imbricata to different salt and drought stresses was carried out
at the AL-Foa Research Farm, United Arab Emirates University,
Al Ain, Abu Dhabi, UAE (24◦12’ N and 55◦44’ E) during 2015–
2016. The experimental site was situated in the arid region,
having a long hot summer season of 4 months, i.e., from May
to September with a maximum temperature above 45◦C. The
winter prevails from mid-November to the end of February
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Table 1 | Physicochemical properties of planting medium.

Soil properties

Texture

Sand (%) 87.50

Silt (%) 5.00

Clay (%) 7.50

Total carbonate (%) 24.53

EC (dSm−1) 9.49

pH 7.58

Cations mg/kg

Ca 25.00

Mg 34.20

Na 53.80

K 7.52

Anions mg/kg

Cl 46.80

HCO3 20.40

SO4 0.64

Mg:Ca Ratio 1.37

followed by a short spring season from March to April. The
mean annual temperature varies between 12 and 45◦C during
winter and summer seasons, respectively (Statistics Center Abu
Dhabi, 2015). The soil used in potting mix was sandy in nature,
which was comprised of 87.5% sand, 5% silt, and 7.5% clay. More
detailed soil properties are presented in Table 1 (Abdelfattah
et al., 2009).

Experimental Design
Salsola imbricata seeds were sown in germinating trays with
growing media of potting soil and sweet sand 1:1 by volume.
The soil used in potting mix was sandy in nature having 24.53%
carbonate content with pH 7.58 and EC 9.49. The Ca+ content
of the soil sample was 25 mg/kg whereas Mg was 34.2 mg/kg
and low K+ content, i.e., 7.53 mg/kg (Table 1). After 3 weeks
of germination, seedlings were transplanted to pots with 20 cm
diameter and 15 cm height filled with sweet desert sand which has
lower EC values and is considered good for agriculture purposes.
Seedlings were thinned to one seedling per pot. After 1 month
of transplantation of seedlings from germination trays to the
pots, four saltwater treatments were prepared by dissolving NaCl
in freshwater supplied by Al- Ain in municipality, i.e., 5 dS
m−1 (Control; S1), 10 dS m−1 (low salinity level; S2), 15 dS
m−1 (moderate salinity level; S3), and 20 dS m−1 (high salinity
level; S4; Al-Dakheel et al., 2015; Zamin et al., 2019a). Salinity
treatments were prepared in four different water tanks. These
water tanks were connected to the drip irrigation line to supply
water to each pot individually with four irrigation intensities.
To estimate the Field capacity, the fully water-saturated soil
was weighed and then dried to constant weight at 105◦C. The
weight difference between water-saturated and oven-dried soil
was taken as the weight of water needed to bring soil to field
capacity and lower FCwas calculated accordingly. Four irrigation

intensities were: 100% field capacity (Control; C), 80% field
capacity (low stress), 60% field capacity (moderate stress), and
40% field capacity (severe stress) (Álvarez et al., 2009). Plants
were irrigated 2–3 times per week, depending upon evaporative
demand using the drip irrigation system with one emitter per
plant each delivering 2 Lh−1. The amount of water applied to
the control varied between 788 and 1,182ml per pot per week.
The average of water was 985 ml/week for the WL1 (control) and
787, 590, and 392ml/week forWL2,WL3, andWL4, respectively.
The NPK @ 5–7 g/plant was applied to each plant before the
start of experiment. Agronomic practices, e.g., weeding and crop
maintenance, etc., were equally applied to all treatments during
the entire growing period of plants. Experiment was conducted
in open field and plants were grown under natural environmental
conditions. The mean monthly temperature ranged between 32.9
and 33.4◦C and humidity from 21 to 29% while 0mm rainfall
was forecasted at the beginning and end of the experiment.
The experiment was conducted in a randomized complete block
design replicated three times. The salinity levels were allotted
to the main plot while the irrigation intensities were allotted to
the sub-plots.

Percent Survival, Harvesting, and Sampling
Plants that survived under each stress treatment were counted
and the survival percentage was calculated. Three plants from
each treatment were harvested after 6 months of treatment
application to record morphological parameters. Plant samples
from each treatment were collected and instantly ground in
liquid nitrogen and stored at −80◦C for the quantitative
chemical analysis.

Morphological Traits
After harvest, the plant samples were carefully cleaned from sand,
washed with distilled water, and dried with the help of tissue
paper. After harvesting, each plant was divided into shoots and
roots and root and shoot length were measured. Shoot length
was measured from the base of stem till the apex end while root
length was measured from the root base up to the end of primary
root. Samples were oven-dried (60◦C) for 24 h and weighted
(±0.0001 g). For morphological traits, all the samples were put
in Ziploc bags, placed in an ice bag at 4◦C, and transferred to
the laboratory.

Physiological Traits
The photosynthetic rate of upper, lower, and basal leaves
was measured weekly using a Plant Photosynthesis Meter
(EARS, Netherlands; Samarah, 2005). Replicated leaf water
potential (MPa) was recorded during midday using a WP4C
Dewpoint psychrometer (Decagon Devices, Inc., USA; Xiong
et al., 2014). Leaf water potential was recorded after 1 and
5 months of treatment application. Phosphorus concentrations
were estimated in plant leaves at the end of the experiment by
Olsen (1954) methodology. Na+ content (µ mole g−1) of plant
extracts was determined by the Flame Emission Spectroscopy at
the end of the experiment. For Cl− content, 50mg of leaf and root
samples were ground and heated in distilled water for 3 h (80◦C).
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The Cl− content (µmole g−1) of the extract was then determined
with the chloride analyzer at the end of the experiment.

Biochemical Traits
The ABA and proline extraction was performed on 10mg of
freeze-dried leaf tissue as described by Forcat et al. (2008). The
samples were analyzed for ABA and proline using LCMS/MS,
and were filtered through a 0.45µm cellulose acetate syringe.
The phytohormones separation was done using a C18 column
(ZORBAX Eclipse Plus). An injection of 2 µl was loaded onto
the C18 column (1.8µm particle size, 2.1mm inner diameter,
and 50mm long) at a flow rate of 0.2 ml/min and the column
temperature was kept at 35◦C. The liquid chromatography was
connected to an Agilent Technologies Mass Spectrometry (6420
Triple Quad detector). For elution, solvent A consists of formic
acid (0.1%) with distilled water and solvent B consists of an
LCMS grade acetonitrile were used. The analytical procedure was
as follows.

Solvent A was used (5min), then the gradient from 0 to 100%
solvent B was used (5–20min), after the solvent B was kept
constant (5min) and at 25.1min solvent A was 100% was used
for 30min. During the analysis with LC–MSMS only negative
polarity mode was used for ABA and Proline analysis. For
fragmentation, nitrogen gas was used. The capillary voltage was
4,000V, the gas flow was 8 L/min, the gas temperature was 300◦C
and the nebulizer pressure was 45 psi.

Statistical Analysis
Two way analysis of variance (ANOVA) was used to check
the effect of salinity, drought, and their interaction on
morphological, biochemical, and physiological traits. While
the normality was checked with Shapiro–Wilk test. The post-
hoc Tukey HSD was used to check the comparison between
treatments. All the analysis was performed using the SPSS
software at 5% probability level.

RESULTS

Percent Survival, Root and Shoot Length
and Weight
Results concerning the morphological response of S. imbricata
to varying salt and drought stresses are given in Table 2. The
ANOVA revealed that all the morphological parameters (percent
survival, root and shoot length and weight) did not show any
significant (p > 0.05) effect by the drought stress. A similar
response was found in the case of salinity stress except root
weight (g) which was significantly affected by increasing salinity.
The percent survival of S. imbricata did not affect significantly
(p > 0.05) by different levels of salt and drought stresses.
The interaction between salt and drought stresses was also not
significant and S. imbricata survived on all salt and drought levels
with percent survival >90% (Table 2). However, the root weight
was significantly affected by the salt stress while the drought stress
had no significant effect. The root weight was maximum under
the lower salinity and decreased with increasing drought stress.
The root weight (10.22 g) observed at 5 dS m−1 was statistically
at par to the root weight (7.50 g) at 10 dS m−1. Furthermore, the

root weight (4.87 and 9.69 g) recorded at 15 and 20 dS m−1 was
statistically similar with root weight at 10 dS m−1.

Photosynthetic Rate, Leaf Water Potential, Na+

Uptake, and Cl– Uptake
Physiological response of S. imbricata to different drought and
salinity stresses is shown in Table 3. According to the ANOVA,
varying responses were recorded for different physiological traits.
The drought stress did not show any significant (p > 0.05)
effect on all the parameters except leaf water potential (MPa)
which was significantly affected. In contrast to drought stress,
salinity stress had a significant (p < 0.05) effect on all the
physiological parameters of S. imbricata except photosynthetic
rate. However, the interaction between salt and drought stresses
was found significant.

The interactive effect of salinity and drought stress was
found significant for photosynthetic rate (Figure 1). Generally,
under the drought stress, the photosynthetic rate decreases with
increasing salinity levels up to 15 dS m−1 while at 20 dS m−1,
increasing tendency was found. The maximum photosynthetic
rate was observed at 100% field capacity under 5 dS m−1 which
was statistically similar to S1WL2 and S3WL1. It was evident
that S. imbricata canmaintain the photosynthesis under combine
drought and salinity stresses to cope with the harsh and adverse
climatic conditions.

Water potential was also significantly affected in response
to the interaction of salinity and drought stress as indicated
in Figure 2. Leaf water potential decreased with increasing salt
stress from 5 dS m−1 until 15 dS m−1. However, at salinity stress
of 20 dS m−1 leaf water potential was not much affected like
15 dSm−1. Increasing water stress also decreases the leaf water
potential under all salt stress (Figure 2).

As far as the interactive effect of salinity and drought
stress is concerned, the ion uptake (Na+ and Cl− contents)
was significantly affected by the salinity and drought stresses
(Figures 3, 4). Na+ concentration had an interactive effect (p
≤ 0.05) on salt and water stress. The Na+ content increased
with increasing the salt and water stress. Even at the low salt
stress level, when external Na+ was low, Na+ concentration
increased under the water stress in shoots (Figure 3). Generally,
Cl− content increases with increasing salinity. The Cl− content
increased with increasing the drought stress at lower salinity,
while at higher salinity level, Cl− content decreased after the
drought stress reached to a certain level (Figure 4). This shows
that S. imbricata has the ability to enhance the ion uptake under
the severe drought and salinity conditions.

ABA (µg g–1 FW) and Proline (µg g–1 FW) Contents
Results concerning biochemical response of S. imbricata to
varying drought and salinity stresses are presented in Table 4.
The ANOVA revealed that ABA and proline content were
significantly salt and drought stress interaction.

The interactive effect of salinity and drought stress was found
significant for the ABA content (Figure 5). Generally, under
combine salt and drought stress, the ABA content decreases with
increasing drought stress for salinity levels up to 15 dS m−1 while
at 20 dS m−1, the trend was the opposite. Under the salt stress
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Table 2 | Morphological response of S. imbricata to varying drought and salinity stresses.

Drought stress

(% Field

Capacity)

Survival percentage Root length (cm) Shoot length (cm) Root weight (g) Shoot weight (g)

100 (WL1) 93.39 51.52 48.69 8.07 136.19

80 (WL2) 94.46 52.24 50.21 5.84 98.64

60 (WL3) 94.79 48.70 46.49 7.19 65.59

40 (WL4) 93.25 50.72 47.00 8.16 94.25

LSD (0.05) NS NS NS NS NS

Salinity stress (dS m−1)

5 (S1) 93.93 49.48 48.70 10.22a 101.90

10 (S2) 96.03 49.47 50.21 7.50ab 86.06

15 (S3) 91.39 50.28 45.52 6.68b 84.15

20 (S4) 93.54 53.97 47.96 4.87b 122.56

LSD NS NS NS 3.45 NS

Interaction

(WS*SS)

NS NS NS NS NS

Means with different letters in each category are significantly different at α = 0.05. NS, WS, SS, and LSD stand for no significant, drought stress, salinity stress and least significant

difference, respectively. The * symbol indicates the interaction.

Table 3 | Physiological response of S. imbricata to varying drought and salinity stresses.

Drought stress (% field

capacity)

Photosynthetic rate (µmol m−2 S−1) Leaf water potential (MPa) Na+1 uptake (µ mole g−1) Cl −1 uptake (µ mole g−1)

100 (WL1) 23.23 −21.99 405.9 40.42

80 (WL2) 21.24 −23.90 419.7 44.00

60 (WL3) 19.95 −28.94 423.8 43.33

40 (WL4) 17.55 −29.38 420.3 41.83

LSD (0.05) NS 5.30 NS NS

Salinity stress (dS m−1)

5 (S1) 22.48 −20.30 398.8b 38.67

10 (S2) 19.90 −24.26 428.7a 42.33

15 (S3) 19.73 −35.01 404.3b 40.63

20 (S4) 20.17 −24.47 438.0a 47.96

LSD NS 5.30 14.50 5.84

Interaction (WS*SS) Figure 1 Figure 2 Figure 3 Figure 4

Means with different letters in each category are significantly different at α = 0.05. NS, WS, SS, and LSD stand for no significant, drought stress, salinity stress and least significant

difference, respectively. The * symbol indicates the interaction.

of 20 dS m−1, maximum ABA production was recorded at 60%
field capacity which is statistically at par with 40% field capacity.
However, the ABA response to 60 and 40% field capacity was
similar at all salinity levels. The maximum ABA content was
observed at 60% field capacity under severe salinity (20 dS m−1)
which was statistically similar to 100 and 80% field capacity at
10 and 15 dS m−1 and 100% field capacity at 5 dS m−1. It was
evident that S. imbricata increased the ABA production under
severe drought and salinity stress to combat their growth- and
performance-related adversities.

The proline content significantly varied in response to
the interaction of salinity and drought stress as shown in
Figure 6. The proline content decreases with increasing
drought stress and salt stress together except S4. For salt
stress of 20 dS m−1, proline content increased up to

60% field capacity and then declined. Maximum proline
production was recorded 60% field capacity at 20 dS m−1

indicating that S. imbricata enhances the proline production
under severe salinity and drought stress to cope with
such stresses.

DISCUSSION

In the present experiment, S. imbricata survived for 6 months
with no significant effect of salt and drought stress on the growth
parameters. It is evident that S. imbricata is resistant to salt and
drought stress.

Salt and drought stress are considered as separate and
additive factors contributing to growth reduction (Munns, 2002;
Chaves et al., 2009). However, in the current experiment, salt
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Figure 1 | Interactive effect of salinity and drought stress on the photosynthesis rate (µmol m−2 S−1) of S. imbricata. Value bars with different letters are significantly

different from each other at α = 0.05, while error bar represents the standard error of mean (n = 3). WL stands for water level (WL1 = 100% field capacity, WL2 =

80% field capacity, WL3 = 60% field capacity, and WL4=40% field capacity) while S represents salinity (S1 = 5 dS m−1, S2 = 10 dS m−1, S3 = 15 dS m−1, and S4

= 20 dS m−1).

Figure 2 | Interactive effect of salinity and drought stress on the water potential (MPa) of S. imbricata. Error bar represents the standard error of mean (n = 3). WL

stands for water level (WL1 = 100% field capacity, WL2 = 80% field capacity, WL3 = 60% field capacity, and WL4 = 40% field capacity), while S represents salinity

(S1 = 5 dS m−1, S2 = 10 dS m−1, S3 = 15 dS m−1, and S4 = 20 dS m−1).

and drought stress did not show any significant effect on
shoot weight, shoot length, and root length of S. imbricata.
Higher salinity helped to reduce the negative effects of
drought stress. Only root weight decreased with increasing
salt stress. Moderate salinity (50–250mM NaCl) can stimulate
the growth of many halophytes (Flowers et al., 1986; Khan
et al., 2000). NaCl may have positive effects under the
drought stress, i.e., salt stress alleviated the negative effects of
drought stress. These positive effects of salinity were reported

for Atriplex nummularia (Hassine et al., 2008), Sesuvium
portulacastrum (Slama et al., 2007a), A. canescens (Glenn
and Brown, 1998), A. lentiformis (Meinzer and Zhu, 1999),
Suaeda fruticosa (L.) Forssk (Khan et al., 2000), and A.
halimus (Alla et al., 2012). This improved plant performance
under combined salt and drought stress may be due to
their effect on osmotic adjustment through higher Na+

and proline accumulation and decrease of K+ accumulation
(Wu et al., 2015).
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Figure 3 | Interactive effect of salinity and drought stress on Na+ uptake (µmol g−1) of S. imbricata. Value bars with different letters are significantly different from each

other at α = 0.05, while error bar represents the standard error of mean (n = 3). WL stands for water level (WL1 = 100% field capacity, WL2 = 80% field capacity,

WL3 = 60% field capacity, and WL4 = 40% field capacity), while S represents salinity (S1 = 5 dS m−1, S2 = 10 dS m−1, S3 = 15 dS m−1, and S4 = 20 dS m−1).

Figure 4 | Interactive effect of salinity and drought stress on the Chloride uptake (µmol g−1) of S. imbricata. Value bars with different letters are significantly different

from each other at α = 0.05, while error bar represents the standard error of mean (n = 3). WL stands for water level (WL1 = 100% field capacity, WL2 = 80% field

capacity, WL3 = 60% field capacity, and WL4 = 40% field capacity), while S represents salinity (S1 = 5 dS m−1, S2 = 10 dS m−1, S3 = 15 dS m−1, and S4 = 20

dS m−1).

Salt and drought stresses showed a significant interactive
effect on the photosynthetic rate of S. imbricata. At lower
salt stress, the photosynthetic rate decreased with increasing
drought stress. On the other hand, at severe salt stress (20
dS m−1), the drought stress had no significant effect on the
photosynthetic rate. The salt stress had a protective effect
on the photosynthetic rate (Figure 1). The current results

are in line with Wang et al. (2011) for Tamarix chinensis
Lour and with Miranda-Apodaca et al. (2018) for quinoa.
Under salt or drought stress, leaf water potential and thus
photosynthetic activity is decreased (Razzaghi et al., 2011).
This reduction in photosynthesis can be caused by a stomatal
limitation with stomatal closure (Nicolas et al., 1993; De
Pascale and Barbieri, 1995; Goldstein et al., 1996) non-stomatal
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limitation (disturbance of photosynthetic activity; Downton,
1977; Drew et al., 1990) or both limitations at low and high
salt concentration (Downton et al., 1990; Yeo et al., 1991).
The drought stress can inhibit the activity of photosystem II
and the rate of CO2 assimilation (Bloch et al., 2006; Monti
et al., 2006) which in turn could decrease the photosynthesis
(Wu et al., 2016).

TheNa+ andCl− uptake had significant results for the salt and
drought stress interaction. Na+ and Cl− uptake was significantly
increased with increasing the salt stress. Drought stress was also

Table 4 | Biochemical response of S. imbricata to varying drought and salinity

stresses.

Drought stress (%

field capacity)

ABA (µg g−1 FW) Proline (µg g−1 FW)

100 (WL1) 134.3 7,138

80 (WL2) 100.2 6,324

60 (WL3) 107.4 2,674

40 (WL4) 91.7 4,313

LSD (0.05) 31.8 2,333

Salinity stress (dS m−1)

5 (S1) 102.4 5,969

10 (S2) 105.6 5,453

15 (S3) 107.5 5,355

20 (S4) 118.1 3,672

LSD NS NS

Interaction (WS*SS) Figure 5 Figure 6

Means with different letters in each category are significantly different at α= 0.05. NS, WS,

SS, and LSD stand for no significant, drought stress, salinity stress and least significant

difference, respectively. The * symbol indicates the interaction.

found to increase Na+ and Cl− uptake (Figure 3). However, S.
imbricata decreased the Na+ uptake with increasing the drought
stress at the highest salinity level (20 dS m−1). Studies carried
out to evaluate the combined effects of salt and drought stress
are in line with our findings (Martínez et al., 2005; Slama et al.,
2008; Khalid and Cai, 2011; Khan et al., 2017a,b). Under saline
conditions, Na+ in the growth medium might compete with K+

in the low absorption by the roots (Blumwald, 2000).
In response to low water potential under the salt and drought

stress conditions additional solutes are accumulated which is
referred as osmotic adjustment (OA; Zhang et al., 1999; Verslues
et al., 2006). In halophyte species, Na+ presents in the vacuoles
is involved in osmotic adjustment (Martínez et al., 2005; Slama
et al., 2007b). Salt stress results in Na+ and Cl− accumulation
in shoots which are more effective for osmatic adjustment than
the production of organic solutes under drought stress (Liu
et al., 2008; Slama et al., 2008; Sucre and Suarez, 2011; Álvarez
et al., 2012). Hassine et al. (2008) reported that during the
stress period, shoot water potential remained lower in Atriplex
halimus plants exposed to PEG than in those exposed to the
highest dose of NaCl. Miranda-Apodaca et al. (2018) stated that
plants under salt stress exhibit a greater capacity for osmotic
adjustment while plants subjected to drought stress treatment
showedmore dehydration. Thus, the NaCl additionmitigated the
deleterious impact of osmotic stress on growth ( Martínez et al.,
2005 :Wu et al., 2016). Increasing salinity beyond toxic levels
can be managed by halophytes using the strategy of exclusion
of salts via salts glands present on their lower surface of leaves
(Zamin et al., 2019a).

Abscisic acid accumulates and involves in all the aspects
of the low water potential response. ABA-derived root growth
and stomatal conductance are important in the avoidance of

Figure 5 | Interactive effect of salinity and drought stress on the ABA content (µg g−1 FW) of S. imbricata. Value bars with different letters are significantly different from

each other at α = 0.05, while error bar represents the standard error of mean (n = 3). WL stands for water level (WL1 = 100% field capacity, WL2 = 80% field capacity,

WL3 = 60% field capacity, and WL4 = 40% field capacity) while S represents the salinity (S1 = 5 dS m−1, S2 = 10 dS m−1, S3 = 15 dS m−1, and S4 = 20 dS m−1).
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Figure 6 | Interactive effect of salinity and drought stress on the proline content (µg g−1 FW) of S. imbricata. Value bars with different letters are significantly different

from each other at α = 0.05, while error bar represents the standard error of mean (n = 3). WL stands for water level (WL1 = 100% field capacity, WL2 = 80% field

capacity, WL3 = 60% field capacity, and WL4 = 40% field capacity), while S represents salinity (S1 = 5 dS m−1, S2 = 10 dS m−1, S3 = 15 dS m−1, and S4 = 20

dS m−1).

lower growth (Schroeder et al., 2001; Sharp and LeNoble, 2002;
Verslues et al., 2006). As a dehydration avoidance response,
ABA induces the accumulation of compatible solutes (Ober and
Sharp, 1994). ABA production is a signal for the stomatal closure
and reduction of stomatal density to decrease water loss by
transpiration (Razzaghi et al., 2011; Adolf et al., 2013). ABA
induced the stomatal closure by a reduction in the turgor pressure
of guard cells (Schroeder et al., 2001; Bartels and Sunkar, 2005).
These responses improve the water-use efficiency of the plant
for the short term (Waseem et al., 2011; Oliveira et al., 2013).
The NaCl stress did not affect transpiration or ABA levels of
Atriplex spongiosa up to 75mol m−3 but transpiration fell and
ABA levels rose when the NaCl was increased upto 150mol m−3.
The drought stress resulted an increase in the leaf ABA content
while salt stress had no effect (Achuo et al., 2006). A report by Li
et al. (2011) stated thatCotinus coggygria var. cinerea significantly
reduced the relative growth rate, but increased the endogenous
ABA under drought.

Proline accumulation relates more to the osmotic stress than
any specific salt effect (Munns, 2002). Martínez et al. (2005)
reported that 0 or 15% PEG had no impact on the proline
concentration at low NaCl (50mM) concentration (Martínez
et al., 2005). Atriplex spongiosa and Suaeda monoica recorded
low proline contents at 300 and 500mol m−3 NaCl or below,
respectively. However, a significant increase was detected at
high salinities (Storey and Jones, 1979). Atriplex halimus showed
similar responses after treating seedlings with either 50, 300,
and 550mM NaCl or drought (control and withholding water).
Proline was significantly increased only by the high salt stress
and drought stress, nonetheless, combined treatments led to

decrease if any (Alla et al., 2012). This significant increase
was still in low concentration which was supposed to function
as osmoprotectant.

CONCLUSION

Both salt and drought stress had no significant effect on the
survival percentage and growth performance of S. imbricata.
However, severe salt stress induced a decrease in root weight.
Salt stress help to alleviate negative effects of drought stress
through accumulation of Na+ and Cl− ions and organic solutes
at higher salinity. In conclusion, S. imbricata can be classified as
the salt includer halophyte. This species achieved osmoregulation
by adopting intracellular compartmentalization of ions and
avoid high concentration of these ions in cytoplasm. It can
be concluded that S. imbricata can survive under drought and
saline conditions up to 20 dS m−1 without affecting growth and
morphology. Therefore, it can be recommended as substitute
in landscaping under extreme drought and saline conditions.
Further studies can be carried out to study the economical uses
of S. imbricata and determine the optimal salinity and irrigation
requirements of S. imbricata. Furthermore, studies can be carried
out to find out the molecular mechanisms that make S. imbricata
resistance to salt and drought stress.
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