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Potato early blight and late blight are devastating diseases that affect potato planting and

production. Thus, precise diagnosis of the diseases is critical in treatment application

and management of potato farm. However, traditional computer vision technology and

pattern recognition methods have certain limitations in the detection of crop diseases.

In recent years, the development of deep learning technology and convolutional neural

networks has provided new solutions for the rapid and accurate detection of crop

diseases. In this study, an integrated framework that combines instance segmentation

model, classification model, and semantic segmentation model was devised to realize

the segmentation and detection of potato foliage diseases in complex backgrounds.

In the first stage, Mask R-CNN was adopted to segment potato leaves in complex

backgrounds. In the second stage, VGG16, ResNet50, and InceptionV3 classification

models were employed to classify potato leaves. In the third stage, UNet, PSPNet,

and DeepLabV3+ semantic segmentation models were applied to divide potato leaves.

Finally, the three-stage models were combined to segment and detect the potato leaf

diseases. According to the experimental results, the average precision (AP) obtained by

the Mask R-CNN network in the first stage was 81.87%, and the precision was 97.13%.

At the same time, the accuracy of the classification model in the second stage was

95.33%. The mean intersection over union (MIoU) of the semantic segmentation model

in the third stage was 89.91%, and the mean pixel accuracy (MPA) was 94.24%. In short,

it not only provides a new model framework for the identification and detection of potato

foliage diseases in natural environment, but also lays a theoretical basis for potato disease

assessment and classification.

Keywords: potato foliage disease, convolutional neural network, image recognition, instance segmentation,

semantic segmentation
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INTRODUCTION

Potato is one of the world’s four important food crops, one of
the 10 most popular nutritious and healthy foods, as well as a
high-yield crop with developmental prospects. Due to its high
yield and stability, wide adaptability, full nutritional content,
and long industrial chain, it has been highly valued in the
world (Qu et al., 2005). The early blight and late blight, as
the most destructive foliage diseases of potato crops (Tsedaley,
2014; Yellareddygari et al., 2018), could cause major losses
in most potato-growing areas in the world. On potato leaves,
late blight appears as light green or olive green areas that
rapidly turn brownish-black, water-soaked, and oily. Likewise,
early blight is round or irregular, which shows dark brown
or black spots. Overall, early blight and late blight can occur
in all stages of potato growth (Da Silva Silveira Duarte et al.,
2019). To control and prevent diseases effectively and timely,
it is of great significance to identify and detect the diseases of
potato leaves.

In general, the traditional diagnosis of crop diseases is
performed by experienced experts, but manual diagnosis
is inefficient, subjective, and unsuitable for large regional
scenarios. Besides, traditional diagnostic techniques of
crop diseases tend to include polymerase chain reaction
(PCR), fluorescence in situ hybridization (FISH), enzyme-
linked immunosorbent assay (ELISA), thermal imaging, and
hyperspectral imaging (Fang and Ramasamy, 2015; Xie et al.,
2015; Madufor et al., 2018). In the real-life production, farmers
need simple, rapid, and accurate ways to identify potato
diseases. Therefore, it is crucial to develop a fast, low-cost,
time-saving, and labor-saving automatic identification system
for potato diseases.

With the advancement in computer vision, artificial
intelligence, and machine learning technology, it has promoted
the development and implementation of automatic disease
recognition technology. For example, Adhikari et al. (2018)
used Fast R-CNN (Ren et al., 2017) and R-FCN (Fuentes et al.,
2017) to detect diseases of fruit trees, vegetable crops, and other
crops, and confirmed good results. In addition, Zhang et al.
(2018) used the PlantVillage dataset combined with transfer
learning to identify nine tomato diseases. Among them, the
models with ResNet as the backbone network have the best
recognition effect, with an accuracy of 97.28%. Furthermore,
Cheng et al. (2017) used ResNet and AlexNet to identify
crop pests, and proved that ResNet101 could achieve the
best results, with an accuracy of 98.67%. Khan et al. (2020)
proposed a classification method of cucumber foliage disease,
which was based on an improved saliency method and deep
feature selection. Compared with the existing single-feature
selection methods, the deep feature selection method has better
performance. To identify cucumber leaf lesions, Wang et al.
(2021) put forward a network model fused with UNet and
DeepLabV3+, and verified that semantic segmentation has
achieved good results for leaf lesions. Apart from that, Fan and
Li (2019) proposed a detection method based on key feature
points, which could quickly detect the disease in regions of
interest by combining with color and texture features. Although

this method recognizes 10 types of potato diseases with high
speed and high accuracy, it does not have good performance for
the recognition in complex environment. Brahimi et al. (2017)
trained a convolutional neural network (CNN) composed of nine
tomato diseases, with the accuracy of the final model reaching
99.1%. Then, Yang et al. (2020) proposed a potato disease leaf
recognition method based on the combination of deep CNN
and composite feature dictionary, adopted Faster R-CNN to
detect the disease areas, and constructed a composite feature
dictionary through extraction of image features. The disease
recognition model was trained by support vector machine,
and its average recognition accuracy could reach 84.16%.
Nevertheless, the image background was relatively simple. To
solve the difficult problem of locating and identifying typical
potato disease regions under natural conditions, Xiao and
Liu (2017) put forward an adaptive feature fusion and rapid
recognition method for typical potato diseases. As proved by
the recognition experiment of three typical potato diseases,
the average recognition rate of the modified adaptive feature
fusion method is at least 1.8 percentage points higher than that
of the traditional adaptive method. Meanwhile, the average
recognition rate of the recognition method is 95.2%, but it is
slower than that of deep learning. Additionally, Krishnaswamy
Rangarajan and Purushothaman (2020) achieved good results
in classifying eggplant diseases, used multiclassification support
vector machine (MSVM), and adopted VGG16 as a feature
extractor in the eighth convolutional layer. Combining visual
object recognition with language generation models, the
detailed information about plant anomaly symptoms and scene
interactions could be generated (Fuentes et al., 2019). In the
task of identifying tomato pests and diseases, the accuracy of the
method achieved 92.5%.

Previous studies have applied deep learning technology to
the detection, segmentation, or classification of different crop
diseases. Beyond that, some studies have proposed to classify
different diseases that are found in leaves, and the accuracy
rate is generally >90%. At present, there are the following
problems in the crop disease recognition and disease spot
detection: (1) The image collection in previous studies was often
a single leaf, and there were few studies on the segmentation
of images containing multiple leaves. (2) Traditional recognition
methods have poor recognition rate for plant foliage disease. (3)
The effect of plant leaf disease identification on small targets
is poor.

Based on the existing research, this study proposed a
method of detecting potato diseases in a complex background,

which combines instance segmentation, classification model, and

semantic segmentation. The main contents of this study are

as follows:

(1) A three-stage potato leaf disease detection model based on
deep learning was proposed. While segmenting the potato
leaves and diseases accurately, this model could provide a
basis for establishing a potato leaf disease detection system.

(2) By adopting the three-stage model of instance segmentation,
classification model, and semantic segmentation, the
advantages of each model were explored. Compared with
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FIGURE 1 | Images of potato leaves.

FIGURE 2 | Leaf-labels and disease-labels. (A) The individual leaf separated from the complex background. (B) The leaf scab was marked.

single model detection, the three-stage model in this study
has good performance.

(3) The detection of potato leaf diseases in complex backgrounds
was achieved, and the percentage of disease area to leaf area
was calculated from the segmented disease area. Overall,
this experiment could provide a technical basis for the
classification and accurate control of plant diseases in
the future.

MATERIALS AND METHODS

Data Collection
In this study, potato leaves were collected at the potato

experimental site of Hebei Agricultural University, which was a

representative planting site in northern China (Weichang and
Fengning, Chengde City, Hebei Province). Besides, Nikon D7100

camera with a resolution of 6,000 × 4,000 pixels was used to
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FIGURE 3 | The identification and classification of potato leaf process. This figure shows the whole experimental progress, from the input to the output.

photograph potato leaves, and it was set to close-up mode with
automatic adjustment of focus, aperture, and white. The distance
between the camera and the potato plant was about 50 cm, and
the images were collected in a vertical manner. The three types of
potato leaves are displayed in Figure 1.

Data Processing
A total of 500 original images had been collected, including
healthy leaves, early blight leaves, and late blight leaves. The size
of the original images was adjusted to 800 × 800 pixels. Then,
the leaves and diseases were marked by the labelme software.
As shown in Figure 2A, the mask images were generated. Apart
from that, the accuracy of the model was evaluated by the mask
image marked manually. Specifically, the experimental method
in this study was divided into three stages. In the first stage, the
400 images were divided into the training set and validation set,
respectively, according to the ratio of 4:1 and test set with 100
images after training. The second stage uses image enhancement
to obtain 1,800 images, which are divided into training set and
validation set according to the ratio of 4:1. The test set consists
of 150 original images, including 50 pieces of each of the three
types of leaves. In the third stage [as shown in Figure 2B], a total
of 632 labeled early blight leaves and late blight leaves images
were divided into training set and validation set of the semantic
segmentation model in a ratio of 4:1. The test set consists of 50
original images.

Data Enhancement
Convolutional neural networks require enough data, and the
training accuracy of the model could be increased by the amount
of data. Therefore, in the second stage of this experiment, the
samples were enhanced by image rotation. In addition, the
original images were rotated according to the probability of 0.8,

with the maximum left-hand angle of 10 and the maximum
right-hand angle of 10. In addition, the left and right images
were swapped according to the probability of 0.5. The images
were zoomed in and out in accordance with the probability of
0.8. In brief, these image enhancement methods simulate the
changes in the actual image acquisition angle, direction and
distance, increase the diversity of training samples, and improve
the robustness and generalization of the model.

Computer Configuration Parameters
Windows 10 operating system was applied in this study.
Specifically, the computer memory is 16 GB, the CPU model
is Intel Core (TM) i5-10400f, and the frequency is 2.90
GHz. Meanwhile, the graphics processor model is NVIDIA
GeForce GTX 1660s, and the video memory is 6 GB.
Software environment used in the experiment is Tensorflow and
Keras (Python 3.6).

Model Evaluation Indicators
To test the performance of the model used in this study (e.g.,
segmentation, classification model, and semantic segmentation),
Precision (%), Mean Intersection over Union (MIoU, %),
Accuracy (%), and average pixel accuracy (MPA, %) were selected
as the indicators. To explain the evaluation index formula
conveniently, it was assumed that the data set had a total of k
+ 1 categories. Moreover, Pij represents the number of pixels

that category i is predicted into category j, Pii represents the
number of pixels that are predicted correctly, while Pij and
Pji represent the number of false-negative and false-positive
pixels, respectively.
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Precision and Accuracy
In the formula mentioned below, TP denotes true positive, FP
denotes false positive, and FN denotes false negative. Precision
represents the proportion of the correct prediction that is positive
to all predictions that are positive. Accuracy represents the
proportion of all data that are correctly predicted.

Precision=
TP

TP + FP

Accuracy=
TP + TN

TP + FN + FP + FN

MIoU and MPA
Pixel-based accuracy (PA, %) calculation is the basic index of
semantic segmentation performance evaluation, and MPA is
the average pixel accuracy. The average intersection ratio is a
commonly used measurement index for semantic segmentation
and target detection, which is often adopted to evaluate the
overlap ratio of the predicted object and the target object.
Compared with the pixel accuracy, the average intersection ratio
will provide more information, such as the completeness of the
predicted target and the coincidence with the actual target.

MPA =
1

k+ 1

k∑

i=0

Pii
∑k

j=0 Pij

MIoU =
1

k+ 1

k∑

i=0

Pii
∑k

j=0 Pij +
∑k

j=0 Pji − Pii

Test Model
Mask R-CNN Model
A series of region-based CNN algorithms (He et al., 2017; Ren
et al., 2017) are the most representative methods in the target
detection. Mask R-CNN, as a relatively novel achievement, can
classify, identify, and segment the targets in images. In this study,
the backbone network that combines ResNet (He et al., 2016) and
FPN (Long et al., 2015) was used to extract features of potato
leaves. Among them, the ResNet could sequentially extract low-
level features (e.g., edges and corners) and high-level features
(e.g., leaves and ground), which could form five layers of feature
maps in different sizes and dimensions. If the last layer of features
in the ResNet network is used as the output of the network, it
is difficult to detect the relatively small leaf features due to its
low resolution. Therefore, the FPN network was used to fuse the
feature maps from the bottom to the high level, and the features
extracted from each layer of the ResNet network were fully used.
Apart from that, the feature map extracted from the backbone
architecture was input to the regional candidate network. The
regional candidate network is a typical binary network, the
function of which is to divide the image into two categories,
namely, the target leaf and the background. Besides, the plant

leaves are boxed out separately in boxes that fit the size of the
leaves as closely as possible. At this time, only the approximate
region containing the target leaves and the background could
be distinguished, and it is impossible to conduct detailed species
classification and leaf segmentation of the target leaves. Through
the region candidate network, one or more regions containing
target blades could be obtained, which are input into ROIAlign
to pool into a feature map with a fixed size, and then input into
two branches, respectively. One of the branch networks performs
target leaf identification by means of a region of interest classifier
and a border regressor, both of which include one fully connected
layer. One fully connected layer acts as the ROI classifier to
classify the ROI into specific plant categories, while the other
fully connected layer is used as the border regressor to adjust
the center point position and aspect ratio of the ROI, to detect
the target leaves more accurately. Another branch network is
a segmentation mask generation network consisting of a fully
convolutional network, which generates a mask of the same size
and shape as the target leaf to segment the target leaf image.
Finally, the recognition and results are combined to obtain an
image that contains the target leaf class and a segmentation mask
that is consistent with the size and shape of the target leaf.

Classification Model
The essence of the VGG16 model is an enhanced version of
the AlexNet structure, which focuses on the depth of the CNN
design. In addition, each convolution layer is followed by a
pooling layer. VGG16 has five convolution layers, each with two
or three convolution layers. To better extract feature information,
this experiment uses three convolutional layers per segment.
Beyond that, a maximum pooling layer is connected at the end
of each segment to reduce the picture size. The number of
convolution kernels in each segment is the same, and the closer
they are to the fully connected layer, the more are the convolution
kernels. At the same time, the number of convolution kernels
in each segment is the same. In general, the closer they are to
the fully connected layer, the more are the convolution kernels,
and the smaller is the corresponding picture size. As for the VGG
network, it uses a smaller convolution kernel, which reduces the
number of parameters and saves computing resources. Due to the
large number of layers, the convolution kernel is relatively small,
so that the entire network has a better feature extraction effect.

The InceptionV3 network is a deep convolutional network
developed by Google. Compared with the traditional Inception
structure, the V3 version used in this study decomposes the large
convolution kernel into small convolution kernels. For example,
two 3 × 3 convolution kernels are used to replace the original 5
× 5 convolution kernel, which reduces the number of operations
of the model. The BN convolutional layer (Batch Normalization)
is added to the classification assistant to improve the accuracy of
the model, and the Batch Normalization method is used to make
the model perform data normalization preprocessing before each
iteration training, which avoids each iteration of the network. All
will adapt to different data distributions, which greatly shortens
the training time of the model.

The ResNet50 model solves the problem that the actual effect
becomes worse due to the increase in network depth and width.
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It is noteworthy that the deep neural network model sacrifices
a large amount of computing resources, while the error rate has
also increased. This phenomenon is mainly attributed to the fact
that as the number of layers of the neural network increases,
the disappearance of the gradient becomes increasingly obvious.
The ResNet50 model adds the residual structure (i.e., an identity
mapping is added), which converts the original transformation
function H(x) into F(x) + x, makes the network no longer
a simple stack structure, and solves the problem of gradient
disappearance. This simple stack does not add extra parameters
and calculations to the network but improves the effect and
efficiency of network training.

Semantic Segmentation Model
UNet (Ronneberger et al., 2015) is a semantic segmentation
network based on FCN (Long et al., 2015), and its network
structure is similar to FCN (fully convolutional networks). The
first half of the UNet network is feature extraction, and the
second half is upsampling. This structure is generally referred
to as an encoder-decoder structure. In addition, the input values
of this network are 512 × 512 single-channel or three-channel
images. The network, as a whole, can be constructed as a codec
architecture or as a systolic path and extended path. On the
one hand, each step of the contraction path consists of two 3 ×

3 convolutions for feature extraction. On the other hand, each
step of the expansion path includes an upsampling process of
the feature map, which matches and fuses with the feature map
starting from the contracted path. The shallower high-resolution
layer in the UNet network is used to solve the pixel localization
problem, while the deeper layer is adopted to solve the problem
of pixel classification.

The main feature of the PSPNet (Zhao et al., 2016) model
is the use of the PSP module. The pyramid pooling module
proposed in this model can aggregate the contextual information
of different regions, so as to improve the ability to obtain
global information. As shown by the results of experiments,
such a priori representation (referring to the structure of PSP)
is effective, and has presented excellent results on multiple data
sets. The function of the PSP structure is to divide the acquired
feature layers into grids of different sizes, and each grid is pooled
on average. It achieves the aggregation of contextual information
from different regions, thus improving the capacity to obtain
global information.

The main body of the Encoder of DeepLabV3+ (Cheng
et al., 2017) is DCNN with hole convolution, which can adopt
the commonly used classification networks, such as ResNet,
followed by Atrous Spatial Pyramid Pooling (ASPP) module
with null convolution (Chen et al., 2014). Compared with the
conventional convolution, the hole convolution increases the
receptive field without changing the feature map, and retains
more spatial detail information. The hole convolution injects
“holes” into the standard convolution kernel to increase the
convolution kernel. Receptive field, hole convolution uses the
hole structure to expand the size of the convolution kernel,
which can increase the receptive field without downsampling,
while retaining the internal structure of the input data. It is
mainly for the introduction of multiscale information. Compared

with DeepLabV3, V3+ introduces the Decoder module, which
further merges the low-level features with the high-level features
to improve the accuracy of the segmentation boundary.

Three-Stage Model Structure
In this study, the potato disease identification consists of four
steps (see Figure 3).

(1) In the first stage, potato leaves were segmented by Mask R-
CNN from complex background, and the individual leaves
were extracted;

(2) The segmented individual leaves were used as the input in
the classification model, which could classify healthy, early
blight, and late blight leaves;

(3) The single leaf extracted from the second stage was used as
the input of the third stage, and the training was carried out
through semantic segmentation model;

(4) The disease identified in the semantic segmentation stage
was adopted as the index of disease recognition in the
classification stage. In addition, the healthy leaves, early
blight leaves, and late blight leaves were marked by the
instance segmentation model and classification model. The
proportion of the disease to the whole leaf was also marked.

RESULTS

Mask R-CNN Models
Two different backbone networks, ResNet50 and ResNet101,
were used in instance segmentation. Apart from that, 100 pictures
were selected to test themodels.Table 1 summarizes the results of
both networks. It can be observed that the ResNet101 backbone
network has a good performance, indicating that a deeper
backbone network for features used inMask R-CNN could obtain
the good performance. To better evaluate the accuracy of the
whole model, the AP was selected when IoU = 0.5 and IoU =

0.7. Meanwhile, the AP obtained by ResNet50 and ResNet101
was 78.21 and 81.87%, respectively. Furthermore, the Precision
obtained by ResNet101 was 97.13%, which was slightly better
than that obtained by ResNet50. As ResNet101 has a deeper
backbone network, its accuracy in the instance segmentation is
higher. For testing 100 images, the two backbone networks need
to take 29 and 32 s, respectively. This is because the ResNet101
structure has a deeper network.

The results of Mask R-CNN are shown in Figure 4. First,
masks of different colors were generated on the leaves. Second, a
prediction framewas generated. Finally, the identified leaves were
divided into single leaves under the black background, which

TABLE 1 | The results of Mask R-CNN model instance segmentation in

potato leaves.

Backbone AP (%) APIoU=0.5

(%)

APIoU=0.7

(%)

Precision

(%)

Time/img

ResNet50 78.21 82.63 84.25 96.73 0.29 s/img

ResNet101 81.87 86.31 85.48 97.13 0.32 s/img
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FIGURE 4 | The potato leaves segmented by Mask R-CNN and the single leaf under the black background extracted in the original image.

TABLE 2 | Accuracy of the classification model validation in the second stage.

Model VGG16 ResNet50 InceptionV3

Accuracy/% 97.30 95.20 95.70

were used as the input of the second-stage classification model.
As displayed in Table 1, the higher precision obtained by the
models confirmed that the leaf features could be successfully
detected by the models. The two backbone network structures
could accurately segment the leaves.

Classification Models
The single leaf image segmented in the first stage was used as
the input in this stage. Beyond that, the leaves were divided
into healthy, early blight, and late blight. Additionally, the
classification model of this stage utilized the cross-entropy loss
function and the Adam optimizer. The batch size was 32, and
the learning rate was 0.0001. If the performance of the model
did not improve after three epochs, the learning rate would be
reduced to continue training, and the iterations would be 150.
Table 2 presents the training accuracy of the validation set of the
three models.

After the completion of the model training, 50 images were
selected as the test set to verify the trained models (see the
results in Table 3). Obviously, the Accuracy of the VGG16

TABLE 4 | Comparison of the results in the semantic segmentation models.

Model MIoU (%) MPA (%)

UNet 89.91 94.24

PSPNet 86.08 93.19

DeepLabV3+ 85.29 88.08

network model was up to 95.33%, and the Accuracy ResNet50
and InceptionV3 were slightly lower than those of VGG16.

Identification and Detection Models of
Early Blight and Late Blight
In the third stage, the single leaf image classified in the
second stage was input into the three semantic segmentation
models, such as UNet, PSPNet, and DeepLabV3+. Table 4

lists the evaluation indices for the three models, which are
obtained after training 150 generations. Obviously, the MIoU
and MPA of UNet were higher than those of PSPNet and
DeepLabV3+. This is mainly because the early blight is
characterized by small area and disease dispersion, which affects
the feature extraction of the models. After the completion of
model training, 50 pictures of potato leaves with early blight
and late blight were selected for testing. Table 4 summarizes
the test results of the three network models. It is obvious

TABLE 3 | Test results of the classification model.

Model Number of targets

(health/early blight/late

blight)

Number of

correct targets

(health)

Number of

correct targets

(early blight)

Number of

correct targets

(late blight)

Accuracy/%

VGG16 50/50/50 48 48 47 95.33

ResNet50 50/50/50 48 46 48 94.67

InceptionV3 50/50/50 47 47 46 93.33
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FIGURE 5 | Comparison of the variations of accuracy.

FIGURE 6 | Comparison of the variations of loss.

that the MIoU and MPA of UNet were 89.91 and 94.24%,
respectively, which were better than PSPNet and DeepLabV3+.
Among them, the MIoU and MPA obtained by DeepLabV3+
were relatively low, which may be due to the addition of
hole convolution to the DeepLabV3+ network. Although the

receptive field of the convolution layer was increased, some
feature information were missed, and the area of some lesions is
small, which affects the performance of DeepLabV3+. Compared
with PSPNet and DeepLabV3+, UNet uses a more concise
network structure and achieves better results. Therefore, UNet
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FIGURE 7 | Semantic segmentation results of early blight under the three models.

Frontiers in Plant Science | www.frontiersin.org 9 July 2022 | Volume 13 | Article 899754

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Li et al. Potato Disease Detection

FIGURE 8 | Semantic segmentation results of late blight under the three models.
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FIGURE 9 | The results of detection and recognition of potato leaves under the three-stage model.

provides the feasibility for deployment on resource-constrained
mobile devices.

The accuracy of the three models had a large gap in the
initial stage (see Figure 5). UNet achieved higher accuracy at
the beginning of the training, and gradually stabilized after 10
epochs. Apart from that, DeepLabV3+ and PSPNet had a low
accuracy at the beginning of the training, but DeepLabV3+
reached a relatively high accuracy after 10 epochs, and tended
to be stable. Moreover, the first 40 epochs of the PSPNet model
were set as the frozen epoch, so that its accuracy began to rise
sharply in the 50th epoch. At the same time, PSPNet began to
rise after the 40th epoch and gradually stabilized in the 80th
epoch, which was closer to UNet at last. As shown in Figure 6,
the loss of all models gradually decreased and tended to be
stable with the increase of training epochs. Among them, the
UNet network model converged faster than other networks and
showed lower loss. Besides, the UNet network tended to be stable
after 10 epochs. The DeepLabV3+ model gradually stabilized
after the 50th epoch, while the PSPNet model had a sharp
decline. Apart from that, the loss of PSPNet was stabilized at
the 65th epoch, which was very close to DeepLabV3 + after
80 epochs.

The disease segmentation results are displayed in Figures 7,
8. In the segmentation of late blight, the three models were
relatively accurate and there was not much difference between
them. Notably, the proportion of disease areas identified by
PSPNet model was the largest. Among them, the edges of the
disease area predicted by PSPNet were smoother. These rounded
edges can be a factor for the slightly worse performance of
PSPNet when compared with the UNet, as some pixels can end
up being wrong. The edges predicted by UNet and DeepLabV3+

were more consistent with the actual disease. In the segmentation
of the early blight, the disease areas segmented by UNet and
PSPNet models were closest to the real situation. Meanwhile,
the disease areas predicted by DeepLabV3+ were incomplete. As
shown in Figure 8, the disease in the red box was not marked,
so that the predicted disease proportion was far from the other
two models.

Model Test Results
Figure 9 shows the final performance of the three-stage model
on potato disease recognition. Initially, an instance segmentation
stage processes the input image via Mask R-CNN. The instance
segmentation stage splits the cropped leaves as the input of
the second stage classification model. The classification model
classifies leaves into healthy, early blight, and late blight, and
takes two diseased leaves as input for the third-stage semantic
segmentation. The potato images with complex backgrounds
were input into the combined model for detection. In the
prediction box, the categories of leaf diseases and the proportion
of disease spots were displayed in the upper left corner. In
addition, the disease areas were marked on the leaf by calling the
model in the semantic segmentation stage.

DISCUSSION

In summary, the work of this study mainly consists of three
parts, namely, leaf segmentation, disease area segmentation, and
classification of disease category. Among them, leaf segmentation
and disease area segmentation were completed by instance
segmentation and semantic segmentation models, respectively.
In the first stage, images with complex backgrounds were
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input into the Mask R-CNN networks, and the leaves without
background could be obtained. In the second stage, the leaves
without backgrounds were input into the classification networks
to distinguish healthy or diseased leaves. In addition, to verify
the applicability of the model in real-world scene detection,
we further trained the model using the public Plant Village
dataset. Finally, the results of this dataset are similar to the
data collected in this study, which proves that the classification
model used in this study can effectively identify the types
of leaves under different disease stages and different degrees
of infection. In the third stage, diseased areas based on the
labels corresponded to the categories classified in the second
stage. In the previous literature, a single model was often
used to detect diseases. The experiments in this study have
completed the segmentation, classification, and disease spots
segmentation of leaves under natural conditions. And this
study fuses the three-stage models to realize the detection of
the three models on one image. In the final image detection,
this study fuses the three models into an input end and
an output end, reducing the complex process required for
previous detection.

The combination of multi-stage CNNmodels has been widely
applied in various research fields. For instance, Wang et al.
(2021) segmented cucumber foliage diseases using a two-stage
semantic segmentation model, and the results were better than
the single model segmentation. Beyond that, Tassis et al. (2021)
identified coffee foliage diseases using a three-stage model, and
the AP and MIoU reached 71.90 and 94.25%, respectively. As
indicated by the results, compared with the single model, the
multi-stage model had a greater improvement in the accuracy of
leaf disease detection. Although the three-stagemodel framework
proposed in this study has achieved good results in potato
disease detection, there are still some aspects that need to
be improved. (1) First, potato early blight disease spots are
characterized by small and dense disease area. In this model
framework, some disease areas with small area and unclear color
differentiation could be identified inaccurately. In the future
research, the segmentation accuracy of the little lesions should
be improved. (2) Second, in practical potato production, the
speed of detection should be increased, and the network structure
needs to be improved, so as to shorten the time of model
segmentation and better serve the production. (3) In the actual
working environment, due to factors, such as large planting
area, the efficiency of disease spot detection is high. In this
study, the use of mobile phones or cameras to take pictures to
collect data will affect the efficiency of actual detection. In the
future, we will try to adopt a light-weight CNN structure to
reduce the model calculation time, and carry the camera and
model program on the drone to achieve rapid detection of the
planting area.

CONCLUSION

In the first stage, the Mask R-CNN model used two backbone
networks, ResNet50 and ResNet101, respectively. The

final APs obtained were 78.21 and 81.87%, respectively,
and the Precisions were 96.73 and 97.13%, respectively,
which achieved accurate segmentation of potato leaves in
complex backgrounds.

In the second stage, the classification models were
used. Apart from that, the three main networks of
VGG16, ResNet50, and InceptionV3 were adopted for
experiments. The potato leaves were divided into healthy
leaves, early blight leaves, and late blight leaves. Besides,
the accuracy of the three networks was 95.33, 94.67, and
93.33%, respectively.

In the third stage, semantic segmentation models PSPNet,
UNet, and DeepLabV3+ were used for training of disease
region identification. Furthermore, the identification
and detection of the early blight and late blight areas
were accomplished. The MIoUs were 86.08, 89.91, and
85.29%, respectively, whereas the MPAs were 93.19,
94.24, and 88.08%, respectively, indicating that the
segmentation and recognition of potato disease areas
were achieved.

In short, this model framework could effectively reduce the
impact on potato leaf segmentation in the wild environment,
improve the accuracy of disease spot segmentation, and
provide technical support for potato leaf disease detection and
prevention. The framework presented consisting of three models
of CNN can be applied to other crops with some adjustments.
In the future, the camera and the program of this study
can be mounted on the UAV to realize the application in
real scenes.
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