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Tea height, leaf area index, canopy water content, leaf chlorophyll, and

nitrogen concentrations are important phenotypic parameters to reflect the

status of tea growth and guide the management of tea plantation. UAV

multi-source remote sensing is an emerging technology, which can obtain

more abundant multi-source information and enhance dynamic monitoring

ability of crops. To monitor the phenotypic parameters of tea canopy more

e�ciently, we first deploy UAVs equipped with multispectral, thermal infrared,

RGB, LiDAR, and tilt photography sensors to acquire phenotypic remote

sensing data of tea canopy, and then, we utilize four machine learning

algorithms tomodel the single-source andmulti-source data, respectively. The

results show that, on the one hand, using multi-source data sets to evaluate

H, LAI, W, and LCC can greatly improve the accuracy and robustness of the

model. LiDAR + TC data sets are suggested for assessing H, and the SVM

model delivers the best estimation (Rp2 = 0.82 and RMSEP = 0.078). LiDAR

+ TC + MS data sets are suggested for LAI assessment, and the SVM model

delivers the best estimation (Rp2 = 0.90 and RMSEP = 0.40). RGB + TM data

sets are recommended for evaluating W, and the SVM model delivers the

best estimation (Rp2 = 0.62 and RMSEP = 1.80). The MS +RGB data set is

suggested for studying LCC, and the RF model o�ers the best estimation (Rp2

= 0.87 and RMSEP= 1.80). On the other hand, using single-source data sets to

evaluate LNC can greatly improve the accuracy and robustness of the model.

MS data set is suggested for assessing LNC, and the RF model delivers the best

estimation (Rp2 = 0.65 and RMSEP = 0.85). The work revealed an e�ective

technique for obtaining high-throughput tea crown phenotypic information

and the best model for the joint analysis of diverse phenotypes, and it has

significant importance as a guiding principle for the future use of artificial

intelligence in the management of tea plantations.
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Introduction

Tea [Camellia sinensis (L.) O. Kuntze] is an evergreen cash

crop, which is widely cultivated all over the world. Phenotypic

parameters, such as height (H), leaf area index (LAI), leaf water

content (W), leaf chlorophyll, and nitrogen concentration (LCC

and LNC), are important indicators to estimate the growth and

development of tea plants. Using these parameters on large scale

can effectively guide the daily management of tea plantations

in field. However, the conventional measurement methods of

these parameters have some problems, such as time-consuming

and labor-intensive, low efficiency, high cost, and poor accuracy,

which seriously restrict growth, development, and smart yield

of tea on larger scale. Therefore, it is important to find better,

faster, and smarter way of phenotyping methods for more

accurate results.

In recent years, with the rise of new remote sensing

tools around the world, UAV system has gradually become

an important means to obtain the phenotypic information

of field crops with the advantages of flexibility, adaptability

to complex farmland environment, high efficiency, and low

cost (Herwitz et al., 2004). At the present, UAV sensors

mostly comprise optical sensors, thermal sensors, and three-

dimensional reconstruction sensors.

As we know that, optical sensors could obtain spectral

reflectance and texture information of vegetation (Kalaitzidis

et al., 2008; Chianucci et al., 2016), and optical information

had been successfully applied to crop phenotype analysis.

For example, the density of maize plants was estimated

using UAV RGB data (Štambuk et al., 2021). The vegetation

index of soybean canopy was obtained by UAV RGB image,

and the canopy volume model was constructed to estimate

soybean biomass (Maimaitijiang et al., 2019). The hyperspectral

image of UAV and the lodging characteristics of rice were

used to establish the rice yield detection model (Wang

et al., 2021). The UAV multispectral data were used to

estimate the biochemical components of tea canopy leaves

(Luo et al., 2021). However, the optical sensors that were

utilized to monitor the dense field crops suffered from the

challenge of progressive saturation, which caused it harder to

obtain the structural parameters and canopy temperature of

the crops.

The thermal sensor could be able to obtain the canopy

temperature of field crops. The obtained temperature

information had a high correlation with plant water content in

field. Therefore, thermal sensors were mostly used to monitor

the temporal and spatial changes in crop water content and

evaluate the drought degree of crops (Abdelhakim et al., 2021).

Some researchers also use thermal infrared data to evaluate

plant leaf area index and chlorophyll content (Lin et al., 2021).

Infrared imaging is mainly used to monitor the water content of

plants. The monitoring of other phenotypic parameters needs

to be further explored.

To get accurate information on crop canopy structure, the

three-dimensional reconstruction sensor is the fundamental

sensor. The three-dimensional reconstruction sensor is the main

sensor to obtain the crop canopy structure information. It

generates point cloud data through the structure from motion

(SFM) to establish a three-dimensional (3D) model (Brook et al.,

2021). There are two main methods to build 3D models. One

is to obtain omnidirectional images, via multi-angle oblique

photography technique, and then splice the omnidirectional

images to establish a three-dimensional model. The other is to

launch the laser beam through the LiDAR sensor and then locate

the laser beam hitting the spot of the object to establish the

three-dimensional model (Perez and Costes, 2018). These two

methods have made good progress in agricultural application:

for instance, combining oblique and vertical photography

technologies from a UAV to create a 3D model to estimate the

plant height and leaf area of maize growing in a field (Ying

et al., 2020), and using 3D rotating LiDAR sensor to establish

a three-dimensional model to estimate the canopy density of

perennial horticultural crops (Lowe et al., 2021). In contrast,

the tilt photography sensor has low cost and is suitable for

large-scale popularization in the field. However, this is a passive

technology with less density and information than the point

cloud generated by LiDAR sensors (Luo et al., 2019).

In recent years, the continuous development of computer

hardware has facilitated the progress of machine learning, which

has become an active research area in agricultural quantitative

remote sensing (Liu et al., 2021). For example, Luo et al. (2021)

used the UAV equipped with multispectral sensors to obtain

the spectral data of tea canopy leaves and used support vector

regression (SVR) and partial least square regression (PLSR) to

estimate the nitrogen content, polyphenols, and caffeine. Liu

et al. (2021) used the UAV equipped with multispectral, RGB

and thermal infrared to obtain the multi-source data of corn

canopy and established regression models using RNN, PLS, RF,

and SVM to evaluate the LAI.

Single-source remote sensing has made good progress in

monitoring various parameters of crops, but it has limitations.

Because the information collected by different sensors is

different, if only relying on a single sensor to monitor crops,

some data will be lost, which will affect the accuracy of the

model. Moreover, in the study ofmaize and soybean phenotypes,

it has been proved that the accuracy of modeling with multi-

source data is higher than that with single-source data, as

shown in Table 1. Therefore, it is of great significance to

study the multi-source remote sensing monitoring of tea plant

growth indicators.

In this research work, we smartly use multi-source remote

sensing data, including RGB images, multispectral images,

TM images, LiDAR images, and TC images, collected from a

UAV crop high-throughput phenotyping platform, to develop

a multimodal data processing framework to estimate the H,

LAI, W, LCC, and LNC of tea plants in field. The proposed
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TABLE 1 Results of estimating relevant indexes of field crops using multi-source remote sensing data.

Sensor type Phenotypic Crop Algorithm Accuracy References

RGB LAI Maize DCNN R2 = 0.82 Liu et al., 2021

RF R2 = 0.71

MS LAI Maize DCNN R2 = 0.7

RF R2 = 0.68

TM LAI Maize DCNN R2 = 0.51

RF R2 = 0.54

RGB+MS+TM LAI Maize DCNN R2 = 0.89

RF R2 = 0.76

LiDAR H Maize RF R2 = 0.76 Yue et al., 2018

AGB SVM R2 = 0.74

RGB H Maize RF R2 = 0.69

AGB SVM R2 = 0.64

HS H Maize RF R2 = 0.56

AGB SVM R2 = 0.54

LiDAR+RGB+MS H Maize RF R2 = 0.82

AGB SVM R2 = 0.8

MS AGB Soybean SVM R2 = 0.52 Maimaitijiang et al., 2020

RGB AGB Soybean SVM R2 = 0.42

TM AGB Soybean SVM R2 = 0.26

MS+RGB+MS AGB Soybean SVM R2 = 0.67

framework is mainly based on four key machine learning

methods: back propagation (BP), support vector machine

(SVM), random forest (RF), and partial least squares (PLS). This

work makes several contributions: (1) It proposes a framework

for processing fused, multi-source remote sensing data, which

produces multimodal data sets to improve estimates of the H,

LAI, W, LCC, and LNC; (2) comparing the robustness and

adaptability of multi-mode data fusion and single-source data

evaluation models to estimate H, LAI, W, LCC, and LNC of

tea plant and found an optimal estimation model for different

phenotypes; (3) the tea phenotypic model constructed by RF and

SVM algorithm has the highest accuracy and robustness.

Materials and methods

Study area

The study areas were located in Bi Hai Lan Tian Tea

plantations (120.61◦E, 36.27◦N, Figure 1), Laoshan District,

Qingdao City, Shandong Province. It covers an area of about 65

hectares, with an average altitude of 55 meters. The soil texture

is sandy, the unit weight is 1.45 g/cm3, the organic matter is

1.63%, and the pH value is 6.0. The annual average precipitation

is 719.2mm, the annual average sunshine hours are 2,392 h,

and the annual average temperature is 13.5◦C (the annual

maximum/minimum temperature is 39.6/−19.6◦C), which is

suitable for the growth and development of tea plants. The

experimental areas were divided into three tea plantations at

different growth stages, the age of tea plants in young tea garden

(YTG) is 4 years old, mature tea garden (MTG) is 10 years old,

and aging tea garden (ATG) is 22 years old. The location of the

test area is shown in Figure 1.

The field experiment was conducted in November 2020.

The three tea plantations were divided into experimental units.

YTG is divided into 70 test subunits, each of which is 3 m2;

MTG is divided into 50 test subunits, each with 4 m2; ATG

is divided into 60 test subunits, each of which is 3 m2. Three

tea plantations were watered and fertilized. YTG watering is

45mm,MTGwatering is 120mm, and ATGwatering is 120mm.

Drip irrigation is adopted. The fertilizer is organic fertilizer.

Mechanical trenching is adopted for fertilization. YTG is applied

with 75 kg hm−2, MTG is applied with 112 kg hm−2, and ATG

is applied with 85 kg hm−2.

Data collection

Field data collection

Field data were collected on July 1, 2021, and five tea plant

phenotypic parameters were measured in this study, including

LAI (m2 m−2), H (m),W (%), LCC (SPAD value), and LNC (mg

g−1) (Table 2). All five parameters were measured between July
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FIGURE 1

(A) Geographical location of the study area (Qingdao); (B) young tea garden (YTG); (C) mature tea garden (MTG); (D) aging tea garden (ATG).

1 and July 2, 2021 (Figure 2). All tea plants in the tea gardens

were pruned, and the fresh shoots were picked before phenotypic

parameters were measured and flight missions were performed.

As a result, our measurements of leaf values are based on mature

leaves. To verify the typicality of the collected samples and

minimize measurement error, we randomly measure the leaves

of multiple tea plants in the test unit and then use the average as

the final input data.

The LAI was measured by the plant canopy Digital Image

Analyzer CI-110 (CID USA). The final result is the average

value of three measurements in each test area (Brand and Zonta,

2016). The H was measured by hand using a ruler, and the final

result is the average of six measurements taken in each test area.

The W was measured by oven. Ten mature leaves from each

test area were taken and dried to constant weight in an oven

at 90◦C to constant weight. The LCC and LNC were measured

by plant Nutrition analyzer (Tuopu Zhejiang, China), carefully

avoiding the leaf veins during whole measurement for accuracy

of results. The final average data were calculated according to the

prescribed formula of W as follows:

W =
m1−m2

m2
×100% (1)

where m1(g) is the total weight of the blade, and m2 (g) is the

weight after drying.

UAV multi-sensor data acquisition

To ensure flight quality and safety, we choose sunny weather

and low wind speed conditions to perform the flight mission.

On July 1, 2021, three UAVs were equipped with four sensors

to perform flight tasks (Figure 3). The DJ M300 RTK (DJI,

Inc., Shenzhen, China) was equipped with Meditation L1 (DJI,

Inc., Shenzhen, China) and Meditation P1 (DJI, Inc., Shenzhen,
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TABLE 2 Descriptive statistics were used to analyze the phenotypic parameters of tea plantations.

Tea parameters Number Min Mean Max SD

LAI (m2 m−2) Field all= 180 0.53 2.4 5.10 1.31

Field YTG= 70 0.53 1.14 2.07 0.35

Field MTG= 60 3.23 4.13 5.10 0.42

Field ATG= 50 1.1 2.41 4.03 0.71

H (m) Field all= 180 0.21 0.36 0.52 0.079

Field YTG= 70 0.21 0.34 0.46 0.054

Field MTG= 60 0.40 0.47 0.52 0.025

Field ATG= 50 0.22 0.31 0.38 0.036

W (%) Field all= 180 61 68.54 76 3.91

Field YTG= 70 68 72.40 76 1.52

Field MTG= 60 61 66.03 73 2.64

Field ATG= 50 62 66.11 75 2.91

LCC (SPAD) Field all= 180 61.3 69.23 76.5 4.22

Field YTG= 70 61.3 64.57 75.2 2.09

Field MTG= 60 65.4 71.76 75.3 1.97

Field ATG= 50 68.1 72.56 76.5 1.75

N (mg g−1) Field all= 180 17.1 20.88 26.4 1.59

Field YTG= 70 19.7 22.07 26.4 1.31

Field MTG= 60 17.1 20.10 23.8 1.46

Field ATG= 50 17.4 20.14 23.6 1.10

China), respectively. DJ M200 V2 (DJI, Inc., Shenzhen, China)

was equipped with MS600 (Yusense, Inc., Qingdao, China)

and Meditation XT2 (DJI, Inc., Shenzhen, China). The specific

information about the UAV system and its flight mission are

shown in Table 3.

Further processing of UAV remote
sensing data

Figure 4 shows the overall framework for evaluating tea

phenotype based on multi-source remote sensing data. First,

65 variables are extracted from LiDAR, TC, MS, RGB,

and TM images. Second, the variables were screened by

Pearson’s correlation analysis. Then, using four machine

learning methods, five tea phenotypic data are used to

model the selected variables. R2, RMSE, and NRMSE are

used to evaluate the quality of the model. To eliminate the

influence of flight altitude on the data set, we extract the

marked coordinate points from the LiDAR image and input

the marked coordinate points in other images during the

splicing process.

a) The LiDAR data collected by Meditation L1 were used to

establish point cloud model by DJI SmartMap software (DJI,

Inc., Shenzhen, China). The processing process includes

screening the high-density point cloud, output coordinate

system location CGRS93, point cloud accuracy optimization,

and reconstruction.

b) The TC data collected by Meditation P1 were used to

establish point cloud model by DJI SmartMap software. The

processing process includes selecting high-definition images,

oblique and orthographic shooting scenes, and reshaping.

c) The MS data collected by MS600 were spliced by Yusense

Map V1.0 (Yusense, Inc., Qingdao, China). The processing

process includes generating the registration parameters

for image registration, inputting white board reflectivity

radiometric calibration, and splicing multispectral images

(Luo et al., 2021).

d) The TM and RGB data collected by Meditation XT2 were

spliced by Yusense Map V1.0. The processing process

includes data import, camera parameter generation, image

splicing, and temperature calibration.

e) For LiDAR and OC data, Alandur Platform Free software

(ALD. Inc., Chengdu, China) was used to cut plots

and extract variables. For MS and RGB data, ENVI 5.2

software was used for plot clipping, band, and texture

extraction. For TM data, FLIR Tools (Teledyne FLIR, USA)

software was used for cropping of plots and extraction

of temperature information. For MS and RGB data,

ENVI 5.2 software was used for plot clipping, band,

and texture extraction. Python 3.7 and MATLAB 2020
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FIGURE 2

(A) Determination of the W; (B) determination of the H; (C) determination of the LCC and LCN; (D) determination of the LAI.

FIGURE 3

(A) M200 V2 carries with MS600 and Meditation XT2; (B) the M300 RTK carries Meditation P1; (C) the M300 RTK carries with Meditation L1.
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TABLE 3 Specific information on UAV systems and their flight missions.

UAV platforms Sensors Flight height (m) Flying speed (m s−1) Overlap (%) Accuracy (cm pixel−1)

M300 RTK Meditation L1 50 6 70 (front)

80 (side)

0.8

M300 RTK Meditation P1 50 6 70 (front)

80 (side)

0.7

M200 V2 MS600 15 2 55 (front)

75 (side)

1.2

M200 V2 Meditation XT2 15 2 55 (front)

75 (side)

1.0

FIGURE 4

General framework for evaluating tea phenotype based on multi-source remote sensing data.
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TABLE 4 Definitions of the features extracted from di�erent sensors and imagery.

Sensor Fentures Formula References

LiDAR Point cloud density L.PCD= NOPC Su et al., 2016

Laser penetration index L.LPI= NOGPC/NOGPC+NOCPC

Porosity L.Fgap= NOGPCE/TNOPCE

Height mean Mean height of tree crown

Height maximum Maximum height of tree crown

Height percentile (5, 15, 25, 35, 45, 55, 65, 75, 85, 95%) Percentile height of echo return point

TC Point cloud density P.PCD= NOPC Su et al., 2016; Ying et al., 2020

Porosity P.Fgap= NOGPE/TNOPE

Height mean Mean height of tree crown

Height maximum Maximum height of tree crown

Height percentile (5, 15, 25, 35, 45, 55, 65, 75, 85, 95%) Percentile height of echo return point

MS 450, 555, 660, 720, 750, 840 nm The raw value of each band

Normalized difference vegetation index NDVI= (NIR–R)/(NIR+R) Peñuelas et al., 1997

Ratio vegetation index RVI= NIR/R Jordan, 1969

Difference vegetation index DVI= NIR–R Richardson and Wiegand, 1977

Enhanced vegetation index EVI= 2.5(NIR–R)/(NIR+6R−7.5B+1) Hui and Huete, 1995

Renormalized difference vegetation index RDVI= (NIR–R)/(
√
NIR+ R ) Roujean and Breon, 1995

Triangular vegetation index TVI= 60(NIR–G) – 100(R–G) Broge and Leblanc, 2001

Soil-adjusted vegetation index SAVI= 1.5(NIR–R)/(NIR+R+0.5) Huete, 1988

Nonlinear vegetation index NIR= (NIR2-R)/(NIR2+R) Goel and Qin, 1994

Red-edge chlorophyll index RECI= NIR/R−1 Gitelson et al., 2006

Modified nonlinear vegetation index MNLI= 1.5 (NIR2-R)/(NIR2+R+0.5) Peng et al., 2003

Optimization of soil-adjusted vegetation index OSAVI= 1.16(NIR–R)/(NIR+R+0.16) Rondeaux et al., 1996

Green normalized difference vegetation index GNDVI= (NIR–G)/(NIR+G) Gitelson et al., 1996

Red-edge NDVI RENDVI= (R750–R720)/(R750+R710) Gitelson and Merzlyak, 1996

RGB Gray-level co-occurrence matrix (GLCM) ME, VA, HO, CO, DI, EN, SE, CO Haralick et al., 1973

TM Temperature maximum TMAX Zhu et al., 2021

Temperature minimum TMIN

Temperature mean TI/I

NP, number of point clouds; NOGPC, number of ground point clouds; NOCPC, number of canopy point clouds; NOGPCE, number of ground point clouds echoes; TNOPCE, total

number of point cloud echoes.

were used for further processing and analysis of remote

sensing data.

The extraction of UAV remote sensing
information

To clearly display the remote sensing indicators used in this

article, we classify and rank the variables extracted from LiDAR,

TC, MS, RGB, and TM data, as shown in Table 4.

Extraction of LiDAR information

The point cloud model of LiDAR data was further processed

by Alandur Platform Free software. The processing process

includes denoising, filtering, normalization, and generating

DSM model and DEM models. DSM model subtracts DEM

model to further generate canopy height model (CHM). In

this way, five variables can be extracted: point cloud density

(PCD), laser penetration index (LPI), porosity (Fgap), height

mean (Hmean), and height maximum (Hmax). The height

information was related to the Z coordinate system of point

cloud data. Therefore, the Z coordinate system of the point

cloud model was rearranged by Python 3.8 to obtain a total

of 10 variables of height percentile, namely H5th, H15th,

H25th, H35th, H45th, H55th, H65th, H75th, H85th, and H95th.

Therefore, the LiDAR data set contains 5+ 10= 15 variables.

Extraction of TC information

The extraction of TC information was basically the

same as that of LiDAR information, but there were
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no LPI variables. Thus, the TC data set contained

4+ 10= 14 variables.

Extraction of MS information

MS data were extracted into six original bands through

ENVI 5.2, including 450, 555, 660, 720, 750, and 840 nm. In

addition, we applied 13 vegetation indices commonly used in

previous studies. Therefore, the MS data set contains 6 + 13 =
19 variables.

Extraction of RGB information

Because MS data provide spectral information, we use

high-resolution RGB data to extract texture information. The

texture information was extracted from the gray-level co-

occurrence matrix (GLCM) of green, red, and blue bands by

ENVI 5.2 software, and the processing window is 3 lines × 3

columns. GLCM texture includes eight indexes: mean, variance,

homogeneity, contrast, dissimilarity, entropy, second moment,

and correlation. Therefore, the RGB data set includes 3 × 8 =
24 variables.

Extraction of TM information

For thermal sensors, temperature is the most important

information. Therefore, we use FLIR Tools software to

extract three temperature variables from TM data, namely

temperature maximum (Tmax), temperature minimum (Tmin),

and temperature mean (Tmean).

Data modeling and validation

In this study, BP, SVM, RF, and PLS neural networks

were used to analyze the data and establish the model. BP

neural network had the ability of data integration and analysis,

which could be used to analyze the nonlinear relationship

between parameters affecting phenotypes (Liu et al., 2016).

SVM had unique advantages in solving small sample, nonlinear,

and high-dimensional pattern recognition problems, and its

network structure is more complex, with strong generalization

and prediction ability (Qin and He, 2005). PLS combined

the advantages of principal component analysis, canonical

correlation analysis, and multiple linear regression analysis and

can handle the problem of multicollinearity between feature

attributes (Lin et al., 2016). RF can balance errors for unbalanced

data sets and has fast training speed, and it was easy to make a

parallelization method (Iverson et al., 2008).

The variables of multi-source data sets and single-source

data sets were screened by Pearson’s correlation analysis, and the

variables with high correlations were selected to be input into the

four networks. To further expand the number of samples and

ensure the accuracy of the algorithm, this study uses the method

of 10-fold cross-validation to divide the data set into 10 parts, of

which nine parts were used as the training set and one part was

used as the test set, repeated 100 times, and finally calculate the

average value of the results. The performance of the model was

evaluated by determining R Square (R2), root mean square error

(RMSE), and normalized root mean square error (NRMSE).

The larger R2, the smaller RMSE and NRMSE, indicating the

better performance of the model. The stability of the data set to

different models was evaluated by average precision (AP). R2,

RMSE, NRMSE, and AP were as follows:

R2 =

∑n
i = 1 (xi−x)2×

(

yi−y
)2

∑n
i = 1 (xi−x)2×

∑n
i = 1

(

yi−y
)2

(2)

RMSE =

√

∑n
i = 1

(

yi−xi
)2

n
(3)

NRMSE =
RMSE

x
(4)

AP =

∑n
i = 1 Ri

n
(5)

Results and analysis

Phenotypic analysis of tea crowns at
di�erent growth stages

To obtain the phenotypic information of tea crown, LAI,

H, W, LCC, and LNC were measured by artificial method

(Figure 5). The H of MTG is about 0.5m, and the LAI is about

5 m2m−2, which is the largest among the three tea gardens,

indicating that the canopy of MTG is the densest. The LAI of

YTG is about 0.1 m2m−2, which is the smallest of the three tea

gardens, indicating that the tea plant is in the growth stage. For

W, the water content of tea leaves in YTG is the largest, which

is 73%, and the W of MTG and ATG is lower. For LCC, the

chlorophyll of ATG tea leaves is the largest, and the SPAD value

is about 73. The chlorophyll of YTG tea leaves is the smallest, and

the SPAD value is about 65. For LNC, the average LNC of MTG

and ATG is about 20mg g−1, which indicates that tea plants are

seriously deficient in nitrogen.

Contribution of single-source remote
sensing data to estimation of tea crown
phenotypic

Screening of single-source UAV remote
sensing data

To screen out the variables with high correlation, we

performed Pearson’s correlation analysis between all variables

of five single-source remote sensing data sets and tea crown

phenotype data. In addition, we selected 1–9 variables with high
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FIGURE 5

Phenotypes of tea crowns at di�erent growth stages. (A) H; (B) LAI; (C) W; (D) LCC; (E) LNC.

correlation as the input of single-source remote sensing data to

establish the model (Figure 6). In Figure 6, ∗ and ∗∗ represent

the significance levels of P < 0.05 and P < 0.01, respectively.

To evaluate the H of tea crown, L.Hmax, L.Hmean,

L.H85th, and L.H95th variables of LiDAR were selected for

modeling; P.Hmax, P.H65th, P.H75th, P.H85th, and P.H95th

variables of TC were selected for modeling; RV, RContrast, GV,

Gcontrast, and BV variables of RGB were selected for modeling;

MEAN.B.450 and MEAN.R.660 variables of MS were selected

for modeling; Tmax variable of TM was selected for modeling.

To evaluate the LAI of tea crown, L.Fgap, L.H35th, L.H45th,

L.H55th, L.H65th, and L.H75th variables of LiDARwere selected

for modeling; P.Fgap, P.H35th, P.H45th, and P.H55th variables

of TC were selected for modeling; RV, Rcontrast, GV, Gcontrast,

BV, and Bcontrast variables of RGB were selected for modeling;

MEAN.R.660, PVI, RECI, and RENDVI variables of MS were

selected for modeling; Tmax and Tmin variables of TM were

selected for modeling.

To evaluate the W of tea crown, L.Fgap, L.H35th, L.H45th,

L.H55th, L.H65th, and L.H75th variables of LiDARwere selected

for modeling; P.Fgap, P.H15th, P.H25th, P.H35th, and P.H45th

variables of TC were selected for modeling; RM, RASM, GM,

GCorrelation, BM, and BASM variables of RGB were selected

for modeling; SAVI, MNLI, GNDVI, and RENDVI variables of

MS were selected for modeling; Tmax and Tmin variables of TM

were selected for modeling.

To evaluate the LCC of tea crown, L.Fgap, L.H35th,

L.H45th, L.H55th, L.H65th, and L.H75th variables of LiDAR

were selected for modeling; P.Fgap, P.H15th, P.H 25th, P.H35th,

and P.H45th variables of TC were selected for modeling; RM,

RASM, RCorrelation, GM, GASM, GCorrelation, BM, BASM,

and BCorrelation variables of RGB were selected for modeling;

MEAN.RE.720, MEAN. NIR. 750, EVI, RDVI, and MNLI

variables of MS were selected for modeling; Tmax and Tmin

variables of TM were selected for modeling.

To evaluate the LNC of tea crown, L.Fgap, L.H35th,

L.H45th, L.H55th, L.H65th, and L.H75th variables of LiDAR

were selected for modeling; P.Fgap, P.H25th, P.H35th,

and P.H45th variables of TC were selected for modeling;

RM, RASM, RCorrelation, GM GASM, GCorrelation, BM,
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FIGURE 6

Selected single-source remote sensing variables with high correlation. * and ** represent the significance levels of P < 0.05 and P < 0.01,
respectively.

BASM, and BCorrelation variables of RGB were selected

for modeling; MEAN.NIR. 750, MEAN. 840, EVI, SAVI,

RDVI, MNLI, and GNDVI variables of MS were selected for

modeling; Tmax and Tmin variables of TM were selected

for modeling.

Performance of single-source UAV data on tea
plant phenotyping

After selecting the appropriate single-source data, BP, SVM,

RF, and PLS of machine learning methods were used to

model the single-source remote sensing data and tea crown

phenotype data. The results showed that the evaluation of

crown phenotype by data from various sensors was significantly

different (Figures 7, 8).

For the estimation of H, the model established by LiDAR

and TC data has higher accuracy, and the AP value in the

model established by LiDAR data is higher. The data from

MS, RGB, and TM are not suitable for estimating tea plant

height. The RF model established by LiDAR data has the

best evaluation effect (Rp2 = 0.82, RMSEP = 0.031, and

NRMSEP= 0.089).

For the estimation of LAI, the model established by

TC, LiDAR, and MS data has high accuracy. In the model

established by TC data, the AP value is the largest, so its

stability is the highest. The SVM model established by TC data

has the highest accuracy (Rp2 = 0.84, RMSEP = 0.45, and

NRMSEP= 0.19).

For the estimation of W, the model established by RGB

and TM data has high accuracy. In comparison, the AP value

in the model established from RGB data is higher, so its

stability is higher. The RF model established from TM data

has the best evaluation effect (Rp2 = 0.72, RMSEP = 1.9, and

NRMSEP= 0.03).

For the estimation of LCC, the performance and stability of

the model established by MS data are the best. The BP model
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FIGURE 7

Result of the training set.

FIGURE 8

Result of the test set.

established by MS data has the highest accuracy (Rp2 = 0.78,

RMSEP= 1.9, and NRMSEP= 0.029).

For the estimation of LNC, the AP value and accuracy of the

model established by each data are low. In comparison, the RF

model established by MS data has the highest accuracy (Rp2 =
0.65, RMSEP= 0.85, and NRMSEP= 0.04).

In conclusion, LiDAR and TC data are better

in evaluating H and LAI of tea crowns. MS data
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are better in evaluating LAI, LCC, and LNC of tea

crowns. RGB and TM data are better to evaluate the W

of tea crowns.

Contribution of multi-source remote
sensing data to estimation of tea crown
phenotypic

Screening of multi-source UAV remote sensing
data

To evaluate the effect of multi-source remote sensing data on

tea phenotype, we screened 2–7 variables with high correlation

as the input of multi-source remote sensing data to establish

model. To eliminate the influence of the number of variables

on the comparison of single-source data and multi-source data,

we keep the number of input variables unchanged. To evaluate

the H of tea crown, L.Hmax, L.Hmean, P.H85th, and P.H95th

variables of LiDAR + TC were selected for modeling. To

evaluate the LAI of tea crown, L.Fgap, L.H45th, P.Fgap, and PVI

variables of LiDAR + TC + MS were selected for modeling. To

evaluate the W of tea crown, RM and Tmax variables of RGB+
TM were selected for modeling. To evaluate the LCC of tea

crown, RM, MEAN.RE.720, MEAN.NIR. 750, EVI, and RDVI

variables of RGB+ MS were selected for modeling. To evaluate

the LNC of tea crown, L.Fgap, RM, BM, Tmax, SAVI, MNLI, and

GNDVI variables of LiDAR + RGB + MS + TM were selected

for modeling.

Performance of multi-source UAV data on tea
plant phenotyping

After selecting the appropriate multi-source remote sensing

data, BP, SVM, RF, and PLS of machine learning methods were

used to model the multi-source remote sensing data and tea

crown phenotype data. The results show that the multi-source

remote sensing data from multiple sensors have a good effect

on the evaluation of tea crown phenotype (Table 5). For the

estimation of H, the effect of SVMmodel is the best (Rc2 = 0.87,

Rp2 = 0.82, RMSEC= 0.03, RMSEP= 0.04, NRMSEC= 0.078,

and NRMSEP = 0.09); for the estimation of LAI, the effect of

SVMmodel is the best (Rc2 = 0.91, Rp2 = 0.90, RMSEC= 0.39,

RMSEP = 0.40, NRMSEC = 0.15, and NRMSEP = 0.17); for

the estimation of W, the effect of SVM model is the best (Rc2

= 0.68, Rp2 = 0.62, RMSEC = 1.8, RMSEP = 1.8, NRMSEC =
0.03, and NRMSEP= 0.03); for the estimation of LCC, the effect

of RF model is the best (Rc2 = 0.89, Rp2 = 0.85, RMSEC = 1.4,

RMSEP = 1.8, NRMSEC = 0.02, and NRMSEP = 0.03); for the

estimation of LNC, the effect of RF model is the best (Rc2 =
0.73, Rp2 = 0.57, RMSEC = 0.85, RMSEP = 0.92, NRMSEC =
0.04, andNRMSEP= 0.04). Figure 9 shows the scatter plot of the

predicted value and actual value distribution of the model with

the highest accuracy among the five phenotypic parameters.

Comparison of single-source and
multi-source remote sensing data to
evaluate the results of tea crowns
phenotype

To more clearly and intuitively compare the evaluation

results of multi-source remote sensing data and single-source

remote sensing data on the phenotypic parameters of tea crowns,

we calculated the difference between the evaluation results from

the multi-source remote sensing data model and the evaluation

results of the single-source remote sensing data model with the

highest accuracy (Figure 10). To eliminate the influence of the

number of variables, we keep the same number of variables input

from multi-source data and single-source data. Table 6 shows

the validation statistics of tea phenotypic parameters evaluated

by single-source data set model with the highest accuracy and

multi-source data set model. The results show that in evaluating

the H of tea crowns, the accuracy of the model established by

the fused LiDAR and TC data is greatly improved than that of

LiDAR data, and the accuracy of the RF model is the highest.

In evaluating the LAI of tea crowns, the accuracy of the model

established by the fused LiDAR, TC, and MS data is improved

than that of TC data; in evaluating the W of tea crowns, the

accuracy of themodel established by the fused RGB and TMdata

is greatly improved than that of RGB data, and the accuracy of

the RFmodel is the highest. In evaluating the LCC of tea crowns,

the accuracy of the model established by the fused MS and RGB

data is greatly improved than that of the MS data. In evaluating

the LNC of tea crowns, the accuracy of the model established by

the fused LiDAR,MS, RGB, and TMdata is significantly less than

that ofMS data, and the accuracy of the PLSmodel is the highest.

Discussion

To select suitable single-source remote
sensing data set to evaluate the
phenotypic parameters of tea crowns

The results of this study verify that UAV remote sensing data

sets from different sources are suitable for specific tea phenotypic

parameters. LiDAR and TC sensors are dominant in monitoring

H and LAI. The data obtained by the two sensors can establish

a three-dimensional point cloud model to restore the crown

structure of tea plants. Previously, researchers used LiDAR

sensors to establish 3D point cloud models to monitor the forest

canopy structure (Schneider et al., 2019). Some researchers also

used oblique camera to establish 3D point cloud models to

monitor the height and leaf area index of corn (Ying et al.,

2020). These results are in accordance with our findings. The

canopy structure of plants may be monitored using LiDAR and

a TC camera. It is because LiDAR is an active sensor that the

modeling accuracy of LiDAR data is higher than that of the
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TABLE 5 Phenotypic evaluation of tea plants based on multi-source remote sensing.

Training sets Test sets

Phenotype Model Rc2 RMSEC NRMSEC Rp2 RMSEP NRMSEP

H BP 0.82 0.03 0.09 0.80 0.03 0.09

SVM 0.87 0.03 0.08 0.82 0.04 0.09

RF 0.90 0.02 0.07 0.81 0.04 0.09

PLS 0.78 0.04 0.10 0.77 0.04 0.10

AP 0.84 0.03 0.08 0.80 0.04 0.10

LAI BP 0.9 0.4 0.16 0.88 0.46 0.19

SVM 0.91 0.39 0.15 0.9 0.40 0.17

RF 0.93 0.3 0.12 0.89 0.45 0.19

PLS 0.84 0.5 0.21 0.84 0.51 0.22

AP 0.89 0.39 0.16 0.85 0.49 0.22

W BP 0.65 1.9 0.03 0.58 1.8 0.04

SVM 0.68 1.8 0.03 0.62 1.8 0.03

RF 0.78 1.8 0.03 0.49 1.9 0.04

PLS 0.59 1.9 0.04 0.53 1.9 0.04

AP 0.69 1.9 0.04 0.56 1.9 0.04

LCC BP 0.78 2 0.03 0.75 1.9 0.03

SVM 0.8 1.9 0.03 0.76 1.9 0.03

RF 0.89 1.4 0.02 0.85 1.8 0.03

PLS 0.75 2.1 0.03 0.74 2.2 0.03

AP 0.81 1.85 0.03 0.79 2 0.03

LNC BP 0.5 1.2 0.06 0.48 1.2 0.06

SVM 0.52 1.2 0.06 0.46 1.2 0.06

RF 0.73 0.85 0.04 0.57 0.92 0.04

PLS 0.47 1.18 0.06 0.46 1.2 0.06

AP 0.56 1.1 0.05 0.5 1.1 0.06

TC data. The principle of LiDAR data acquisition is to transmit

laser signals, which are reflected by tea plants and collected by

the receiving system, so the penetration is better. However, we

advocate utilizing TC cameras to monitor canopy structure for

certain tea plants with low canopy structure. On the one hand,

the TC camera can provide high-precision RGB data and 3D

point cloud data; on the other hand, the TC camera is far less

expensive than LiDAR.

RGB and MS sensors are dominant in monitoring LCC and

LNC indexes of tea plants. Previous studies used multispectral

data to estimate the nitrogen concentration of winter wheat

(Tao et al., 2020). Here, we evaluated the accuracy of textural

characteristics and spectral information in assessing the LCC of

tea crowns, unlike aforementioned investigation. Our approach

transforms in a model with a greater level of accuracy than one

based on texture characteristics. We can utilize hyperspectral

sensors for intensive analysis if we want to better monitor

the LCC of the tea canopy, and hyperspectral sensors can

collect more spectral information. Zhu et al. (2021) utilized

hyperspectral data to determine the chlorophyll content of

maize leaves.

The TM sensor has great potential in monitoring the water

content of tea crown leaves. This wasmainly because the thermal

sensor could obtain the canopy temperature of crops, and there

was a certain relationship between the temperature information

and leaf water content (Luz and Crowley, 2010). In recent years,

thermal sensors were more and more widely used in monitoring

crop leaf water content (Maimaitijiang et al., 2020), such as

researchers used thermal sensors to monitor changes in wheat

moisture content and achieved good results (Abdelhakim et al.,

2021). However, in this study, the accuracy of leaf water content

predictionmodel is low, whichmay be due to the complexity and

uncontrollability of field environment affecting the acquisition

of temperature information. Therefore, if we can accurately

obtain the changing trend of field environmental factors, such

as wind speed, temperature, and humidity, it will help us to

improve the accuracy of the model, which needs further research

in the later stage.
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FIGURE 9

Scatter plot of predicted and actual values of the model. (A) H; (B) LAI; (C) W; (D) LCC; (E) LNC.

To select suitable multi-source remote
sensing data set to evaluate the
phenotypic parameters of tea crowns

In this research, the accuracy of the model established by

the combined LiDAR and TC data is much greater than that of
the model established by single-source data while evaluating H

of tea crown. This may be due to the strong fault tolerance of
multi-source data, which reduces the impact of environmental
factors on specific types of data, improves spatial resolution,
and enriches remote sensing image information; the accuracy

of the model established by the fused LiDAR, TC, and MS data

is small improved than that of the model established by single-

source data while evaluating the LAI of tea crowns. However,

previous researchers used multi-source remote sensing data to

evaluate LAI of maize, which greatly improved the accuracy

of the model (Liu et al., 2021). We analyze the reasons for

the difference in accuracy between the tea plants and maize.

On the one hand, because tea plants have the characteristics

of high canopy density, especially in mature tea gardens, the

measuring instrument is difficult to reach the center to measure

the LAI. Therefore, there are errors in the measurement, which

will affect the accuracy of the model. On the other hand, the

evaluation of maize LAI is based on the fusion of RGB, MS,

and TM data, while the evaluation of tea leaf area index is

based on the fusion of LiDAR, TC, and MS data. Different data

types may lead to different improvement of model accuracy.

The accuracy of the model established by the fused LiDAR,

MS, RGB, and TM data is much higher than that of the model

established by single-source data while evaluating the W of

tea crowns. Previously, researchers used the fusion of RGB

texture features and vegetation index to evaluate the water

content of rice, and the research results were consistent with our

research results (Wan et al., 2020). However, different from our

research method, we have more data types and larger amount

of data to evaluate the water content of tea leaves, so the

improvement of model accuracy is also greater. The accuracy

of the model established by multi-source remote sensing data

is improved than that of the model established by single-source

remote sensing data while evaluating the LCC of tea crowns.

Previously, multi-source remote sensing data were used to

evaluate corn LCC and also proved that the accuracy of multi-

source remote sensing data model is higher than that of single-

source model in evaluating LCC (Zhu et al., 2021). The accuracy

of the model established by MS data is improved than that of

the model established by LiDAR + RGB + MS + TM data

while evaluating the LNC of tea crowns. This may be because

the LNC of tea plant only has a strong response to spectral

information, but has a weak response to thermal information

and texture information. At present, there are few literature on
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FIGURE 10

Evaluation results of single source and multi-source UAV data on tea crown phenotype. (A) H; (B) LAI; (C) W; (D) LCC; (E) LNC.

the evaluation of crop nitrogen content by multi-source remote

sensing data.

E�ects of di�erent machine learning
algorithms on phenotypic evaluation of
tea crown

While examining tea phenotypes, the accuracy of SVM, RF,

and BP models is distinct by using a single data set. Among

them, the SVM model has the highest accuracy in evaluating

LAI, the RF model has the highest accuracy in evaluating H,

W, and LNC, and the BP model has the highest accuracy in

evaluating LCC. However, the stability of the BP model is low,

and the accuracy decreases in the evaluation of LAI and W. As

consistent with previous studies, using BP algorithm to establish

corn leaf area index and leaf water content model, the number of

samples is too small, resulting in lowmodel accuracy. Therefore,

BP neural network is suitable for large sample modeling. For

small sample modeling, the stability is poor, and the parameters

need to be adjusted constantly (Zhu et al., 2021). The accuracy

of the PLS model is the lowest and in evaluating LCC and W of

tea canopy, Rp2 < 0.3. This is consistent with previous studies.

SVM, BP, and PLS algorithms were used to build the prediction

model of nitrogen, tea polyphenols, and amino acid content in
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TABLE 6 Validation statistics of tea phenotypic parameters evaluated by single-source data set model with the highest accuracy and multi-source

data set model.

Phenotypic parameters Sensor type No. of feature Metrics BP SVM RF PLS AP

H LiDAR 4 Rp2 0.74 0.77 0.81 0.72 0.76

RMSEP 0.040 0.039 0.031 0.043 0.038

NRMSEP 0.11 0.11 0.089 0.12 0.11

LiDAR+TC 4 Rp2 0.80 0.82 0.81 0.77 0.80

RMSEP 0.034 0.036 0.036 0.037 0.036

NRMSEP 0.094 0.094 0.092 0.10 0.095

LAI TC 4 Rp2 0.86 0.88 0.79 0.73 0.81

RMSEP 0.49 0.45 0.66 0.70 0.58

NRMSEP 0.21 0.19 0.26 0.30 0.24

LiDAR+TC+MS 4 Rp2 0.88 0.9 0.89 0.84 0.85

RMSEP 0.46 0.42 0.45 0.51 0.49

NRMSEP 0.19 0.19 0.19 0.22 0.22

W TM 2 Rp2 0.55 0.6 0.49 0.49 0.52

RMSEP 2.4 2.3 3.4 3.4 2.5

NRMSEP 0.035 0.034 0.030 0.049 0.037

RGB+TM 2 Rp2 0.58 0.62 0.49 0.53 0.56

RMSEP 1.8 1.8 1.9 1.9 1.9

NRMSEP 0.04 0.03 0.04 0.04 0.04

LCC MS 5 Rp2 0.78 0.77 0.75 0.75 0.76

RMSEP 2.2 1.9 2.1 2.2 1.6

NRMSEP 0.029 0.028 0.030 0.032 0.03

RGB+MS 5 Rp2 0.75 0.78 0.85 0.74 0.79

RMSEP 1.9 1.9 1.8 2.2 2

NRMSEP 0.03 0.03 0.03 0.03 0.03

LNC MS 7 Rp2 0.50 0.54 0.65 0.12 0.45

RMSEP 1.2 1.02 0.85 2.0 1.3

NRMSEP 0.057 0.049 0.040 0.095 0.060

LiDAR+RGB+MS+TM 7 Rp2 0.48 0.46 0.57 0.46 0.5

RMSEP 1.2 1.2 0.92 1.2 1.1

NRMSEP 0.06 0.06 0.04 0.06 0.06

tea leaves, of which the prediction model established by PLS

algorithm had the lowest accuracy (Luo et al., 2021). This may

be because the principle of PLS algorithm is combined with

principal component analysis (PCA) to reduce the dimension

of data. Although this will improve the running speed of the

model, it will also lose some data information, resulting in low

accuracy of the model (Wold et al., 2001). When applied to an

evaluation of the tea phenotype using multi-source data, the RF

and SVM modeling algorithms provide more accurate results.

Among them, the RF algorithm is the most effective one for

establishing LCC and LNC content prediction models of tea

crowns. This is due to the fact that RF is able to balance the

faults and errors of different types of data sets and is simple

to parallelize (Yuan et al., 2017). SVM algorithm is better to

establish LAI, H, and W content prediction models of tea

crowns, and this is because the SVM network structure is more

complex and has strong generalization and prediction ability

(Yuan et al., 2017). The accuracy of BP model based on multi-

source remote sensing data is higher than that of BPmodel based

on single-source remote sensing data. This may be due to the

increase in the number of samples, which increases the fitting

degree of the model and gives full play to the advantages of

BP algorithm.

In our research, we found that RF and SVM models have

stable performance and high accuracy. Our results are consistent

with other researchers using machine learning method to

establish phenotypic models of rice and maize (Cen et al.,

2019; Lin et al., 2021; Wang et al., 2021). We prefer to use RF

algorithm, because RF algorithm has simpler network structure

and faster running speed.
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Conclusion

In this study, the UAV is equipped with MS, TM, RGB,

LiDAR, and TC sensors to monitor the tea height, leaf

area index, leaf water content, leaf chlorophyll, and nitrogen

concentration of the tea plantations in the three growth stages

and obtain the structure information, spectral information,

texture information, and temperature information of the tea

plants. Remote sensing data were utilized to model with BP,

SVM, RF, and PLS of machine learning algorithms, and the

performance of single-source and multi-source remote sensing

data sets to evaluate the crown phenotype of tea plants was

studied. The main conclusions are as follows: On the one

hand, using multi-source data sets to evaluate H, LAI, W,

and LCC can greatly improve the accuracy and robustness

of the model. For the evaluation of H, LiDAR + TC data

sets are recommended for analysis, and SVM model provides

the best estimation (Rp2 = 0.82 and RMSEP = 0.078). For

the evaluation of LAI, LiDAR + TC + MS data sets are

recommended, and SVM model provides the best estimation

(Rp2 = 0.90 and RMSEP = 0.40). For the evaluation of W,

RGB + TM data sets are recommended, and SVM model

provides the best estimation (Rp2 = 0.62 and RMSEP =
1.80). For the evaluation of LCC, MS +RGB data set is

recommended for analysis, and RF model provides the best

estimation (Rp2 = 0.87 and RMSEP = 1.80). On the other

hand, using single-source data sets to evaluate LNC can greatly

improve the accuracy and robustness of the model. For the

evaluation of LNC, MS data set is recommended for analysis,

and RF model provides the best estimation (Rp2 = 0.65 and

RMSEP= 0.85).
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