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Field crops are generally planted in rows to improve planting efficiency and facilitate field 
management. Therefore, automatic detection of crop planting rows is of great significance 
for achieving autonomous navigation and precise spraying in intelligent agricultural 
machinery and is an important part of smart agricultural management. To study the visual 
navigation line extraction technology of unmanned aerial vehicles (UAVs) in farmland 
environments and realize real-time precise farmland UAV operations, we propose an 
improved ENet semantic segmentation network model to perform row segmentation of 
farmland images. Considering the lightweight and low complexity requirements of the 
network for crop row detection, the traditional network is compressed and replaced by 
convolution. Based on the residual network, we designed a network structure of the 
shunting process, in which low-dimensional boundary information in the feature extraction 
process is passed backward using the residual stream, allowing efficient extraction of 
low-dimensional information and significantly improving the accuracy of boundary locations 
and row-to-row segmentation of farmland crops. According to the characteristics of the 
segmented image, an improved random sampling consensus algorithm is proposed to 
extract the navigation line, define a new model-scoring index, find the best point set, and 
use the least-squares method to fit the navigation line. The experimental results showed 
that the proposed algorithm allows accurate and efficient extraction of farmland navigation 
lines, and it has the technical advantages of strong robustness and high applicability. The 
algorithm can provide technical support for the subsequent quasi-flight of agricultural 
UAVs in farmland operations.

Keywords: precision agriculture application, visual navigation, semantic segmentation, crop rows detection, 
navigation path recognition

INTRODUCTION

With the rapid development of precision agriculture, agricultural modernization equipment is 
increasingly developing in the direction of intelligence (Romeo et al., 2012). The mechanization, 
automation, and informatization of agricultural equipment has reached a high level, and numerous 
notable achievements have been made. However, existing agricultural equipment still requires 
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manual driving operation, and the labor intensity for the driver 
is still very high for large-scale operation tasks. With the 
continuous improvement of Internet of Things (IoT) technology, 
UAV technology has developed rapidly (Alsamhi et al., 2021a). 
The main applications of UAVs in the agricultural field include 
surveying and mapping, spraying, sowing, and monitoring of 
pests and diseases (Alsamhi et  al., 2021b). Agricultural UAV 
technology has the characteristics of intelligence, high operation 
efficiency, and no terrain restrictions. By adopting drones, crop 
yields can be  increased, time and effort can be  saved, and the 
return on investment can be significantly maximized. Therefore, 
it is of great significance to fully consider the characteristics 
of UAVs in farmland operations to promote the development 
of precision agriculture.

Autonomous navigation technology is crucial for agricultural 
flying robot equipment. It can effectively reduce the labor 
intensity of agricultural machinery drivers, increase the profit 
and efficiency of field operations, and improve operational 
safety. The current advanced navigation technologies include 
sensor-based laser detection technology, satellite navigation, 
positioning technology, and visual navigation technology. Satellite 
navigation and positioning technology can be  used to perform 
planning for a wide range of operating areas; however, it is 
limited by poor flexibility, susceptibility to signal interference, 
and no capacity to adapt to various regional changes (Grewal 
et  al., 2007). Sensor-based laser detection technology mainly 
relies on laser, ultrasonic, or visual sensors to perceive the 
surrounding environment. However, these sensors can only 
measure distance information, cannot perceive color information, 
and cannot meet the operational requirements of complex 
farmland environments (Winterhalter et  al., 2018). Visual 
navigation technology can be  used to collect farmland images 
through cameras and process them to obtain navigation paths. 
By contrast, this technology has broad detection information, 
complete information acquisition, and price advantages and is 
becoming a research hotspot (Yasuda et  al., 2020).

Crop row detection is a critical element for the development 
of vision-based navigation in agricultural flying robots. The 
application of machine vision algorithms to extract crop row 
baselines quickly and accurately is a critical area for improvement 
(Basso and Pignaton de Freitas, 2020). In the early days, 
Guerrero and Ma implemented inter-row segmentation based 
on color segmentation and clustering algorithms to extract 
navigation lines (Guerrero et al., 2013; Ma et al., 2021); however, 
the resulting effect was not ideal. Tu et  al. (2014) proposed 
a method to detect crops using a quad. Through the movement, 
expansion, and contraction of quadrilaterals, they detected the 
surrounding crop ridges. This method considerably reduces 
the computation and time cost, but the accuracy is relatively 
low. Meng et  al. (2018) researched agricultural mobile robots 
with monocular vision in the natural environment. They proposed 
an improved genetic algorithm that encodes two random points 
at the top and bottom of the crop row images as chromosomes 
to identify guidelines quickly and accurately. The algorithm 
showed good adaptability to different growth stages and different 
crops. However, these methods based on machine learning 
are easily affected by environmental factors such as light and 

weeds, resulting in poor robustness and inaccurate extraction 
of navigation lines. Simultaneously, flying robots adjust the 
path in real-time during the travel process. The amount of 
image data information is continuously superimposed, making 
the device’s processing slower, resulting in a low real-time 
performance that cannot meet the actual requirements.

In recent years, deep learning in the field of machine vision 
has developed rapidly, and the convolutional neural network 
(CNN) algorithm, which is a hotspot of current research, has 
achieved remarkable results (Dhaka et  al., 2021). Kundu et  al. 
(2021) proposed the fusion of IoT with deep transfer learning 
to analyze image and digital data. Wieczorek et  al. (2021) 
proposed lightweight CNN construction, where the number 
of necessary image processing operations was minimized. CNN 
algorithms have overcome the main challenges of implementing 
vision-based navigation systems. They are widely employed in 
various agricultural vision tasks and have provided promising 
results (Hong et  al., 2020; Saleem et  al., 2021). The semantic 
segmentation network of deep learning is a powerful image 
segmentation algorithm that can be applied to the more complex 
farmland environment in the agricultural field and provides 
very good results (Lin and Chen, 2019).

Based on existing research, this paper proposes a new 
semantic segmentation model for crop line images. The novelty 
of our model lies in designing the network structure for shunt 
processing and performing compression and convolution 
replacement processing operations on the traditional ENet. By 
introducing the residual flow to record the boundary information 
in the image, the accuracy of crop row boundary location 
and crop row segmentation can be  improved. After that, in 
the process of using RANSAC to fit the navigation line, a 
new model scoring index is defined according to the 
characteristics of the segmented image, which can accurately 
extract the visual navigation line in real-time.

The remainder of this article is organized as follows. Section 
Related Work discusses related work on agricultural drones 
and crop row detection. Section Methodology describes the 
methodology and theory proposed in this paper. Section 
Experiment presents the results of the study, and Section 
Conclusion concludes the paper.

RELATED WORK

UAVs have the characteristics of maneuverability and flexibility. 
They are relatively unaffected by weather when equipped with 
sensors for farmland monitoring, and high-resolution images 
can be  obtained. They are of great significance in assisting 
the precise management of farmland and are conducive to 
improving farmland operation efficiency (Alsamhi et  al., 2018; 
Gupta et  al., 2020). In recent years, the application of UAVs 
to agricultural production management has become a research 
hotspot, and successive studies have been conducted. Combining 
drones with IoT, Almalki et  al. (2021) proposed a low-cost 
integrated platform to help improve the crop productivity, 
cost-effectiveness, and timeliness of farm management. Nebiker 
et  al. (2016) used low-altitude drones equipped with 
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high-resolution cameras and multispectral sensors to accurately 
and quickly detect infection in potato fields. Faiçal et al. (2017) 
proposed a coordinated spraying system of drones and wireless 
sensor networks, which can appropriately determine and change 
the routes and actions of drones according to weather conditions 
and effectively manage the pesticide spraying process. Dai et al. 
(2017) proposed a drone spraying system specially designed 
for fruit on trees. The system includes a vision system for 
target recognition and a navigation system to control the drone.

Field crops are generally planted in rows, so accurate extraction 
of crop rows is the basis of UAV visual navigation. With the 
great research progress of deep learning in image processing, 
crop row detection based on semantic segmentation networks 
is the focus of modern scholars. In the field of deep learning-
based crop row detection, Lin and Chen (2019)  introduced 
fully convolutional networks (FCNs) and efficient neural network 
(ENet) for the semantic segmentation of tea planting scenes 
and obtained the outline and obstacles of the tea tree row, 
which greatly improved the real-time performance of the tea 
picking machine. Lan et  al. (2020) proposed a novel global 
context-based dilated CNN to perform semantic segmentation 
and extract the road. Adhikari et  al. (2020) proposed a new 
method for crop row detection in paddy fields, in which 
semantic graphs were introduced to annotate crop rows. The 
graphs were then input into a deep convolutional encoder-
decoder network and used as a template matching algorithm 
to extract the position of rice rows. The tractor was controlled 
for precise autonomous navigation in rice fields. Bakken et  al. 
(2021) proposed a CNN-based semantic segmentation network 
for crop row detection. The algorithm automatically uses noisy 
labels to train the network, enabling the robot to adapt well 
to seasonal and crop changes. The network segmentation 
accuracy enables the vision-based movement of agricultural 
robots along crop rows.

METHODOLOGY

The visual guideline recognition method proposed here mainly 
has two key steps: interline semantic segmentation and guideline 
fitting. Inter-row semantic segmentation adopts the improved 
ENet structure, and pixel-level recognition is performed on 
farmland images to accurately extract the crop row’s position. 
Navigation line fitting is based on the semantic segmentation 
results, and the random sampling consensus algorithm is used 
to fit the crop row centerline and then draw the visual 
navigation line.

Crop Row Segmentation
ENet is a real-time lightweight semantic segmentation network 
with low computational complexity and relatively low 
computational requirements (Paszke et al., 2016). This network 
is both accurate and fast, and its design is suitable for crop 
row segmentation.

The model architecture of the traditional ENet mainly includes 
an initialization stage and five bottleneck stages. The first three 
bottleneck stages are used for encoding, and the last two are 

used for decoding. The network includes an initialization module 
and a bottleneck module. The module structure is shown in 
Figure  1. The initialization module can compress the input 
and reduce visual redundancy. The bottleneck module uses 
the idea of residual connection and is divided into a main 
branch and an extended branch. When downsampling, the 
main branch will add a maximum pooling layer and a padding 
layer, reducing the total number of parameters and the number 
of calculations, which can improve the overall speed. It uses 
a relatively symmetric encoder-decoder structure and traditional 
downsampling and upsampling for training. This structure 
cannot effectively transfer semantic information for subsequent 
upsampling, resulting in low model accuracy.

Based on the above problems, we  designed a new network 
structure, adding two processing streams—a pooling stream 
and a residual stream—to the encoding and decoding stages. 
The pooling stream is used to obtain high-dimensional semantic 
information, and the residual stream is used to record 
low-dimensional boundary information to ensure that it is 
more suitable for farmland image segmentation. To further 
improve the running speed of the network and reduce the 
complexity of the model, we  performed model compression 
and convolution replacement. The improved and optimized 
network structure is shown in Figure  2.

Network Structure of Offload Processing
ENet only focuses on extracting high-dimensional semantic 
information, ignoring the low-dimensional boundary information 
contained in feature maps after the initial convolution, which 
results in low segmentation accuracy. The low-dimensional 
boundary information includes numerous image details, which 
can help the network perform accurate segmentation. Therefore, 
a network structure of the shunting process is designed, and 
the residual stream is used to accumulate the low-dimensional 
boundary information of the image, which makes the features 
more noticeable and facilitates the application in the later 
decoding stages.

After Bottleneck1.0 downsampling, the initial pooling feature 
map is obtained. Based on this feature map, more low-dimensional 
boundary details can still be  retained. Therefore, it is used as 

ENet initial block

A B

ENet bottleneck module

FIGURE 1 | Module structure diagram.
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the initial residual feature map of the residual stream branch. 
In Bottleneck1.1–1.4, the branching process of the pooling 
stream is the same as that of the traditional ENet. The residual 
stream branch accumulates the result of each pooling stream 
operation with the previous residual feature map to obtain a 
new residual feature map, to ensure that the boundary information 
of each stage can be recorded. Before entering the new bottleneck 
stage, the pooling feature map output from the previous stage 
and residual feature map are channel-fused as the input of 
the pooling stream branch. Bottleneck2.0 performs 
downsampling. Thus, the size of the output pooling stream 
feature map changes. Therefore, before feature fusion, a 3 3´
convolution operation is added to the residual branch to expand 
the residual feature map to the same size.

To solve the loss of boundary information caused by image 
downsampling in the decoding stage, ENet uses the maximum 
index generated by downsampling twice in the encoding stage 
to restore the boundary information if the picture is insufficient. 
The proposed network uses a residual stream to record boundary 
information; thus, the maximum pooling upsampling is discarded. 
Instead, the main branch in the bottleneck module is replaced 
by a bilinear interpolation operation for the upsampling operation. 
Simultaneously, the residual stream corresponding to this stage 
is also upsampled by bilinear interpolation; thus, the 
low-dimensional boundary information accumulated by the 
residual stream is not easily lost. After upsampling is completed, 
the final pooling stream feature map and the residual stream 
feature map are connected, and the result is input into the 
fully connected layer to obtain a feature classification map of 

the same size as the original input image. Finally, the feature 
map is classified into two categories to complete the entire 
segmentation process.

Convolution Replacement
The encoder in the traditional ENet contains two downsampling 
operations. The role of downsampling is to reduce the image 
resolution, reduce the redundancy of information, and speed 
up image processing. The convolution operation can 
be  performed on the downsampling feature to obtain a larger 
receptive field and collect more contextual information. To 
improve the problem of a reduced receptive field caused by 
the small number of downsampling processes, we  improve the 
four ordinary convolutions after the first downsampling, and 
introduce dilated convolution. Dilated convolution is performed 
by inserting “0” in the convolution kernel, which increases 
the receptive field without adding additional parameters, and 
can obtain more contextual information, thereby improving 
the segmentation accuracy of the network. Dilated convolution 
is shown in Figure 3, where Figure 3A is a standard convolution 
kernel of 3 3,´  and the size of its corresponding receptive 
field is 3 3.´  Figure  3B is a 3 3´  convolution kernel with 
a dilation rate of 2, and the size of the corresponding receptive 
field is 5 5.´

Referring to the arrangement of convolution modules in 
the second stage of the traditional ENet, we  replace the 
convolution modules in the first stage of the pooling stream 
processing and replace the three standard convolution modules 
in bottleneck 1.2–1.4 with expansion. Dilated convolution with 

FIGURE 2 | The improved ENet structure.
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a rate of 2, asymmetric convolution with a size of 5, and 
dilated convolution with a dilation rate of 4 result in a new 
pooling feature map. Convolutions are replaced by an equal 
number, thus not affecting the speed of the algorithm.

Model Compression
The second and third stages in the traditional ENet are repeated 
convolution operations on the same scale, which may cause 
information redundancy problems. In general, repeated 
convolution operations repeatedly extract feature information, 
resulting in certain information redundancy (Brostow et  al., 
2008). Furthermore, downsampling is not performed in the 
third stage. That is, no effective semantic information is extracted. 
Thus, this study removes the third part of the repeated convolution 
operation of the ENet, further reduces the number of parameters, 
and improves network processing speed to meet real-
time requirements.

Navigation Line Fitting
Feature Point Extraction
The premise of obtaining the visual navigation line is to extract 
feature points of the crop row area. In this study, the segmented 
network’s binary image is horizontally scanned at equal intervals. 
The average value of the abscissa of the intersection of the 
white edge and the scanning line is used as the abscissa of 
the feature point, and the product of the scanning order and 
the interval is used as the ordinate. The calculation formula 
is given as follows:
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where k represents the number of intersections between the 
white edge and the scan line, xi  represents the abscissa of 

the intersection of the white edge and the scan line, h represents 
the interval of the scan line, N represents the scan order, and 
Himg  represents the height of the image. Traversing each row 
of an image results in a large time and memory overhead. 
Therefore, the value of the scanning interval h should 
be  reasonably selected. Experiments show that h is set to 8, 
which ensures real-time detection without affecting accuracy.

Navigation Line Fitting
The existing navigation line fitting methods mostly use the 
Hough transform and the least-squares method for straight-
line fitting. However, the effect is not ideal when there are 
many noise points, and problems of incomplete line detection 
and large deviation occur. We adopted the RANSAC algorithm, 
a robust model estimation method commonly used in curve 
fitting and widely used in image processing. Using the RANSAC 
algorithm, the edge information points are eliminated to obtain 
the optimal interior-point set, and then, the visual navigation 
line is fitted according to the least square method. Figure  4 
presents a flowchart of the algorithm.

The traditional RANSAC algorithm uses a completely random 
method to select two points to build a model, which is time-
consuming. Because the initial point is not constrained, it is 
possible to select two pixels that do not belong to the same 
crop row area; thus, the obtained linear model parameters are 
wrong, and the time consumed for subsequent evaluation of 
the model parameters becomes redundant. Therefore, in the 
proposed navigation line fitting algorithm, when randomly 
selecting two initial pixel points P x yi i1 ,( )  and ( )2 , ,j jP x y  to 
limit the range of absolute difference between the abscissas 
of any two pixels, it should satisfy the following:

 | |- >i jx x T  (2)

where T is the set coordinate threshold. The distance threshold 
was set to one third of the image width in this study. If 

A B

Standard convolution filters      2-dilated convolution filters

FIGURE 3 | Dilated convolution. (A) A standard convolution kernel of 3×3, and the size of its corresponding receptive field is 3×3. (B) A 3×3 convolution kernel with 
a dilation rate of 2, and the size of the corresponding receptive field is 5×5.
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the coordinate threshold condition is satisfied, the 
mathematical model is calculated according to the two sample 
points, that is, the direction vector of the straight line 
between the two points. Then, the distance of all other 
points to that line is calculated. The points within the 
distance threshold are specified as inliers, and the number 
of inliers is counted. Considering that the real navigation 
line is generally a long straight line, a model scoring index 
is defined as follows:

 score m l pt= +( )  (3)

where score represents the model scoring index, mt  represents 
the number of all inliers, l represents the length of the straight 
line generated by the model, and p is a default parameter. 
Experiments determined p to be  15. In the iterative process, 
if the scoring criteria meet the conditions, the optimal model 
has been found, and the iteration is stopped. All the interior 
points at this time constitute the optimal interior-point set. 
Then, the least-squares method is used to fit the centerline 
of each crop row to the optimal point set and finally extract 
the navigation line.

EXPERIMENT

Hardware Equipment
The computer used for the experiments had the following 
configuration: Windows 10 operating system, an Intel(R) Xeon 
Gold 5,118 CPU, a reference frequency of 2.30 GHz, 512 GB 
memory, and a GeForce RTX 2080Ti 11GB GPU.

Dataset Preparation
We used the publicly available The Crop Row Detection Lincoln 
Dataset (CRDLD; de Silva et  al., 2021), which is a dataset 

generated from RGB images obtained using an Intel RealSense 
D435i camera under different weather conditions and different 
times of the day in a beet field. As shown in Figure  5, the 
dataset collects basic images for different values of sunlight 
exposure, shade, weed density, and crop growth stages. These 
complex scenarios put forward high requirements for the 
robustness of the model.

After the acquisition is completed, the images in the dataset 
are expanded by cropping the images in four directions and 
are then labeled. The dataset contains 1,000 training images 
and 100 testing images. The crop row images in the dataset 
and their corresponding ground-truth images after row 
segmentation are shown in Figure  6.

Crop Row Segmentation
For the experiments, we  implemented commonly employed 
semantic segmentation networks under the PyTorch deep 
learning framework, including FCN8S, SegNet, ERFNet, UNet, 
ENet, and an improved model based on the ENet network. 
The FCNS model replaces the fully connected layer behind 
the traditional convolutional network with a convolutional layer, 
while simultaneously adopting the method of cross-channel 
addition to enhance the transferability of information. FCN8S 
performs downsamples for a maximum of eight times in the 
network. The network structure of SegNet is similar to that 
of FCN. Nevertheless, the first 13 layers of the VGG-16 structure 
are used in the encoding part, and the upsampling in the 
decoding part uses spatial index information. UNet is a U-shaped 
symmetric structure, and skip connections dimensionally splice 
the feature maps. ERFNet is an improvement to the ENet 
network, with core operations of residual connections and 
factorized convolutions.

The network training process involves training and testing 
the model using pre-divided data, including 1,000 training 
images and 100 testing images. The size of the input image 
is 512 512.´  The following hyperparameters were used for 
network training: an initial learning rate of 0.0001, and a 
learning rate decay coefficient of 0.1. The network was trained 
for 85 epochs, with eight samples per iteration. The model 
was trained using standard gradient descent, and the 
optimization method was the Adam adaptive learning 
rate optimizer.

In order to improve the performance of the model and 
avoid overfitting of the model during the training process, 
this paper uses random horizontal flip, random vertical flip, 
and random 90° rotation for data augmentation during model 
training. The image changes with a probability of 0.5 each 
time the image is read for each iteration of training.

The training process used was the BCEDiceLoss function, 
which is a combination of binary cross-entropy loss and dice 
loss. The calculation formula of the loss function is as follows:

 BCEDiceLoss BCELoss DiceLoss= +  (4)

where the calculation formula of the binary cross entropy loss 
is as follows:

FIGURE 4 | Improved RANSAC algorithm flow chart.
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Crop row image

A B

Ground-truth image

FIGURE 6 | Sample crop row images and their corresponding ground-truth images.

A B

C D

FIGURE 5 | Crop row image in a complex environment. (A) An example of a crop row image in a strong light environment. (B) Example crop row image with large 
areas of shadow. (C) Example crop row image with lots of weeds. (D) Example crop row image at seedling stage.
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where y represents the pixel value of the ground-truth image, y  
represents the pixel value of the predicted image, and m 
represents the total number of pixels in the image.

The calculation formula of dice loss is given as follows:
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where Y represents the true value image, Y  represents the 
predicted image, and smooth is a parameter added to prevent 
the denominator from being 0. If this parameter is too large, 
the calculation result of DiceLoss will be  slightly higher. 
Experiments showed that setting smooth to 0.1 can reduce the 
influence of this parameter on the final loss value.

The relationship between the loss function value of each 
network model and the epoch during the experimental training 
process is shown in Figure  7. The figure shows that with an 
increase in the training times, the fitting effect of the model 
improves continuously, and the model is gradually optimized. 
A comparison of the loss function value curve of each network 

model shows that the proposed model has a faster convergence 
speed and a smaller loss value. That is, the model has a higher 
segmentation accuracy.

The appropriate evaluation metrics that accurately analyze 
each network model’s performance must be  selected. The 
proposed segmentation network model is dedicated to improving 
the accuracy of extracting visual navigation lines for agricultural 
flying robots while ensuring good real-time performance. 
We  chose the intersection over union (IoU) as the criterion 
to determine whether the crop row is correctly detected. The 
IoU is a standard measure in semantic segmentation tasks, 
and it is calculated as follows:

 
100%Ç

= ´
È

H TIoU
H T  

(8)

where H represents the predicted value range, and T represents 
the actual range. The higher the IoU value, the higher the 
coincidence between the predicted range and the actual range, 
that is, the higher the segmentation accuracy. In this study, 
if the IoU was greater than or equal to 0.6, it was determined 
that the crop row was correctly detected, and incorrectly detected 
otherwise. The speed at which the model ran was measured 
in terms of image frames per second. Considering the feasibility 
of deploying the model on limited embedded devices, model 
parameters must be  added to measure the computational 
complexity of the model.

After the semantic segmentation model is trained, 
segmentation results can be  obtained by inputting the test 
images. The visualization of each model training result is shown 
in Figures  8A–F. Table  1; Figure  9 show the performances 
of the different models. In the figure, the solid circles represent 
each network model, the abscissa is running speed of the 
model, denoted by FPS, the ordinate is the model segmentation 
accuracy, and the size of the circle depicts the parameter 
quantity of the model, that is, the computational complexity 
of the model.

The experimental results show that the segmentation accuracy 
of the designed network model is improved compared with 
FCN, ERFNet, SegNet, and classic ENet. Although it still does 
not match the accuracy of UNet, it only differs by 0.6%. 
Operation speed is reduced because of the addition of residual 
branches to the classic ENet structure. However, it is still faster 
than those of FCN, SegNet, ERFNet, and UNet. In terms of 
computational complexity, the designed network model is much 
smaller than UNet and SegNet. The model has 0.05% the 
parameters of the FCN model, and it only increases the 
parameter amount by 0.07 M compared to classic ENet. Therefore, 
the model is still a lightweight network that rapidly performs 
semantic segmentation. From the performance comparison chart 
shown in Figure  9, it can be  seen that the closer the model 
position is to the upper right, the stronger the overall 
performance. Therefore, the performance of the proposed 
network is better than that of the other five semantic segmentation 
networks, improving the segmentation accuracy without reducing 
the real-time performance and achieving the expected effect.

FIGURE 7 | Loss function curve.
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Navigation Line Recognition
We extract and fit the feature points of the image segmented 
by the network to obtain a visual navigation line, as shown 
in Figure  10, where the red dots in Figure  10A represent the 
extracted feature points, and the red lines in Figure  10B are 
the fitted crop row centerlines.

To quantitatively analyze the accuracy of guideline detection, 
we  drew guidelines manually from 100 ground-truth images 
in the test dataset used as the reference standard. We  used 
the method proposed by Jiang et  al. (2015) for the detection 
results of the navigation line of the crop row, which compares 
the predicted results with the artificially drawn true values. 
The angle α is calculated by comparing the predicted result 
with the manually drawn true value. When α is not greater 
than 7°, the algorithm’s detection result is considered to 

be  correct; if it is greater than 7° or is not detected, the result 
is considered incorrect.

The RANSAC algorithm and the guideline fitting algorithm 
proposed here were used to detect the guidelines. Table  2 
provides a performance comparison of the two algorithms, 
and the detection results are shown in Figure 11. The detection 

TABLE 1 | Performance comparison of different models.

Model Accuracy/% FPS Parameter/MB

FCN8S 87.8 15 5.2
SegNet 89.7 4 29.4
UNet 91.5 9 18.4
ENet 87.2 19 0.34
ERFNet 89.9 13 2.1
Ours 90.9 17 0.27

FIGURE 9 | Performance comparison of various algorithms.

A B C

D E F

FIGURE 8 | Example segmentation results for each trained model. (A) Example of FCN model segmentation results. (B) SegNet model segmentation result 
example. (C) UNet model segmentation result example. (D) ECN model segmentation result example. (E) ERFNet model segmentation result example. (F) This 
paper proposes an improved model segmentation result example.
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accuracy and the red line in the figure represent the crop 
line, and the blue line is the manually calibrated navigation 
line, that is, the true value of the navigation line.

A comparison of the results of the two fitting algorithms 
is shown in Table  2; we  can see that the accuracy of the 
improved RANSAC algorithm proposed here is lower than 
that of the RANSAC algorithm, but the overall time consumption 
is considerably improved, and the total time is reduced by 
44 ms. Overall, the straight-line fitting algorithm proposed here 
is more optimal, which ensures the algorithm’s real-time 
performance without losing accuracy.

CONCLUSION

Considering the inaccuracy and poor robustness of traditional 
visual navigation line extraction algorithms, we proposed a visual 
navigation method based on an improved semantic segmentation 
network, namely ENet. Using the trained semantic segmentation 
network training dataset, we  extracted feature points from the 
segmentation results and classified them. Finally, we  used a 
random sampling algorithm to fit the centerline of the crop 
row as the visual navigation line. The experimental results showed 
that the algorithm has good adaptability to farmland images in 
various situations. The accuracy of crop row detection was 90.9%, 
the FPS of the model was 17, and the number of parameters 
was 0.27 M. Therefore, it can be  deployed in embedded devices, 
which can meet the actual requirements and allow follow-up 

agricultural UAVs to realize real-time and precise flights along 
the ridges in farmland operations.

The study conducted an experimental test on an existing dataset, 
and there may be  various scenarios in an actual farmland 
environment. Therefore, in future work, more pictures of different 
growth states and environments will be  collected on the spot to 
expand the dataset, and further research will be  conducted. This 
will improve the practicability of the model and promote the 
application of semantic segmentation in intelligent visual navigation.
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FIGURE 10 | Guideline fitting effect. (A) An example of the result of feature point extraction, where the red dots represent the extracted feature points. (B) An 
example of the results of the guideline fit. The red line in the figure is an extremely fitted visual navigation line.

TABLE 2 | Performance comparison of the fitting algorithms.

Algorithm Average time/ms Accuracy/%

RANSAC 98 90.8
Ours 55 91.2
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