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It is well known that crop classification is essential for genetic resources and

phenotype development. Compared with traditional methods, convolutional

neural networks can be utilized to identify features automatically. Nevertheless,

crops and scenarios are quite complex, which makes it challenging to develop

a universal classification method. Furthermore, manual design demands

professional knowledge and is time-consuming and labor-intensive. In

contrast, auto-search can create network architectures when faced with new

species. Using rapeseed images for experiments, we collected eight types to

build datasets (rapeseed dataset (RSDS)). In addition, we proposed a novel

target-dependent search method based on VGGNet (target-dependent neural

architecture search (TD-NAS)). The result shows that test accuracy does not

differ significantly between small and large samples. Therefore, the influence of

the dataset size on generalization is limited. Moreover, we used two additional

open datasets (Pl@ntNet and ICL-Leaf) to test and prove the effectiveness of

our method due to three notable features: (a) small sample sizes, (b) stable

generalization, and (c) free of unpromising detections.

KEYWORDS

crop classification, target-dependent, neural architecture search, small samples,
Bayesian optimization
Introduction

Image classification can distinguish objects by color, texture, shape, and spatial

relationship. It uses computers to analyze images and classify each pixel or region into

several categories without human interpretation (Wang and Wang, 2019). The following

are two agricultural scenarios. (a) Genetic resources: artificial recognition is time-

consuming and near-impossible. Automatic species identification is significant for
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taxonomy. Purohit et al. (2016) studied a machine-learning

method using leaf characteristics to recognize species. In

recent years, deep learning, which can automatically extract

features from original data, has dramatically improved

classification performance (Barré et al., 2017; Lee and Chang,

2017; Pawara et al., 2017). Some studies propose associating

machine learning with neural networks (Fu et al., 2016; Li et al.,

2020). (b) Phenotype development: a phenotype is a

characteristic or combination of an organism influenced by the

genotype and by the environment. Usually, plants grow in a

highly variable environment. More accurate and robust

algorithms are needed to deal with complex backgrounds and

quantify phenotypic characteristics. They can distinguish

different components or even instances. Li et al. (2020)

thoroughly reviewed phenotyping technologies and used

machine vision to measure plant stress.

There exist several machine-learning methods such as

support vector machines (SVMs) (Rumpf et al., 2010), k-

nearest neighbor (KNN) (Rahaman et al., 2019), random

forest (RF) (Mohana et al., 2021), and scale-invariant feature

transform (SIFT) (Lowe, 2004). However, they have some

shortcomings: (a) Classifiers are simple, and the effect of

recognition is underperforming. (b) Manual design requires

professional knowledge, so it is hard for researchers. Deep

learning has rapidly developed in recent years because it can

automatically extract features (Lecun et al., 2015) and has

achieved excellent performance in vision tasks (Amara et al.,

2017). Nevertheless, due to a large number of parameters,

designing a good neural network is still a hard task

(Suganuma et al., 2017): (a) People made models manually in

the early days, which required a lot of professional knowledge

(Sun et al., 2020). (b) Neural networks are problem-oriented,

whereas manually designed architectures are not. Two main

factors affect the performance of neural networks:

hyperparameters and training parameters. Training parameters

can be learned in the training stage. However, hyperparameters

must be set before training. Usually, hyperparameters determine

the structure of a network, such as the number and type of layers,

kinds of nodes, etc. We hope to find the best hyperparameters

for a given dataset in a reasonable time. This process is called

hyperparametric optimization. Researchers proved that a

gradient descent algorithm is significantly effective for

calculating training parameters (Rumelhart et al., 1986). In

contrast, there are no explicit strategies for optimizing

hyperparameters (Liu et al., 2020).

Most neural networks can be divided into three types: (a)

professional knowledge is required for manual design, such as

VGG (Ferentinos, 2018) and ResNet (He et al., 2016); (b) semi-

automatic design methods like genetic neural networks (Xie and

Yuille, 2017), hierarchical evolution (Liu et al., 2017), and others;

and (c) fully automatic design, such as when Google introduces

the neural architecture search (NAS) concept (Zoph and Le,

2016), which has received considerable attention (Baker et al.,
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2016; Lu et al., 2018). NAS can search for the best

hyperparameters to perform better than manual design. In

addition, NAS can reduce trials and errors remarkably.

Although NAS is attractive, it still lacks interpretability.

Furthermore, model training and verification are costly, and

early stopping is meaningful for NAS (Baker et al., 2017; Awad

et al., 2021).

This paper studies the hyperparameter optimization of deep

learning, and its organization is as follows: (a) Firstly, we

examine pertinent technologies. (b) Secondly, the proposed

method, as well as the underlying principles, is explained. (c)

We then carry out experiments and discuss the results. (d)

Finally, conclusions and future research directions are provided.
Related works

Deep learning and convolutional
neural networks

Deep learning is a branch of machine learning (Deng and

Yu, 2014). It is an automatic feature selection strategy based on

neural networks. It can combine low-level features to form

abstract high-level features without manual selection.

Compared with traditional image recognition and target

detection methods, the accuracy and generalization are

improved. At present, the main types of neural networks are

multilayer perceptrons (MLPs), convolutional neural networks

(CNNs), and recurrent neural networks (RNNs), among which

CNNs are the most widely used method in classification.

Generally, CNNs comprise convolution layers, pooling layers,

and fully connected layers. A convolution layer uses correlation

information to extract features. A pooling layer (mean pooling

or max pooling) compresses the amount of data and parameters,

reduces overfitting, and keeps the model invariant to translation,

rotation, and scaling. Each neuron (also named a node) in a fully

connected layer connects with the previous neurons. Therefore,

the multidimensional features are integrated and transformed

into several dimensions for classification or detection purposes.

Typical CNN models include AlexNet (Picon et al., 2019),

VGGNet, GoogLeNet (Liu et al., 2017), ResNet, MobileNet

(Howard et al., 2017), etc. AlexNet is the champion network

of the ILSVRC-2012, and it includes five convolution layers and

three fully connected layers. According to Bengio et al. (2013),

deeper CNNs can extract more representative features. Later,

researchers found that blindly increasing the number of layers

would slow network convergence (Glorot and Bengio, 2010).

Microsoft proposed RESNET with residual blocks and fast

connections, which made it possible to build a deeper network

(Szegedy et al., 2016). Google proposed MobileNet for mobile

and embedded vision applications.

The rapid development of deep learning is inseparable from

the extensive use of GPUs. Implementations of CNNs mostly
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require GPUs to provide computing support. CNN processes

roughly include (a) data preparation and preprocessing; (b)

model development, training, and testing; and (c) model

deployment. Usually, a dataset can be divided into training,

verification, and test sets, with ratios of 7:2:1, 8:1:1, and 6:2:2.

Training sets are for learning parameters; verification sets are for

optimizing and adjusting hyperparameters; and test sets evaluate

performance and generalization. Some public datasets exist, such

as PlantVillage (Sm et al., 2020), Kaggle (Ad et al), etc. It is worth

noting that many researchers collect their own (Lin et al., 2018;

Chen et al., 2020).
Data augmentation

The size and diversity of datasets are essential factors

affecting the classification effect of CNNs. Data augmentation

can expand the number of images, including moving, flipping,

zooming, etc. Deep learning can learn features from images

regardless of their positions. Therefore, we can expand datasets

through augmentation to avoid overfitting. For example, Perez

et al. (Perez and Wang, 2017) developed a new way to use

generative adversarial networks (GANs) to make images in

different styles.
Neural architecture search

Grid search (GS) is a simple method to find the optimal

parameters. However, an exhaustive search may consume time

due to the enormous hyperparameter space. Random search

(RS) (Andonie and Florea, 2020) explores randomly in the

hyperparameter space and improves the performance, but the

result may be worse sometimes. For example, the result is not

stable. Until now, researchers have proposed many NAS

methods: (a) NAS methods based on reinforcement learning

(RL); (b) NAS methods based on model optimization; and (c)

other improved NAS methods.

(a) NAS methods based on
reinforcement learning

Researchers designed a controller to generate strings

representing the structures of CNNs, trained each CNN

model, and used verification set accuracy as a reward. They

optimized the hyperparameters of DCNNs using a novel MARL-

based approach (multiagent reinforcement learning) (Iranfar et

al., 2022). They then created a multiobjective reward function

and applied it to reinforcement learning in order to find the best

network with the least latency (Tran and Bae, 2021).
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(b) NAS methods based on model optimization
To improve the performance of neural architecture search,

researchers proposed ENAs based on evolutionary computing

(EC) (Thomas et al) to design CNN architectures. EC is a

population-based technology to obtain an optimal global

solution. There are some EC-based technologies, such as

genetic algorithms (GAs) (Ching-Shih. Deb et al., 2002),

particle swarm optimization (PSO) (Kennedy and Eberhart,

1995), and artificial ant colony algorithms (Dorigo et al.,

2006). Researchers proposed a two-stage evolutionary search

with transfer learning (EvoNAS-TL) (Wen et al., 2021). Also,

EPSOCNN, which stands for efficient particle swarm

optimization, is suggested as a way to improve CNN

architectures (Wang et al., 2020).

(c) Other improved NAS methods
To limit the search space, Yu et al. (2021) and Sun et al.

(2019) proposed block-based methods. However, the results are

insufficient and unstable due to the lack of theoretical support.

Hu et al. (2021) proposed a new performance estimation metric

named random-weight evaluation (RWE) to quantify the quality

of CNNs. Lu et al. (2018) proposed NSGANet, an evolutionary

algorithm that combines prior knowledge from handcrafted

architectures with an exploration comprising crossover and

mutation. Some software packages provide search functions,

such as pyGPGO and Optunity (Bergstra et al., 2011),

Hyperopt–Sklearn (Bergstra et al., 2015), etc.

Many CNN models are challenging to apply on mobile/edge

devices due to limited resources such as memory capacity and

power consumption. Researchers have carefully designed some

lightweight networks. Donegan et al. (2021) used a differentiable

NAS method to find efficient CNNs for the Intel Movidius

Vision Processing Unit (VPU), achieving state-of-the-art

accuracy on ImageNet. An FPGA-based CNN accelerator

(field programmable gate array) was proposed (Fan et al.,

2020) with an accurate performance model of hardware

design. Intelligent edge-cloud scenarios are expected to meet

diverse requirements.

All the above studies do not effectively record evolutionary

information, so they cannot guide the whole search process

based on experience. In contrast, Bayesian optimization (Frazier,

2018) assumes the search space as a Gaussian distribution, learns

experience in search processes, and calculates better parameters

iteratively (Wistuba; Gupta et al., 2017; Ji et al., 2019; Basha et al.,

2021). However, these methods still cost enormous computing

resources. As a result, this paper suggests a heuristic target-

dependent method that only needs small samples and is

entirely automatic.
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Proposed method

From the above, we know that neural architecture search is

time-consuming and requires many resources. Therefore, we

intend to optimize the hyperparameter exploration process. In

short, the main contributions of this paper are as follows:
Fron
a. Method: We proposed a target-dependent search

method that only needs small samples. Besides

accuracy, we use precision and recall to promote

generalization. Also, our method can find searches that

are not working well and stop them early to save time

and resources.

b. Dataset: We collected eight kinds of rapeseed images and

created the dataset RSDS.

c. Comparison: Horizontally, we compare each TD-NAS

based on VGGNets. Vertically, we explore the TD-NAS

based on VGGNet-D (VGGNet-16). Furthermore, we

test our method on two additional open datasets,

Pl@ntNet and ICL-Leaf.
Infrastructure and hyperparameters

As for the primary network architecture, we chose VGGNet,

a typical convolutional network with six deepening structures
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labeled A, A-LRN, B, C, D, and E. Here we select A, B, D, and E

for experiments, and D is the most famous model named

VGGNet-16 (Figure 1).

We keep the number and position of convolution and

pooling layers fixed, while the layer number, the dropout rate,

and the neuron number of fully connected layers can be changed.

Table 1 shows the hyperparameter space. It is worth noting that

there is at least one fully connected layer, and the number of

neurons in the last fully connected layer is eight to produce the

output—eight classes of rapeseed.
Search principle and
Bayesian optimization

The aim is to find the hyperparameters of a model with the

best performance on verification sets. Let T be the objective

function for getting maximum accuracy (ACC).

hp* = argmax
hp∈D

T hpð Þ (1)

In formula (1), D is a hyperparameter space. We can create a

model for each hp in D, train the model, and evaluate its

performance on verification sets. This paper separates the

RSDS dataset into three parts: the training set, the validation

set, and the test set, with a ratio of 7:2:1. We use formula (2) as

the judgment criteria (jc) for evaluating model qualities:
FIGURE 1

VGGNet-16.
TABLE 1 Hyperparameter space.

Level Layer Name Values Type

Architectural FC LN {1, 2, 3} Integer

Internal FC DR {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} Float

Internal FC NN {512, 1,024, 2,048, 4,096} Integer

External OU w2 = 1- w1 {1.0, 0.9, 0.8, 0.7, 0.6, 0.5} Float

External OU b {0.5, 1.0, 2.0} Float
frontier
FC, fully connected; LN, layer number; DR, dropout rate; NN, neuron number; OU, output. w, b: parameters in formula (2) (discussed in the next section.)
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jc = w1Acc + w2Fb (2)

Here, Fb (balanced F-score) is the harmonic average of

precision and recall. Usually, the smaller the F-score, the

better the generalization. Therefore, we refine formula (1) to

formula (3):

hp* = argmax
hp∈D

T hp,     jcð Þ (3)

The following Algorithm 1 gives the naive hyperparameter

search process:
ALGORITHM 2

Fron
Input: Space_D, Data_T, Data_VOutput: hp*(1)

Get the training set (Data_T) and the

verification set (Data_V).(2) Select a

j u d g m e n t c r i t e r i o n : A C C . ( 3 ) S e t

hyperparameter search space (Space_D) and

initialize one hyperparameter (hp):(4)

Generate a CNN model with the hp.(5) Train

the model, and verify it.(6) Select the next

hyperparameter (hp), repeat (4), or Quit.(7)

Output the optimal hyperparameter (hp*).
ALGORITHM 1

HPS: Hyperparameters Search.

Algorithm 1 does not record evolutionary information, so it

cannot guide search processes effectively. Even if adopting a

random search, uncertainty still exists.

We propose a heuristic target-dependent search method.

The so-called heuristic means our approach can evaluate a better

location and start a new search. Here, we choose Bayesian

optimization, which assumes the superparameter space as a

Gaussian distribution and obtains better candidates each time.

Our method introduces a stop criterion to reduce the search

scale without lowering generalization. The so-called target-

dependent means that the explored architecture is not

universal and only valid for specific crops. We can quickly

rerun the proposed method to search out new architectures

when facing new species.

Bayesian optimization has two components: (a) Bayesian

statistics for constructing an objective function (typically a

Gaussian process); and (b) acquisition function for calculating

the following sampling points. After initializing several points,

Bayesian optimization can calculate a posteriori and iterate

reasoning until meeting an exit condition. Algorithm 2 shows

our TD-NAS method based on Bayesian optimization, where GP

is a Gaussian process, Acq_F is an acquisition function, and

Dyn_QF is a dynamic quit function. In Algorithm 2, we focus on

steps (6), (4), and (3). Step (4) costs massive resources for

VGGNet training and verifying, so step (6) should select
tiers in Plant Science 05
hyperparameters elegantly to reduce the number of models.

Furthermore, step (4) should stop the training and verifying

processes when there are unpromising detections. Step (3)

checks the dynamic quit conditions and decides whether to

quit or not.
Input: VGGNet, Space_D, Data_T, Data_V, GP,

Acq_F, Dyn_QFOutput: x*(1) Init S = {(xi,

yi)}, yi = f(xi), xi ϵ Space_D, let f~GP(μ,

K).(2) Select a judgment criterion: jc.(3)

While not Dyn_QF() do:(4) Train and verify

VGGNet(x, Data_T, Data_V) with unpromising

detections.(5) Calculate p(y | x, S).(6)

Acq_F(x, p(y | x, S)), get xnew.(7) ynew = f

(xnew).(8) S = S U (xnew, ynew).(9) Output the

optimal hyperparameter (x*).
ALGORITHM 1

HPS: Hyperparameters Search.

Step (6): The acquisition function strikes a balance between

exploration and exploitation.

In Bayesian optimization, the acquisition function (Acq_F)

is critical for generating points according to prior knowledge.

Exploitation means evaluating at expected points because global

optima are likely to reside there. Exploration means considering

uncertain points is helpful because objects tend to be far from

where we have measured them. Usually, there are three typical

acquisition functions: expected improvement (EI), entropy

search (ES), and knowledge gradient (KG). The expected value

of EI is easy to figure out, which makes it a popular

acquisition function.

Let f *n = maxm≤nf (xm) be the max previous value. We have

one other position, x, to be evaluated, and then we get f (x). Now,

the best-observed point is either f(x) or f *n . The improvement is

then f (x) − f *n ; if this quantity is positive, else 0, mark as ½f (x) −
f *n �+ for convenience. Unfortunately, we should train and

validate the entire network to get f(x). Instead, we can take the

expected value of this improvement and define formula (4):

xn+1 = argmaxEIn xð Þ (4)

Here, EIn(x) = En½½f (x) − f *n �+�, and En indicates that the

expectation is taken under the posterior distribution, as shown

in formula (5): f(x) given x1:n, y1:n is normally distributed with

mean mn (x) and variance s 2
n (x).

f xð Þ j f x1 : nð Þ eNormal mn xð Þ,s 2
n xð Þ� �

(5)

Unlike the f(x) in step 4 of Algorithm 2, EIn (x) is low cost to

observe and allows for easy evaluation of first- and second-order

derivatives, as shown in formula (6):

TD-NAS: Target-dependent neural architecture search.
frontiersin.org
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EIn xð Þ = Dn xð ÞF Dn xð Þ
sn xð Þ

� �
+ sn xð Þj Dn xð Þ

sn xð Þ
� �

(6)

The definitions of F(),j() can be found in (Jones et al.,

1998). Here, Dn(x) = mn(x) − f *n is the expected difference

between the proposed point x and the previous best. Note that

EIn (x) balances between high expected quality (Dn (x)) versus

high uncertainty (sn (x)).
Step (4): Training and validating the VGGNet without

unpromising detections.

We calculate verification errors when training and verifying.

If the error exceeds the average prior value, it is unpromising to

go further. Figure 2 shows five hyperparameters in search,

including two unpromising detections. Stopping these

unpromising detections early can save resources and time.

Step (3): Making dynamic quit decisions.
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Figure 3 gives dynamic quit conditions and their generation

approach. To control the search process, a dynamic quit

function (Dyn_QF) uses these conditions, including whether

the queue of the hyperparameter space is empty or the

maximum number of iterations has been reached.
Experiment and discussion

Dataset and experimental condition

We took photos using a Canon EoS6D camera, which has

20.2 million effective pixels and a maximum resolution of 5,472

× 3,648. We then resized each image to 224 × 224 pixels to

improve the processing speed. To run programs, we used an HP-
A

FIGURE 2

Unpromising detections.
FIGURE 3

Dynamic quit conditions. Generation approach.
frontiersin.org
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OMEN laptop with an i9-9880H CPU, 32 GB of memory, an

NVIDIA RTX2080 graphics card (8 GB), and Python installed.

We collected rapeseed images at an experimental station of

Anhui Agricultural University, located at 117.2° east longitude

and 31.5° north latitude, in Sanhe town, Hefei, China. We

obtained eight kinds of rapeseed images, at least 1,000 of each

class (Ci|i = 1,…, 8), as shown in Figure 4, named RSDS. We

divided the RSDS into three parts: training set (Tr), verification

set (V), and test set (Te), with a ratio of 7:2:1. We randomly

obtained RSDS-0.1K with (Tr, V, Te = 700, 200, 100) images per

class. Using data augmentation, we obtained more sets as

follows: RSDS-0.2K (Tr, V, Te = 1,400, 400, 200), RSDS-0.4K

(Tr, V, Te = 2,800, 800, 400), and RSDS-1.0K (Tr, V, Te = 7,000,

2,000, 1,000).
Result discussion

We use VGGNet as the base framework. When training, the

initial learning rate is 0.01, and the epoch size is 50. For

comparing two algorithms, “better” means (a) fewer attempts
Frontiers in Plant Science 07
for the same score and (b) a higher score after the same number

of tries.

For horizontal comparisons, (a) we set w1 = 1, which means

only accuracy is the evaluation indicator. In Table 2, the

verification accuracy of TD-NAS based on VGGNet-16

reaches 81.38%. However, the result obtained on VGGNet-E

(VGGNet-19) is worse than the original, indicating that

Bayesian optimization also has limitations in dealing with

deep networks. The number of neurons in the last fully

connected layer fixes eight to output the probability values of

rapeseed classes through a Softmax function. (b) Do not fix w1.

Instead, use jc as the indicator in formula (2) (Table 3).

Keep the fully connected parameters from Table 2

unchanged and take into account w1 and b. After searching,

we still get the highest verification accuracy (81.06%, Table 3)

based on VGGNet-D, which is slightly lower than the accuracy

of VGGNet-16 (81.38%, Table 2). However, the verification

accuracy of TD-NAS based on VGGNet-E has increased from

78.44% (Table 2) to 79.94% (Table 3).

Now, for vertical comparisons, (a) we use four datasets

(Table 4) to search for TD-NAS on VGGNet-D (VGGNet-16).
FIGURE 4

Rapeseed dataset (RSDS).
TABLE 2 TD-NAS and original VGGNet (A, B, D, and E) (RSDS-0.1K, w1 = 1).

VGGNet-A VGGNet-B VGGNet-D VGGNet-E

Original TD-NAS Original TD-NAS Original TD-NAS Original TD-NAS

V-ACC 74.06% 78.81% 77.38% 77.94% 79.19% 81.38% 80.75% 78.44%

FC

LN 3 3 3 3 3 3 3 3

DR {0.7, 0.7, 0.0} {0.6, 0.4, 0.0} {0.7, 0.7, 0.0} {0.7, 0.5, 0.0} {0.7, 0.7, 0.0} {0.6, 0.5, 0.0} {0.7, 0.7, 0.0} {0.5, 0.3, 0.0}

NN {4,096, 4,096, 8} {2,048, 2,048, 8} {4,096, 4,096, 8} {2,048, 2,048, 8} {4,096, 4,096, 8} {4,096, 2,048, 8} {4,096, 4,096, 8} {2,048, 2,048, 8}

OU

w1 1 1 1 1 1 1 1 1

b – – – – – – – –
V-ACC, verification accuracy; FC, fully connected; LN, layer number; DR, dropout rate; NN, neuron number; OU, output. Bold means To highlight the biggest verification accuracy (V-ACC).
Bold values mean to highlight the biggest verification accuracy (V-ACC).
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(b) We choose the model made by RSDS-0.1K, figure out how

accurate it is on all of the test sets, and compare it to other

models (Table 5). In Table 4, it can be seen that the bigger the

dataset size, the higher the verification accuracy (91.23%,

Table 4). It is worth noting that from RSDS-0.4K to RSDS-

1.0K, the promotion of verification accuracy is only 1.95%, but

the amount of training data has increased by 1.5 times.

Meanwhile, the time consumptions of RSDS-0.1K, RSDS-0.2K,

RSDS-0.4K, and RSDS-1.0K are approximately 00:42:32,

01:11:36, 04:20:38, and 07:26:00, respectively. The costs of

training and verification vary greatly, but the benefits are limited.

The TD-NAS mentioned above on VGGNet-D (VGGNet-

16) searches each dataset to generate models. Table 5 shows the

accuracy of these models on test sets; the diagonal part of the

table shows the accuracy of each model on its own test set,

whereas the first column is the accuracy of the model generated

by RSDS-0.1K on all test sets. It is worth noting that the test

accuracy of the model trained on small samples is not much

different from that trained on large ones.

Figure 5 shows four confusionmatrixes generated on each test set

separately, and the model is TD-NAS on VGGNet-D (VGGNet-16).
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Overall, ourmodel performedwell across different test sets. It is worth

noting that the twopairs [C4,C5]and[C7,C8]are farmore likely than

others to misjudge each other. When a person looks at the rapeseed

images of these two pairs, they look very similar in color and shape.
Pl@ntNet-300K and ICL-Leaf datasets

A novel image dataset with high intrinsic ambiguity was

presented (Camille et al., 2021), built explicitly for evaluating and

comparing set-valued classifiers. It consists of 306,146 images

covering 1,081 species, with two particular features: (a) The dataset

has a strong class imbalance, whichmeans that a few species account

for most images. (b) Many species are visually similar (Figure 6),

making identification difficult even for eye experts.

Table 6 shows that test accuracy depends strongly on the

number of images per class. We selected eight species, including

Cirsium arvense, and searched for architecture based on VGG-

16. Let [s1, s2] be the interval of the image number per class (for

example (Rahaman et al., 2019; Sun et al., 2019),), and we

searched twice with s1 and s2 per class (for >2,000, set [2,500,
TABLE 3 TD-NAS (RSDS-0.1K, w1 not fixed).

TD-NAS

VGGNet-A VGGNet-B VGGNet-D VGGNet-E

V-ACC 77.56% 75.13% 81.06% 79.94%

FC

LN 3 3 3 3

DR {0.6, 0.4, 0.0} {0.7, 0.5, 0.0} {0.6, 0.5, 0.0} {0.5, 0.3, 0.0}

NN {2,048, 2,048, 8} {2,048, 2,048, 8} {4,096, 2,048, 8} {2,048, 2,048, 8}

OU

w1 0.9 0.9 0.8 0.9

b 2 0.5 1 0.5
V-ACC, verification accuracy; FC, fully connected; LN, layer number; DR, dropout rate; NN, neuron number; OU, output. Bold means To highlight the biggest verification accuracy (V-ACC).
Bold values mean to highlight the biggest verification accuracy (V-ACC).
TABLE 4 TD-NAS on VGGNet-D (VGGNet-16) (w1 not fixed).

TD-NAS on VGGNet-D (VGGNet-16)

RSDS-0.1K RSDS-0.2K RSDS-0.4K RSDS-1.0K

V-ACC 81.06% 86.53% 89.28% 91.23%

FC

LN 3 3 3 3

DR {0.6, 0.5, 0.0} {0.7, 0.3, 0.0} {0.4, 0.6, 0.0} {0.5, 0.4, 0.0}

NN {4,096, 2,048, 8} {4,096, 2,048, 8} {2,048, 2,048, 8} {2,048, 1,024, 8}

OU

w1 0.8 0.9 0.9 0.8

b 1 0.5 1 2
V-ACC, verification accuracy; FC, fully connected; LN, layer number; DR, dropout rate; NN, neuron number; OU, output. Bold means To highlight the biggest verification accuracy (V-ACC).
Bold values mean to highlight the biggest verification accuracy (V-ACC).
frontiersin.org

https://doi.org/10.3389/fpls.2022.897883
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Fu et al. 10.3389/fpls.2022.897883
3,000]), then calculated the mean accuracy. From Table 6, we

found that our method got higher accuracy than Ref (Camille

et al., 2021). claimed, except for the situation “>2,000”. The

results in Ref (Camille et al., 2021). were made with ResNet50,

which has 49 convolutional layers and one fully connected layer.

This architecture is deeper than ours and better at handling

large samples.

Another public leaf dataset called the ICL (Hu et al., 2012)

was built by the Intelligent Computing Laboratory (ICL) at the

Institute of Intelligent Machines, Chinese Academy of Sciences.

It contains 16,851 samples from 220 species, with 26 to 1,078

samples per species (Figure 7).
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We selected eight species, including Amorpha fruticosa, and

searched for architecture based on VGG-16 two times. We got

an average test accuracy of 92.31%, a little more than 92.08% in

Ref (Xiao et al., 2010)., which used a traditional machine-

learning method named HOG-MMC (orientation histogram

based on dimension reduction of maximum edge criterion).

From the above, we proved that our method could quickly

discover new architectures when faced with Pl@ntNet-300K and

ICL-Leaf datasets. The contribution of our method includes three

features: (a) small sample sizes, (b) stable generalization, and (c) free

of unpromising detections. In experiments of Pl@ntNet-300K and

ICL-Leaf, as for feature a, we selected [500, 2,000] and [1,000, 1,200]
TABLE 5 Test accuracy comparison.

T-ACC TD-NAS on VGGNet-D (VGGNet-16)

RSDS-0.1K RSDS-0.2K RSDS-0.4K RSDS-1.0K

RSDS-0.1K 81.13% – – –

RSDS-0.2K 79.94% 81.44% – –

RSDS-0.4K 80.22% – 83.13% –

RSDS-1.0K 81.68% – – 82.73%
f

T-ACC, test accuracy.
FIGURE 5

Confusion matrixes generated by TD-NAS on VGGNet-D (VGGNet-16).
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images per class and got average test accuracies represented above.

As for feature b, we increased the number of images per class to

[2,500, 3,000] and [1,500, 2,000], and test accuracy had risen a little

(< 6%), but time cost ascended (> 26%). As for feature c, we set a

switch to control NAS with or without unpromising detections, and

statistics showed that more than 19% of detections are

unpromising. To sum up, due to features a and c, we can quickly

find out new architectures when faced with new species but still get

feature b’s stable generalization.
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Conclusion

This paper aims to design a novel target-dependent neural

architecture search method based on VGGNet. This goal was

successfully achieved on a self-built dataset with eight kinds of

rapeseed images. We select accuracy, precision, and recall as the

evaluation indicators. We adopt Bayesian optimization to obtain

better candidate parameters and introduce a stop criterion for

optimizing the dynamic search process. Results show that the
FIGURE 6

Examples of visually similar images belonging to two different classes.
TABLE 6 Test accuracy comparison.

Number of images per class Mean accuracy claimed in (Camille et al., 2021) Ours, TD-NAS on VGGNet-D (VGGNet-16)

10–50 35% 41.25%

50–500 59% 63.38%

500–2,000 79% 80.97%

>2,000 93% 86.75%
FIGURE 7

Typical samples for each species.
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test accuracy of the model trained on small samples is not much

different from those trained on large ones. The generalization of

the model generated by our method is not sensitive to dataset

size, making it meaningful to search out models from small

samples when facing new objects. For example, we tested our

method on two other open datasets, Pl@ntNet and ICL-Leaf.

Due to the enormous model structure and parameter space,

this paper only dealt with fully connected layers and the output

layer. We kept the original network structure unchanged, such

as the kernel and pooling size in convolutional layers.

However, the full network structure search, including

convolutional layers, is universal without margin. Some

literature has pointed out that Bayesian optimization is only

suitable for medium-sized problems (Shahriari et al., 2015).

When faced with new objects, how to quickly search a

minimized network structure is still an attractive topic.

Figure 8 shows our robot platform, with our models running

on (4), an onboard computer, and real-time images captured

by (1), a Realsense D435i camera. We continue to explore in-

depth research questions, such as changing kernels and pooling

sizes in convolutional layers (Franchini et al., 2022). We are

thinking about using the proposed method on more CNN

frameworks in the future.
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FIGURE 8

Our robot platform (capture pictures by (1) and run models on (4)).
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