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Northeast China is a major soybean production region in China. A representative sample

of the Northeast China soybean germplasm population (NECSGP) composed of 361

accessions was evaluated for their seed protein content (SPC) in Tieling, Northeast

China. This SPC varied greatly, with a mean SPC of 40.77%, ranging from 36.60

to 46.07%, but it was lower than that of the Chinese soybean landrace population

(43.10%, ranging from 37.51 to 50.46%). The SPC increased slightly from 40.32–40.97%

in the old maturity groups (MG, MGIII + II + I) to 40.93–41.58% in the new MGs

(MG0 + 00 + 000). The restricted two-stage multi-locus genome-wide association

study (RTM-GWAS) with 15,501 SNP linkage-disequilibrium block (SNPLDB) markers

identified 73 SPC quantitative trait loci (QTLs) with 273 alleles, explaining 71.70% of

the phenotypic variation, wherein 28 QTLs were new ones. The evolutionary changes

of QTL-allele structures from old MGs to new MGs were analyzed, and 97.79% of the

alleles in new MGs were inherited from the old MGs and 2.21% were new. The small

amount of new positive allele emergence and possible recombination between alleles

might explain the slight SPC increase in the new MGs. The prediction of recombination

potentials in the SPC of all the possible crosses indicated that the mean of SPC overall

crosses was 43.29% (+2.52%) and the maximum was 50.00% (+9.23%) in the SPC,

and the maximum transgressive potential was 3.93%, suggesting that SPC breeding

potentials do exist in the NECSGP. A total of 120 candidate genes were annotated and

functionally classified into 13 categories, indicating that SPC is a complex trait conferred

by a gene network.

Keywords: Northeast China soybean germplasm population (NECSGP), seed protein content (SPC), restricted two

stage multi-locus model GWAS (RTM-GWAS), QTL-allele matrix, optimal cross prediction, transgressive potential
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INTRODUCTION

Soybean [Glycine max (L.) Merr.], which originated in ancient
central China, is a traditional crop rich in seed protein (SPC,
∼40%) and oil content (∼20%) (Zhang et al., 2015a). It had been
disseminated to Liao-river valleys in Northeast China (NEC)
more than 2000 years ago and has expanded to the whole NEC
in recent centuries. NEC is currently the major production area
for soybean and a major source of soybean commodities for soy
food processing, including tofu products and protein isolates for
human food and animal feed in China (Warrington et al., 2015).
However, the SPC of commercial soybeans in NEC is about 39
to 42%, less than in central and southern China (about 40 to
45%). The food processing companies demand increased SPC in
commercial soybean production, especially in NEC. To improve
soybean SPC, the first step is to investigate the phenotypic and
genetic variation of the soybean germplasm to estimate whether
there is genetic potential available to be utilized. Liu et al. (2020)
found that the NEC soybean germplasm population (NECSGP)
was derived from the original population from central China,
with several newly derived and introduced accessions added
during the recent century. The NECSGPwas genetically clustered
together with those from the north and south Americas and was
the major germplasm source of the soybeans in the Americas,
where∼85% of world soybeans are produced at present (Fu et al.,
2020a). Thus, exploring the genetic basis of the SPC in NEC
soybean germplasm is of great significance not only for NEC
soybean production but also for global soybean production.

SPC is a quantitative trait controlled by many genes and is
also affected by the environment (Hwang et al., 2014). There
were 248 SPC QTLs (quantitative trait loci) reported at SoyBase

(https://soybase.org). These SPC QTLs were detected by using
linkage mapping procedures (Zhang et al., 2015a) and are mainly

located on chromosomes 4, 5, 7, 8, 14, 15, 18, 19, and 20.

Karikari et al. (2019) identified 25 SPC QTLs in a linkage
mapping study under a single-locus model using a recombinant

inbred line (RIL) population derived from Linhefenqingdou and
Meng8206, in which qPro-7-1 was detected simultaneously in
three environments, with an average phenotypic variance (PV)
of 19.01%. Among these QTLs, 10 QTLs were newly detected
and the PV of 12 QTLs were all greater than 10%, with the
lowest PV of 8.97%. Teng et al. (2017) identified 8 SPC QTLs
in 12 environments using the RIL population derived from
Dongnong46×L-100, in which qPR-2, qPR-3, qPR-5, qPR-7, and
qPR-8 were detected simultaneously in 6, 8, 7, 6, 7 environments,
respectively. The candidate gene Glyma.20g085100 underlying
the major SPC QTL on chromosome 20 was mapped and
cloned (Fliege et al., 2022). The haplotype variation at this
major QTL in wild and domesticated soybean was also explored
using a germplasm population consisting of 985 accessions
(Marsh et al., 2022).

QTL detection based on linkage mapping usually involves
only two parental lines, such as the RIL population, where
the genetic variation and mapping resolution are quite limited.
Association mapping based on natural germplasm populations
provides a powerful method for genome-wide QTL detection.
By using association mapping in a large germplasm population

consisting of 12,116 cultivated soybean accessions, Bandillo
et al. (2015) detected 19 SNPs associated with SPC mainly on
chromosome 15 (3.82 – 3.96Mb) and chromosome 20 (29.59
– 31.97Mb). Sonah et al. (2015) reported that eight regions
were significantly associated with SPC based on 139 soybean
accessions. The region on chromosome 8 between 45.5 and
46.9Mb had the largest number of significantly associated SNPs,
while there was only one associated SNP on chromosome 19
(50.4Mb) and chromosome 20 (10.0Mb). Zhang et al. (2017)
reported that 15 loci were associated with SPC, with their
phenotypic contribution ranging from 17.4 to 29.2%, and the
candidate gene Glyma.13g123500 was highly expressed during
seed development.

However, the previous association mapping studies were
mainly based on single-locus model analysis. Each genome-
wide marker was tested independently for its association with a
quantitative trait. The Bonferroni-adjusted threshold was applied
to correct the multiple testing problem (Sul et al., 2018; Tam
et al., 2019). The stringent threshold in the single-locus model
largely reduces the false positives and leads to many false
negatives (Benjamini and Yekutieli, 2001). Furthermore, the bi-
allelic SNP makers are usually used in association mapping.
Therefore, the multiple alleles of a QTL that widely existed in
germplasm populations cannot be detected directly (Nachman,
2001; Yang et al., 2012). He et al. (2017) proposed the restricted
two-stage multi-locus model genome-wide association analysis
(RTM-GWAS) method to thoroughly detect QTLs and their
multiple alleles. This procedure has the following merits: (i) Use
the SNP linkage disequilibrium blocks (SNPLDB) as markers
withmultiple haplotypes to fulfill themultiple allele characteristic
in natural populations. (ii) Use two-stage GWAS for efficient
association analysis, that is, first stage GWAS under single
locus model for preselecting markers and second stage multi-
locus model stepwise regression for identifying QTLs-alleles
with trait heritability (h2) as the upper limit of QTL total
contribution to reduce false positives and negatives. (iii) Use
normal p-value without excessive Bonferroni correction. All
the detected QTLs are tested jointly under the multi-locus
model. (iv) Use plot-based phenotype data to minimize the
error amount through experiment design to raise the QTL-
identification precision (He and Gai, 2020; Liu et al., 2021).
Therefore, RTM-GWAS can provide a high QTL detection power
and efficiency. The QTL-allele matrix is further established
based on the results as a compact form of the population’s
genetic structure and individual accessions. This procedure has
been demonstrated for its effectiveness in a series of soybean
germplasm studies and even bi-parental population studies, such
as on 100-seed weight (Zhang et al., 2015b), seed isoflavone
content (Meng et al., 2016), days to flowering (Liu et al.,
2021), and main stem node number (Fahim et al., 2021).
Using RTM-GWAS, 26 SPC QTLs were detected based on 279
soybean accessions from China’s Yangtze and Huaihe River
Valley (Li et al., 2019). These QTLs accounted for 58.3% of
the phenotypic variation, with qProt-20-3 having the highest
PV (16%). Li et al. (2020) detected 90 SPC QTLs using RTM-
GWAS in a soybean nested association mapping population.
Twenty QTLs were newly detected, and Glyma20g24830 and
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Glyma18g03540 were annotated as important candidate genes
for SPC.

The germplasm collection of an ecoregion is historically
accumulated and may vary from time to time due to
additions and losses. The germplasm accessions used for genetic
studies should represent the ecoregion population so that the
conclusions drawn can explain the real population rather than
some unknown population. In the present study, we recollected
soybean accessions from all the research institutions in NEC and
then chose those from all subregions and historical reserves to
form a representative soybean germplasm sample in NEC. In
addition, NEC covers a wide range of latitudes. For evaluation
of SPC under the same environment, the experiment site should
be at a place where all kinds of the maturity group soybeans
can mature naturally. Based on the above considerations, this
study aimed at (i) exploring the SPC variation in the NECSGP,
(ii) exploring the SPC QTL-allele system in the NECSGP, (iii)
characterizing the genetic mechanism in the evolutionary process
from late to early maturity groups (MGs) in NEC, (iv) exploring
the QTL-allele recombination potential for optimal cross design
in NEC, and (v) inferring the SPC candidate gene system.

MATERIALS AND METHODS

Plant Materials and Field Experiments
A total of 361 representative soybean accessions were collected
and chosen from the NECSGP. The accessions covered six MGs,
including MG III, MG II, MG I, MG 0, MG 00, and MG000
(Fu et al., 2020a). ln 2013–2014, these accessions were tested at
Tieling, Northeast China. The “Blocks in Replication” design was
used, with 4 hills in a row-plot, 1.0m in length, and 1.0m row
space. According to their MGs, the accessions were grouped into
six blocks and four replications were implemented each year. At
the maturity (R8) stage, the plants in each plot were threshed and
dried after harvest, and then the SPC was measured by using the
FOSS NearInfared grain analyzer Infratec 1241.

Statistical Analysis
The experimental data were analyzed using a joint randomized
block design analysis as an approximation for simplicity. The
analysis of variance was performed using the PROC GLM
procedure of the SAS/STAT software (SAS Institute Inc., Cary,
NC, USA). The linear model was

yijk = µ + ti + rj(i) + gk + (gt)ik + εijk,

where yijk is the phenotype value of the k-th accession for the j-
th replication in the i-th environment, µ is the population mean,
ti is the effect of the i-th environment, rj(i) is the effect of the j-
th replication in the i-th environment, gk is the effect of the k-th
accession, (gt)ik is the interaction effect between accession and
environment, and εijk is the random error following N(0, σ 2).
Except that the effect of accession was considered fixed, all other
effects were considered random. The trait heritability for the
single environment and multiple environments was estimated,
respectively, as

h2 = σ 2
g /(σ 2

g + σ 2/nr)and

h2 = σ 2
g /[σ 2

g + σ 2
gt/nt + σ 2/(nt×nr)]

where σ 2
g is the genotype variance, σ 2

gt is the genotype and year

interaction variance, σ 2 is the error variance, nt is the number
of years, and nr is the number of replications. The variance
components were estimated using the PROC MIXED procedure
of the SAS/STAT software (SAS Institute Inc., Cary, NC, USA).
The genetic coefficient of variation (GCV) was calculated as
GCV = σ g/µ.

SNP Genotyping, SNPLDB Assembly, and
RTM-GWAS Analysis
The genotype data of the 361 accessions were obtained from
Fu et al. (2020a), and the accessions were sequenced with
restriction site-associated DNA sequencing technology (RAD-
seq) (Miller et al., 2007) at BGI tech, Shenzhen, China. All
sequence reads were aligned against the reference genome
Wm82.a1.v1.1 (Schmutz et al., 2010) using the SOAP2 (Li et al.,
2009) software. The RealSFS (Yi et al., 2010) was used for
SNP calling. The SNPs with missing rate >20%, heterozygosity
rate >20%, and minor allele frequency (MAF) < 0.01 were
filtered out. The missing genotypes were then imputed using the
fastPHASE software (Scheet and Stephens, 2006). Finally, 82,966
high-quality SNPs were obtained. The SNPs were then grouped
into SNPLDB markers based on genomic block partition using
the RTM-GWAS software, with haplotypes as their alleles and
an LD threshold of D’>0.7 (He et al., 2017). A total of 15,501
SNPLDBs were identified in the NECSGP.

The RTM-GWAS procedure was used to dissect the genetic
constitution underlying the SPC variation in the NECSGP,
in which the genetic similarity coefficients (GSC) between
accessions were calculated based on genome-wide SNPLDBs.
The top 10 eigenvectors of the GSC matrix were used as the
covariates to correct the population structure bias. A threshold
of 0.05 was used at the first stage of RTM-GWAS for candidate
marker preselection, and the significance level was set to 0.01
for stepwise regression at the second stage of RTM-GWAS. The
detected QTLs (associated SNPLDBs) with their allele effects for
each accession were used to establish an SPC QTL-allele matrix
of the NECSGP for further analysis (He et al., 2017). Compared
to the QTLs reported in SoyBase (https://soybase.org), a QTL was
considered overlapped if its physical position was located in the
same region as that in the SoyBase.

Transgressive Potential Prediction and
Optimal Cross Design in the NECSGP
Based on the SPC QTL-allele matrix, all possible 64,980 single
crosses (361 × 360/2) were generated in silico (He et al., 2017).
Both linkage and independent models were used to analyze the
recombination potential of SPC in the NECSGP. In the linkage
model, the number of crossovers on each chromosome was
simulated randomly according to the Poisson distribution with
chromosome length as a parameter, while in the independent
model, all genetic loci were considered independent of each
other. The predicted genotypic SPC value was calculated for each
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TABLE 1 | Frequency distribution and descriptive statistics for SPC in the NECSGP.

Maturity

group

Mid-point of SPC (%) N Mean

(%)

Range (%) h2 (%)

37 38 39 40 41 42 43 44 45 46 G G × E

III 3 5 6 5 1 1 21 40.97 b 38.54–43.93

II 1 4 8 8 14 2 6 43 40.33 c 37.01–43.48

I 1 2 21 19 25 7 4 79 40.32 c 36.60–43.16

0 4 12 45 51 25 15 4 1 157 40.93 b 37.56–44.71

00 4 14 10 11 5 1 45 41.01 b 38.88–44.00

000 1 3 4 6 0 1 0 1 16 41.58 a 39.19–46.07

Entire 2 10 49 94 110 56 31 7 1 1 361 40.77 36.60–46.07 83.05 11.56

NECSGP, Northeast China soybean germplasm population; SPC, seed protein content; N, number of materials; a, b, and c denote Duncan’s new multiple range test, the means with

different letters indicating significance at P < 0.05; G, genotype; G×E, genotype by environment interaction.

cross based on 2,000 homozygous progenies derived from F2
individuals through continuous selfing. The 95th percentile value
was used as the predicted value for the recombination potential of
each cross. The cross program (https://gitee.com/njau-sri/cross)
was used for simulation. Based on the recombination potential
analysis of individual crosses, the transgressive potential was
predicted for crosses within an MG and crosses between MGs.
The highest SPC of accessions observed in the MG(s) was used as
a check to indicate the transgressive potential of a cross.

Candidate Gene Prediction
The steps of candidate gene prediction were as follows: (1) the
genomic interval of a detected QTL (SNPLDB) was extended
by 200 kb at both ends according to the LD decay distance in
cultivated soybean populations; (2) within the genomic interval,
the genes of the reference genome Wm82.a1.v1.1 were retrieved
from SoyBase (https://soybase.org); and (3) the independence
between a QTL and gene(s) within the QTL interval was
tested using Chi-square criterion at a significance level of 0.05.
The Gene Ontology (GO) annotations of genes were retrieved
from SoyBase.

RESULTS

Features of SPC Variation in the NECSGP
The joint analysis of variance (ANOVA) over two environments
indicated significant SPC variation among the genotypes
(accessions) and the genotype-by-environment interactions
(Supplementary Table 1). The SPC of the NECSGP in Tieling
ranged from 36.60 to 46.07%, with an average SPC of 40.77%.
The heritability of SPC over two environments was estimated
as 83.05%, with the GCV of 3.43% and the genotype-by-
environment interaction (GEI) heritability of 11.56%, indicating
the phenotypic SPC variation in the NECSGP was mainly caused
by genotypic variation and affected slightly by GEI (Table 1).
The SPC in NECSGP varied greatly but was not as wide as
that in the Chinese soybean landrace population, where the SPC
variation range was 37.51 to 50.46%, with an average of 43.10%
(Zhang et al., 2018).

The results also showed that the difference in SPC among
MGs was significant but relatively not large. The average SPC

ranged from 40.32 to 41.58% among different MGs (Table 1).
There was a slight increase in average SPC from late MGs
(III + II + I) to early MGs (000 + 00 + 0) or from
longer growth period to shorter growth period. MG II and I
exhibited the lowest SPC while MG 000 exhibited the highest
SPC. This trend implied that the SPC might retain at least
a similar level of the NECSGP in breeding earlier maturing
soybean varieties further northward. In this case, figuring out
whether there is further SPC improvement potential depends
on exploring the genetic recombination potential based on
a relatively thorough exploration of the QTL-allele/gene-allele
constitution of the NECSGP.

Identification of the SPC QTL-Allele
System in the NECSGP
The RTM-GWAS with QTL-by-environment interaction (QEI)
model was used to identify the SPC QTL-allele constitution since
GEI was significant in ANOVA. A total of 15,501 SNPLDBs were
constructed based on 82,966 SNPs. There were 8,780 SNPLDBs
containing only a single SNP (S.SNPLDB) and 6,721 SNPLDBs
containing multiple SNPs (M.SNPLDB). The number of alleles
for M.SNPLDB ranged from 2 to 10 with an average of 3.5,
while 1,792M.SNPLDBs had only two alleles. At the first stage of
RTM-GWAS under the single-locus model, 9,078 SNPLDBs were
preselected from a total of 15,501 SNPLDBs. At the second stage
in stepwise regression under the multiple-locus model, out of the
preselected SNPLDBs, a total of 73 with 273 haplotypes/alleles
passed the model test and were detected to be associated with
SPC (Figures 1A,B). Among the 73 QTLs, 36 QTLs had the main
effect only, 12 QTLs had only QEI effect, and 25 QTLs had both
the main and QEI effect (Table 2). The 73 QTLs accounted for
71.70% of the phenotypic variation (PV). The 61 main effect
QTLs with 240 alleles explained 62.72% PV and the 37 QEI QTLs
with 138 alleles explained 8.98% PV. As indicated in Figure 1C,
the phenotypic contribution of the main effect of QTLs varied
continuously. When 1% PV was used as an artificial threshold
for QTL classification, 61 QTLs could be classified as 25 large
contribution QTLs (LC, R2 ≥ 1%) with 105 alleles and 36 small
contribution QTLs (SC, R2 < 1%) with 135 alleles (Table 2). In
the same way, all the QEI QTLs were classified into 37 SCs with
138 alleles, and there were no LCs.

Frontiers in Plant Science | www.frontiersin.org 4 July 2022 | Volume 13 | Article 896549

https://gitee.com/njau-sri/cross
https://soybase.org
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Feng et al. Transgressive Soybean Protein Content Prediction

FIGURE 1 | The SPC QTL-allele information of the Northeast China soybean germplasm population obtained from RTM-GWAS. (A) Manhattan plot; (B) Quantile -

quantile plot; (C) The phenotypic contribution of the 61 main-effect QTLs, blue bars denote small-contribution QTL (R2 < 1%), red bars represent large-contribution

(Continued)

Frontiers in Plant Science | www.frontiersin.org 5 July 2022 | Volume 13 | Article 896549

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Feng et al. Transgressive Soybean Protein Content Prediction

FIGURE 1 | QTL (R2
≥ 1%); (D) The frequency distribution of allele number per locus for the 61 main-effect QTLs; (E) SPC allele effects of the 61 main-effect QTLs;

(F) QTL-matrix of SPC in the NECSGP; (G) Predicted SPC of progenies in possible crosses; (H) Gene Ontology (GO) biological process annotations of the candidate

genes for SPC QTLs in the NECSGP. “other” GO biological processes include snoRNA localization, localization, anatomical structure development, post-embryonic

development, multicellular organism development, activation of protein kinase activity, Golgi organization, chloroplast organization, macromolecule methylation, and

methylation.

TABLE 2 | QTLs/SNPLDBs associated with SPC in the NECSGP.

QTL AN Model QTL QTL×Env. QTL AN Model QTL QTL×Env.

–lgP –lgP R2(%) –lgP R2 (%) –lgP –lgP R2(%) –lgP R2 (%)

q-Prot-1-1 2 4.29 5.33 0.22 q-Prot-11-1 2 2.89 2.89 0.11

q-Prot-1-2 2 9.18 13.24 0.61 3.31 0.13 q-Prot-12-1 4 11.33 20.84 1.09 2.00 0.12

q-Prot-1-3 2 2.60 3.24 0.13 q-Prot-12-2 2 2.17 2.35 0.09

q-Prot-1-4 5 9.82 17.81 0.97 q-Prot-12-3 2 9.77 16.63 0.78

q-Prot-2-1 6 15.17 41.01 2.24 q-Prot-13-1 2 16.17 40.01 1.97 2.81 0.11

q-Prot-3-1 6 7.02 7.50 0.46 3.76 0.26 q-Prot-13-2 5 3.32 2.77 0.18

q-Prot-3-2 3 5.05 2.07 0.10 5.33 0.26 q-Prot-14-1 3 2.94 3.98 0.20

q-Prot-3-3 8 12.22 23.15 1.36 9.18 0.61 q-Prot-14-2 2 4.82 2.23 0.08 4.53 0.19

q-Prot-3-4 2 12.33 26.81 1.29 q-Prot-14-3 2 4.25 4.26 0.17

q-Prot-3-5 8 7.24 11.56 0.74 q-Prot-15-1 2 3.08 3.93 0.16

q-Prot-3-6 2 10.88 21.46 1.02 q-Prot-15-2 6 11.82 23.17 1.29 5.46 0.35

q-Prot-3-7 6 17.08 55.56 3.03 q-Prot-15-3 3 4.82 6.58 0.32

q-Prot-4-1 10 3.87 5.15 0.43 q-Prot-15-4 2 2.04 2.47 0.09

q-Prot-4-2 2 5.78 4.14 0.17 4.34 0.18 q-Prot-16-1 4 4.83 7.14 0.39

q-Prot-4-3 8 7.54 10.42 0.68 2.30 0.22 q-Prot-16-2 2 5.19 5.63 0.24

q-Prot-4-4 2 14.34 34.21 1.67 q-Prot-16-3 4 11.42 22.41 1.17

q-Prot-4-5 2 2.83 3.14 0.12 q-Prot-17-1 4 7.13 8.56 0.46 2.39 0.14

q-Prot-4-6 4 16.27 44.42 2.32 q-Prot-17-2 4 20.59 63.37 3.36

q-Prot-5-1 2 3.04 3.87 0.16 q-Prot-17-3 6 6.38 9.96 0.60

q-Prot-5-2 6 6.20 7.91 0.49 q-Prot-17-4 2 9.41 15.50 0.72

q-Prot-6-1 4 11.37 20.11 1.05 5.41 0.30 q-Prot-17-5 6 23.46 80.02 4.42

q-Prot-6-2 2 11.48 24.00 1.15 q-Prot-17-6 7 3.94 3.72 0.28 2.02 0.18

q-Prot-6-3 2 2.91 3.50 0.14 q-Prot-18-1 9 12.02 23.54 1.42

q-Prot-6-4 3 13.90 33.44 1.69 q-Prot-18-2 2 2.60 2.70 0.10

q-Prot-7-1 2 16.82 41.48 2.05 q-Prot-18-3 5 16.45 44.25 2.37 6.33 0.37

q-Prot-7-2 4 6.35 5.06 0.28 4.49 0.25 q-Prot-19-1 2 8.76 4.61 0.19 9.69 0.43

q-Prot-8-1 3 4.11 4.43 0.22 q-Prot-19-2 7 11.33 23.02 1.32 2.36 0.20

q-Prot-8-2 2 6.13 3.69 0.15 6.14 0.26 q-Prot-19-3 2 4.40 4.96 0.21

q-Prot-8-3 8 9.12 15.77 0.97 q-Prot-19-4 4 27.19 82.27 4.43 8.09 0.43

q-Prot-8-4 2 4.74 6.33 0.27 q-Prot-20-1 2 13.07 24.11 1.15 5.75 0.24

q-Prot-9-1 5 5.72 6.14 0.36 2.40 0.16 q-Prot-20-2 3 10.94 21.74 1.09

q-Prot-9-2 4 14.66 35.57 1.85 q-Prot-20-3 7 9.05 11.27 0.69 6.99 0.46

q-Prot-9-3 4 16.28 50.34 2.64 q-Prot-20-4 2 8.65 11.40 0.52 3.82 0.15

q-Prot-9-4 2 5.73 7.69 0.34 q-Prot-20-5 2 2.61 2.48 0.09

q-Prot-9-5 5 7.05 4.52 0.28 7.40 0.43 q-Prot-20-6 2 10.29 18.00 0.84

q-Prot-10-1 4 7.66 12.27 0.65 LC-QTL 105 25 48.42

q-Prot-10-2 2 4.35 3.78 0.15 2.48 0.09 SC-QTL 135 36 14.30 37 8.98

q-Prot-10-3 2 4.03 4.38 0.18 Total 273 73 61 62.72 37 8.98

NECSGP, Northeast China soybean germplasm population; SPC, seed protein content; QTL, the name of associated SNPLDB, e.g., for q-Prot-10-1, “q” means QTL, “Prot” means

protein, 10 is the chromosome number, and 1 is the position order; AN, number of alleles.

The main effect QTLs are located on all chromosomes except
Chr. 5, seven main effect QTLs on Chr. 3, six on Chr. 4 and
17, and one on Chr. 2, 11, and 13, respectively. The number of

alleles for each main effect QTL ranged from 2 to 10 (Figure 1D)
with allele effects ranging from −1.89 to 1.88 (Figure 1E;
Supplementary Table 2). Compared to the previously reported
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SPC QTLs, 45 out of the 73 detected QTLs overlapped with those
reported in the SoyBase (http://soybase.org), including the two
QTL hotspots on Chr. 9 and 20. The remaining 28 QTLs were
newly found in the present study (Supplementary Table 3). The
61 SPCmain effect QTLs and their allele effects for each of the 361
accessions were organized as a QTL-allele matrix (Figure 1F), a
compact form of the genetic constitution of the NECSGP. At the
same time, the QTL-allele matrix can be further separated into
submatrices corresponding to the six MGs (Figure 1F). The QEI
QTL-allele data set can also be organized into a matrix if it is
needed. But the environmental factor in the present study varied
randomly, and no fixed environmental parameter was available
to provide useful information in breeding for SPC improvement.
Therefore, the QEI information was not used in further analysis.

SPC QTL-Allele Changes in the Evolution
From Late to Early MGs in NECSGP
The above results indicated that the SPC in NECSGP slightly
increased with the development of earlier soybean MGs due
to the further northward dissemination after its introduction
into the Liao-River valleys. During this artificial evolutionary
process, the QTLs-alleles also changed. Some original alleles
were passed down, some new ones emerged, and some old ones
were excluded. New recombinants were formed, as indicated in
Figure 1F. To analyze the QTL-allele changes from MG III + II
+ I to earlier MGs, the dynamic QTL-allele data were listed in
the upper part of Table 3 and the summary statistics in the lower
part. All the detectedmain effect and QEI effect data of the 73 loci
with their 273 alleles were included since all are involved in the
evolutionary process.

In comparison to the old MGs (MG I∼III), only one allele of
q-Prot-6-1 (a4) emerged in all the three new MGs (MG 0∼000)
and only two alleles of q-Prot-4-1 (a6) and q-Prot-18-2 (a2)
were excluded in all the three new MGs (Table 3 upper part).
There were different patterns of allele changes during the artificial
evolutionary process from the old MGs to each of the new MGs.
From the old MGs to the new MG 0, five alleles (one negative
and four positives) of five QTLs were excluded and six alleles
(two negatives and four positives) of six QTLs emerged. The
number of emerged alleles was much less than that of excluded
alleles from the old MGs to the new MG 00 and 000, that is, 50
alleles (24 negative and 26 positive) of 35 QTLs were excluded
and five alleles (two negatives and three positives) of five QTLs
emerged from the old MGs to the new MG 00, and 88 alleles
(47 negatives and 41 positives) of 46 QTLs were excluded and
one allele (positive effect) emerged from the old MGs to MG
000. With the shortening of the growth period, the number
of excluded alleles increased and the number of emerged new
alleles decreased.

Due to limited sample sizes, there might be some fluctuation
in new MGs. Thus, only the comparison was made between the
old MGs (III + II + I) and emerging MGs (0 + 00 + 000).
There were 267 (142 negatives and 125 positives) alleles in the old
MGs, of which 265 (142 negatives and 123 positives) alleles were
inherited in the new MGs. Or in other words, 97.79% (265/271)
alleles in new MGs were inherited from the old MGs, while six

(2.21%) alleles (two negatives and four positives) emerged and
two (2/267=0.75%) alleles of positive effect were excluded. Thus,
the most alleles of the SPC QTLs in the old MGs were reserved
in the new MGs, with only eight alleles changed. These changes
in alleles caused an increase in SPC from 40.32–40.97% in the
old MGs to 40.93–41.58% in the newMGs. The four alleles of the
positive effect that emerged were responsible for the SPC increase
as no alleles of negative effect were excluded. Accordingly, the
evolutionary motivation of the slight increase in SPC of the new
MGs compared to the old MGs might be due to the emergence
of new alleles and possible recombination between inherited
alleles rather than the exclusion of alleles. Thus, the following
text will focus on the recombination or transgressive potential of
the NECSGP.

Prediction of Allele Recombination
Potential for Optimal Cross Design in the
NECSGP
The genotypes of 2,000 homozygous progenies were simulated
for each of the 64,980 possible crosses among the 361 soybean
accessions in the NECSGP, then the SPC of the progenies was
predicted based on the SPC QTL-allele matrix in the population.
In this study, as the linkage and independent model results were
very similar, only the simulation results of the linkage model
were used to explore the allele recombination potential. For each
cross, the SPC percentile of the progeny population was used
as an indicator of recombination potential between alleles. As
shown in Figure 1G, transgressive recombination for SPC existed
in the NECSGP. Using the 95th percentile, the predicted SPC
of the 64,980 crosses ranged from 37.84 to 50.00%, with an
average of 43.29%, and 1,803 crosses showed higher SPC than the
maximum SPC (46.07%) in the NECSGP (Table 4). Transgressive
recombination for SPC was observed both for crosses within and
between MG(s). Using the 95th percentile, 534 crosses within
MGs and 1,269 crosses between MGs showed higher SPC than
themaximum SPC in the NECSGP. The average SPC of predicted
crosses within and between maturity groups were similar, but the
maximum SPC between MGs was higher than that within MGs
(Table 4).

For crosses within MGs, 171, 318, 22, and 23 crosses within
MG I + II + III, 0, 00, and 000, respectively, showed higher SPC
than the maximum SPC in the NECSGP. The predicted SPC for
each group was similar, with the maximum SPC ranging from
48.01 to 48.91%. For crosses between MGs, the predicted SPC
varied, with the maximum SPC ranging from 48.51 to 50.00%.
The crosses between MG 0 and 000 exhibited the maximum
recombination potential, and the SPC of crosses between new
MGs was slightly higher than that between old MGs and new
MGs (Table 4).

The above results indicated allele recombination potential
for SPC improvement in terms of the 95th percentile at the
NECSGP level. The average recombination potential for SPC
improvement was estimated as 2.52% (=43.29–40.77), with the
maximum recombination potential as 9.23% (=50.00–40.77) and
the maximum transgressive potential as 3.93% (=50.00–46.07).
From the individual MG level, the above three comparisons
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TABLE 3 | The SPC QTL-allele changes among maturity groups.

QTL a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 QTL a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

q-Prot-1-1 z q-Prot-10-3 y

q-Prot-1-2 yz q-Prot-11-1

q-Prot-1-3 XY q-Prot-12-1

q-Prot-1-4 q-Prot-12-2 y

q-Prot-2-1 y z yz y q-Prot-12-3 z

q-Prot-3-1 y y q-Prot-13-1

q-Prot-3-2 z yz q-Prot-13-2 yz

q-Prot-3-3 yz z yz q-Prot-14-1 yz z

q-Prot-3-4 z q-Prot-14-2 yz

q-Prot-3-5 yz yz y z z q-Prot-14-3

q-Prot-3-6 q-Prot-15-1

q-Prot-3-7 yz z z q-Prot-15-2 z z yz

q-Prot-4-1 yz yz z z xyz y z q-Prot-15-3 z

q-Prot-4-2 z q-Prot-15-4 z

q-Prot-4-3 yz XY z y z q-Prot-16-1

q-Prot-4-4 y q-Prot-16-2 XY

q-Prot-4-5 z q-Prot-16-3 z

q-Prot-4-6 yz q-Prot-17-1

q-Prot-5-1 z q-Prot-17-2 y

q-Prot-5-2 z yz yz q-Prot-17-3 z z y

q-Prot-6-1 XYZ q-Prot-17-4 z

q-Prot-6-2 q-Prot-17-5 yz yz z

q-Prot-6-3 z q-Prot-17-6 z yz

q-Prot-6-4 y q-Prot-18-1 y z z z

q-Prot-7-1 y q-Prot-18-2 xyz

q-Prot-7-2 z q-Prot-18-3 yz z

q-Prot-8-1 z q-Prot-19-1 yz

q-Prot-8-2 X q-Prot-19-2 y yz

q-Prot-8-3 yz z yz yz z q-Prot-19-3

q-Prot-8-4 y q-Prot-19-4 z z yz

q-Prot-9-1 z z q-Prot-20-1 XY

q-Prot-9-2 xz z q-Prot-20-2 yz

q-Prot-9-3 z z z q-Prot-20-3 z z z y

q-Prot-9-4 xz q-Prot-20-4 z

q-Prot-9-5 z q-Prot-20-5

q-Prot-10-1 yz xz q-Prot-20-6

q-Prot-10-2 H

Maturity group Total allele Inherent allele Emerged allele Excluded allele

Allele QTL Allele QTL Allele QTL Allele QTL

I + II + III 267 (142,125) 73

I + II + III vs. 0 268 (143,125) 73 262 (141,121) 73 6 (2,4) 6 5 (1,4) 5

I + II + III vs. 00 222 (120,102) 73 217 (118,99) 73 5 (2,3) 5 50 (24,26) 35

I + II + III vs. 000 180 (95,85) 73 179 (95,84) 73 1 (0,1) 1 88(47,41) 46

I + II + III vs. 0 + 00 + 000 271 (144,127) 73 265 (142,123) 73 6 (2,4) 6 2 (0,2) 2

In the upper part: a1–a10 are the alleles of a QTL; the white cells represent negative effect alleles and the gray ones represent positive effect alleles; “x,” “y,” “z,” respectively, represent

alleles excluded in MG0, MG00, MG000 (vs. MGI + II + III); “X,” “Y,” “Z,” respectively, represent alleles emerged in MG0, MG00, MG000 (but not existing in MGI + II + III).

In the lower part: the number outside parentheses is the total of alleles; the numbers in parentheses are the number of negative effect alleles and positive effect alleles, respectively;

Inherent allele means alleles passed from the compared MG; Emerged allele means the alleles new to the partner of I + II + III, 0, and 00, respectively; Excluded allele means the alleles

excluded in the compared MG.
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TABLE 4 | The predicted SPC of simple crosses within and between maturity groups.

Maturity group (MG) Maximum SPC Total no. of crosses Predicted SPCa Superior crossesb

Mean Min. Max.

I + II + III 43.93 10,153 42.97 38.85 48.37 171

0 44.71 12,246 43.38 37.84 48.91 318

00 44.00 990 43.43 40.36 48.01 22

000 46.07 120 44.62 41.43 48.72 23

I + II + III vs. 0 44.71 22,451 43.20 38.69 48.71 483

I + II + III vs. 00 44.00 6,435 43.23 39.41 48.81 123

I + II + III vs. 000 46.07 2,288 43.85 39.35 49.63 184

0 vs. 00 44.71 7,065 43.41 40.38 48.51 177

0 vs. 000 46.07 2,512 44.03 40.33 50.00 235

00 vs. 000 46.07 720 44.02 40.39 49.48 67

Withinc 46.07 23,509 43.21 37.84 48.91 534

Betweend 46.07 41,471 43.34 38.69 50.00 1,269

Entiree 46.07 64,980 43.29 37.84 50.00 1,803

aPredicted SPC is the 95th percentile of predicted SPC in a simple cross.
bSuperior crosses mean the number of crosses with their 95th percentile value more than the maximum SPC of the MG.
c“Within” means within all MGs.
d“Between” means MG I + II + III and MG 0 + 00 + 000.
e“Entire” means all possible simple crosses in the whole population.

varied similarly. For example, in MG 0, the mean recombination
potential was estimated as 2.45% (=43.38–40.93) in MG 0,
with the maximum recombination potential as 7.98% (=48.91–
40.93) and the maximum transgressive potential as 4.20%
(=48.91–44.71). Thus, there were superior recombination and
transgressive potential within/among the MGs in the NECSGP.
The potential for SPC improvement exists in the population
and remains to be explored according to the SPC QTL-allele
constitution of the NECSGP.

The five best crosses were selected for each MG and the entire
NECSGP (Table 5). The cross between L54 (MG 000) and L5
(MG 0) exhibited the highest 95th percentile of the predicted
SPC (50.00%), with an 8.53% increase in SPC compared with
the maximum SPC in the NECSGP. Although the recombination
potential was relatively limited withinMG, it may also reach up to
50% under intensive selection, as indicated by the 99th percentile.
For example, the 99th percentile of predicted SPC of the cross
L329×L5 was 50.04%, and that of L54×L5 was as high as 51.54%.
Thus, according to the QTL-allele matrix, the optimal or best
crosses can be designed readily.

Annotation of Candidate Gene System of
SPC in the NECSGP
Using the chi-square test, a total of 190 genes were significantly
associated with 44 SPC QTLs in this study, and then
120 candidate genes on 34 SPC QTLs were annotated
and functionally classified into 13 GO biological process
categories, including transporter activity, translation, regulation
of the biological process, metabolic process, transcription,
phosphorylation, catabolic process, cellular process, response to
stimulus, signaling, biosynthetic process, reproductive process,
and others (Figure 1H). These candidate genes involved 34 SPC

QTLs, explaining 41.35% of the PV (Supplementary Table 4).
Among the candidate genes, four are involved directly in
protein or amino acid synthesis and metabolism, according to
the annotation information. The Glyma03g33360 gene on q-
Prot-3-5 is involved in the histidine biosynthetic process. In
NECSGP, six SNPs related to this gene were found, among
which three SNPs were located within the gene and three SNPs
were located in the 5 kb upstream and downstream of the gene.
Significant differences in SPC were observed among the five
haplotypes on this gene locus. The haplotype “AACTTC” had
the highest frequency but lowest mean SPC in the NECSGP
(Supplementary Figure 1A). The Glyma15g10780 gene on q-
Prot-15-2 was involved in the S-adenosylmethioninamine
biosynthetic process and the Glyma16g29760 gene on q-Prot-16-
3 was involved in the peptidyl-pyroglutamic acid biosynthetic
process. In these two loci, each contained only one SNP in
NECSGP, and no significant associations between the SNP
and SPC were observed (Supplementary Figures 1B,C). The
Glyma17g35490 gene on q-Prot-17-6 involved in proteolysis,
and its homologous gene in Arabidopsis thaliana, AT5G67360,
belongs to the subtilase family protein, encoding a subtilisin-
like serine protease essential for mucilage release from seed
coats. The Glyma17g35490 gene locus had seven haplotypes
in NECSGP, and there were significant differences in SPC
among haplotypes. The haplotype “GACTA” had the highest
mean SPC while “GCACA” had the highest frequency in
NECSGP (Supplementary Figure 1D). The above candidate
gene information was cited and inferred from the SoyBase
(http://soybase.org), and the biological functions of the candidate
genes are to be studied and confirmed further. This information
implied that SPC is a complex trait conferred by a gene network
involving a series of functional genes.
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TABLE 5 | Optimal crosses for high SPC in different maturity groups (%).

Maturity group P1 P2 Y1 Y2 Mean SD P90 P95 P99

I + II + III L177 L326 43.16 42.34 42.77 3.30 47.06 48.13 50.11

L115 L326 43.48 42.34 42.89 3.07 46.95 48.01 49.88

L115 L381 43.48 43.93 43.70 2.81 47.52 48.37 49.82

L326 L381 42.34 43.93 43.30 2.93 47.15 48.10 49.73

L37 L381 41.70 43.93 42.86 3.13 47.05 48.04 49.64

0 L329 L5 44.19 44.71 44.43 2.69 48.01 48.91 50.04

L5 P085 44.71 42.79 43.71 2.80 47.37 48.24 49.81

L157 L5 43.35 44.71 43.98 2.67 47.43 48.40 49.78

L51 L5 42.55 44.71 43.62 2.89 47.55 48.46 49.75

L43 L5 43.04 44.71 43.81 2.86 47.66 48.50 49.75

00 L367 L409 42.62 41.94 42.38 3.35 46.83 48.01 49.29

L184 L311 42.68 44.00 43.37 2.23 46.31 47.18 48.48

L311 L409 44.00 41.94 42.94 2.56 46.36 46.96 48.24

L311 L367 44.00 42.62 43.29 2.49 46.70 47.30 48.20

L380 L409 42.90 41.94 42.48 2.47 45.72 46.50 47.91

000 L181 L54 41.91 46.07 44.00 2.61 47.43 48.25 49.69

L152 L54 44.09 46.07 45.08 2.31 48.20 48.72 49.55

L247 L54 41.68 46.07 43.89 2.52 47.19 48.06 49.26

L54 P055 46.07 41.88 43.93 2.59 47.33 48.11 49.18

L289 L54 41.58 46.07 43.81 2.57 47.26 47.93 49.14

Entire L54 L5 46.07 44.71 45.37 2.86 49.16 50.00 51.54

L381 L54 43.93 46.07 45.04 2.82 48.71 49.63 51.14

L326 L54 42.34 46.07 44.15 3.07 48.13 49.15 51.12

L177 L54 44.34 46.07 44.66 2.76 48.34 49.31 50.75

L37 L54 41.70 46.07 43.88 3.27 48.24 49.32 50.73

P1 and P2 are the parents of a simple cross. Y1 and Y2, the means of observed SPC. P90, P95, and P99 indicate 90th, 95th, and 99th percentile of the homozygous progeny value in

the cross.

DISCUSSION

Genetic Potential and Optimal Cross
Design of SPC in the NECSGP
The SPC in NECSGP varied greatly but was not as wide as

that in the Chinese soybean landrace population. A slightly

significant increase was observed from the old MGs to the
new MGs. Using RTM-GWAS, 61 main-effect SPC QTLs with

240 alleles were detected, explaining 62.72% of the phenotypic
variation. Based on the SPC QTL matrix, the predicted 95th

percentile of SPC in progenies of possible crosses showed that
the mean recombination potential was estimated as 43.29 or
2.52% more than the population mean of 40.77%. The maximum
recombination potential was 50.00 or 9.23% more than the
population means, and the maximum transgressive potential was
50.00 or 3.93% more than the best accession in the population.
Thus, there was large genetic potential in improving SPC even
though the phenotypic variation was not large in the population,
and the genetic potential was mainly due to allele recombination
in the population. Since both the linkage model and independent
models had similar estimates in the prediction of recombination
potential, there was no need to break linkage drags to improve
SPC in the NECSGP. This result might apply to the soybeans in

the Americas because the germplasm in the Americas was mainly
introduced from the NECSGP. Of course, in addition to utilizing
the recombination potential in the NECSGP itself, there should
be more potential for a breakthrough in the improvement of
SPC, if elite SPC germplasm is introduced to the NECSGP from
external genetic resources.

Based on the above estimation of genetic recombination
potential in the NECSGP, the optimal crosses were selected
for breeding purposes. In other words, the present study
has provided an optimal cross design procedure for SPC
improvement, including the following steps: the establishment
of a QTL-allele matrix based on RTM-GWAS, then simulation
of the possible crosses done in silico for their breeding values
of certain (95th for example) percentile homogeneous progenies,
and finally choosing the best crosses according to the predicted
breeding values. In this way, the best crosses or the best
parental combinations are designed. Compared to the traditional
breeding, this optimal cross design procedure covers all possible
crosses in the population based on the establishment of a
whole-genome QTL-allele matrix and is effective and efficient in
predicting best crosses and progenies, realizing transformation
from phenotype selection to genomic selection and shortening
the breeding cycles. In addition, among the present possible
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crosses, 1,803 transgressive combinations were detected, in which
the predicted best cross was L54×L59 with SPC 50.00% in its
95th percentile progeny. Of the 73 SPC QTLs in these two
parents, 42 had the same alleles and 31 had different alleles.
Both parents had complementary large positive and negative
effect alleles. L54 had one favorable allele (1.84%) on q-Prot-
13-1 and one allele with a large negative effect (-1.30%) on
q-Prot-4-6, while L5 had five favorable alleles (0.79-1.88%) on
q-Prot-1-4, q-Prot-4-6, q-Prot-9-2, q-Prot-17-5, q-Prot-18-3, and
three alleles of a large negative effect (-0.97-1.84%) on q-Prot-
6-4, q-Prot-13-1, and q-Prot-18-1, respectively. This example
explained why L54×L59 was the best-predicted cross and why
the NECSGP has potential for SPC improvement through
genetic recombination.

The above optimal cross prediction procedure is, in fact,
a genome-wide sequencing marker-assisted prediction. Our
previous marker-assisted selection for transgressive SPC in
recombinant inbred line (RIL) populations was very effective
(Zhang et al., 2015a). Two transgressive segregants for SPC
with SPC of 49.33% and 46.32% were selected from two RIL
populations with their parental SPC of 44.83, 44.83, 35.35,
and 44.34%, respectively, and then were crossed for further
improvement of SPC. The two transgressive segregants and the
derived offspring were genotyped at three major SPC QTLs,
and the recombinants with all three alleles of positive effect
performed the highest SPC in F2-derived families, especially
in the F2 : 5 : 6 generation where a progeny with the highest
SPC of 54.15% was obtained. This example demonstrated
the effectiveness of the marker-assisted selection procedure
in breeding for SPC. Thus, this should also apply to the
above predicted optimal cross L54×L59; especially, it was
based on whole-genome sequencing marker-assisted prediction,
while Zhang et al.’s example was based only on some
SSR markers.

In the present study, SPC was the primary focus, but
modern breeders have been pursuing high-yield, high SPC, and
high oil content soybean cultivars (Patil et al., 2017). Previous
studies have found that soybean protein content was negatively
correlated with oil content and yield (Chaudhary et al., 2015).
High protein content often leads to a decrease in oil content and
yield. In breeding soybean cultivars with high protein content,
high oil content, and high yield, balancing the relationship
among the three traits has always been an urgent problem to be
solved. In the present study, it is suggested to establish the QTL-
allele matrices for all the three traits, on which the optimal crosses
for combining all elite QTL-alleles of the three traits might be
predicted. Therefore, optimal cross prediction for multiple traits
should be further explored.

The SPC QTL-Allele Structure and
Evolutionary Mechanism in the NECSGP
In the NECSGP, 73 SPC QTLs/SNPLDBs with 273 alleles were
detected, accounting for 71.70% PV, in which 61 main-effect
QTLs with 240 alleles accounted for 62.72% PV. Compared to the
QTL reported in the literature and SoyBase (https://soybase.org),
45 QTLs overlapped with the reported QTLs, and 28 QTLs were

newly found, explaining 23.85% PV. The SNPLDB markers also
satisfied the requirements of the presence of multiple alleles in
natural populations. The QTL of the largest contribution was
q-Prot-4-6, which explained 2.32% PV. Compared to previous
studies (Bandillo et al., 2015; Sonah et al., 2015; Zhang et al.,
2017), QTLs with relatively small effects could also be detected for
SPC in this study using the RTM-GWASmethod; in other words,
the SPC QTLs with their alleles can be fully explored. By taking
the trait heritability as the upper PV limit, both the false positive
and false negative problems can be controlled in the RTM-
GWAS method. The detection power was further boosted with
the two-stage analysis strategy and the multi-locus model. Thus,
the relatively thorough detection of the SPC QTL-allele system
in the NECSGP can facilitate the study of genetic dynamics of
SPC variation.

The SPC QTL-allele structure changed from the old MGs to
the new MGs, with both emerged alleles and excluded alleles,
but allele changes in SPC were not as many as those in days to
flowering (Fu et al., 2020b; Liu et al., 2021), main stem node
number (Fu et al., 2020a; Fahim et al., 2021), and other traits
(Meng et al., 2016). Therefore, SPC is a trait not sensitive to allele
changes, which may be one reason why SPC cannot be improved
readily. However, among the four evolutionary motivators of
allele inheritance, emergence, exclusion, and recombination,
the allele contributions for the first three factors were 97.79%,
2.21%, and 0.75%, respectively. The allele emergence and allele
exclusion were relatively weak in SPC. The fourth factor,
allele recombination, was relatively strong as indicated in the
prediction of recombination potential. Thus, for a breakthrough
in improving SPC in the NECSGP, introducing superior alleles
from other germplasm populations may be a potential strategy
for SPC breeding in NEC.

Furthermore, 34 out of the 73 QTLs (SNPLDBs) had only
two alleles, of which 31 QTLs were SNPLDBs containing only
a single SNP (S.SNPLDB). Previous studies showed that along
with the increase in the number of SNPs or sequencing depth, the
S.SNPLDBs would likely be merged into LD blocks with multiple
SNPs (He et al., 2017). Since the detected SNP number of the
soybean genome in this study was relatively small, the exploration
of SPC QTL-allele in the NECSGP may be further improved with
sequencing depth increased.

CONCLUSION

The SPC in NECSGP varied greatly but was not as high as in
the Chinese soybean landrace population. There was a slight SPC
increase from the old MGs (III+ II+ I) to the new MGs (0+ 00
+ 000). The 71.70% SPC variation in NECSGP can be explained
by 73 SPC QTLs with 273 alleles, including 28 newly identified
QTLs. The evolutionary changes of QTL-allele structure from old
MGs to newMGs showedmost alleles in newMGswere inherited
from the old MGs, and only a small number of alleles emerged
or were excluded. The small amount of new positive allele
emergence and possible allele recombination between alleles
explained the slight SPC increase in new MGs. The prediction
results of 95th percentile progenies of possible crosses showed
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recombination and transgressive potential, indicating that SPC
breeding potentials exist in NECSGP. Candidate gene analysis
indicated that SPC is a complex trait conferred by a gene network
involving a series of functional genes.
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