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To obtain the canopy chlorophyll content of winter wheat in a rapid and non-destructive

high-throughput manner, the study was conducted on winter wheat in Xinjiang Manas

Experimental Base in 2021, and themultispectral images of twowater treatments’ normal

irrigation (NI) and drought stress (DS) in three key fertility stages (heading, flowering,

and filling) of winter wheat were obtained by DJI P4M unmanned aerial vehicle (UAV).

The flag leaf chlorophyll content (CC) data of different genotypes in the field were

obtained by SPAD-502 Plus chlorophyll meter. Firstly, the CC distribution of different

genotypes was studied, then, 13 vegetation indices, combined with the Random Forest

algorithm and correlation evaluation of CC, and 14 vegetation indices were used for

vegetation index preference. Finally, preferential vegetation indices and nine machine

learning algorithms, Ridge regression with cross-validation (RidgeCV), Ridge, Adaboost

Regression, Bagging_Regressor, K_Neighbor, Gradient_Boosting_Regressor, Random

Forest, Support Vector Machine (SVM), and Least absolute shrinkage and selection

operator (Lasso), were preferentially selected to construct the CC estimation models

under two water treatments at three different fertility stages, which were evaluated by

correlation coefficient (r), root means square error (RMSE) and the normalized root mean

square error (NRMSE) to select the optimal estimation model. The results showed that

the CC values under normal irrigation were higher than those underwater limitation

treatment at different fertility stages; several vegetation indices and CC values showed

a highly significant correlation, with the highest correlation reaching.51; in the prediction

model construction of CC values, different models under normal irrigation and water

limitation treatment had high estimation accuracy, among which the model with the

highest prediction accuracy under normal irrigation was at the heading stage. The highest

precision of the model prediction under normal irrigation was in the RidgeCV model

(r = 0.63, RMSE = 3.28, NRMSE = 16.2%) and the highest precision of the model

prediction under water limitation treatment was in the SVM model (r = 0.63, RMSE =
3.47, NRMSE = 19.2%).
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INTRODUCTION

Soil plant analysis development (SPAD) can directly reflect the
relative chlorophyll content in leaves (Netto et al., 2005), which
was the most important pigment in photosynthesis, and its
content was intimately related to the photosynthesis of plants
(Zhang et al., 2019a) and the changes in its concentration
directly affected the health of crops (Gitelson, 2005; Shestakova
et al., 2020). Winter wheat was one of the world’s major food
crops. High yield and quality were the goals pursued by many
breeders (Lesk et al., 2016; Sun et al., 2019). In recent years,
extreme weather occurs frequently in the world and drought
had directly affected wheat yields. It was estimated that drought
and hot weather worldwide would reduce annual yields by 9–
10% (Mondal et al., 2013). Crop growth can be predicted by
constructing characteristics of nutrients and canopy spectra.
Chlorophyll content played a large role in guiding the drought
resistance and yield of wheat. Therefore, the study of chlorophyll
content in wheat provided a basis for judging the growth of
crops. Currently, remote sensing technology provided new ideas
for the estimation of the chlorophyll content of crops, and the
research mainly focused on spectral information indices and
spectral information obtained by different sensors combinedwith
data from the ground to predict the chlorophyll content.

Remote-sensing technology was currently showing
strong competitiveness for precision agriculture in different
experimental environments, especially that the convenient
application of multispectral imaging technology on UAVs has
accelerated the development of the technology (Kaivosoja et al.,
2013; Yang et al., 2019). The acquisition of characteristic data on
chlorophyll content at the ground level was usually destructive
(Telmo, 2017). In addition, the ground acquired data was
selected from a few limited points, and it was difficult to use these
points to represent the characteristics of the whole area, so the
acquisition of traditional ground phenology data was limited in
scope. Remote-sensing data can be acquired at high throughput
and large scale, but the influence of spatial image resolution
made it difficult to grasp some local features, so UAV-based
remote-sensing technology made up for this deficiency.

In recent years, with the compactness and convenience
of UAVs and the ability to customize their missions, they
had played an extremely important role in information-based
agriculture (Sampson et al., 2003; Sun et al., 2021). The UAV
was used as a spaceflight vehicle to carry various sensors, such
as hyperspectral sensors, multispectral sensors, RGB cameras,
and thermal infrared sensors (Zhang et al., 2021). Especially,
hyperspectral and multispectral sensors were more common
for the prediction of nutrient elements in crops. Currently,
hyperspectral characterization data had been used to some extent
for agricultural traits, but the popularity of hyperspectral use
was far from multispectral due to some economic and complex
reasons (Taghvaeian et al., 2012). Multispectral sensors carrying
different wavelengths (Blue, Green, Red, Red_edge, and Nir)
had a wide range of applications in many areas of crops. For
instance, Bendig et al. (2015). predicted the biomass of crops by
drones and obtained better results. The LAI, planting density,
and photosynthetic characteristics of canola, barley, and wheat
were well predicted by the UAV. In addition, the multispectral

images from the UAV were a good reference for determining the
emergence rate and rising potential of spring wheat. Moreover,
there are also multispectral images from UAVs that serve as
a good reference for the determination of seedling emergence,
as well as the rise of spring wheat. Recently, some scholars
have judged the maturity of wheat, as well as sorghum under
drought conditions by UAV-basedmultispectral indices (Guillen-
Climent et al., 2012; Verger et al., 2014; Jin et al., 2017).
Hunt et al. (2013) constructed the Green Normalized Difference
Vegetation Index (GNDVI) from multispectral images obtained
by UAV and inversed the leaf area index of wheat through the
vegetation index.

Combining ground phenotype and UAV multispectral image
data for chlorophyll content inversion of crops was an innovative
application of UAV multispectral sensors. Machine learning was
the science of how to use computers to simulate or implement
human learning activities, and it was the most intelligent feature
of artificial intelligence, which can be used to integrate the
data that had been generated for learning, and then, go on
to make scientific predictions for the unknown world. The
regression models within machine learning had shown strong
data prediction capabilities for both linear and nonlinear,
structured and unstructured data. For example, the least-squares
algorithm, Random Forest algorithm, Support Vector Machine
algorithm, decision tree algorithm, and Naïve Bayesian algorithm
have been used to varying degrees in agricultural remote
sensing(Garg et al., 2016; Grinberg et al., 2020; Shafiee et al.,
2021).

Machine learning can not only perform predictive analysis on
traditional data but also embodied great advantages in handling
noise and anomalies data (Witten et al., 2016). For chlorophyll
content prediction, multispectral images from UAV remote-
sensing combined with machine learning algorithms provided
excellent thoughts. Currently, machine learning combined with
different vegetation indices had shown powerful advantages
in agricultural remote-sensing, but studies combining a large
number of machine learning algorithm models with preferred
vegetation indices had rarely been reported. Next, classic
machine learning algorithms for regression were employed to
analyze the test data to find the best algorithm. Therefore,
this article combined high-throughput UAV remote sensing
images with preferential vegetation index and CC data to predict
different fertility stages of winter wheat under different water
treatments to achieve an intelligent level of wheat detection.
This article focused on the following issues:(1) how to prefer
vegetation indices for inverse model construction; (2) the
effect of chlorophyll content on water response under different
irrigation conditions; and(3) the response of different machine
learning algorithms for different water treatments at different
fertility stages to the prediction model of chlorophyll content in
winter wheat.

MATERIALS AND METHODS

Study Area and Experimental Design
The winter wheat field experiment was located in Manas,
Xinjiang, China(86◦12’52.2“N, 44◦18’15.77”E), which had a
mid-temperate continental arid semi-arid climate with severely
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TABLE 1 | Unmanned aerial vehicle (UAV) flight parameters.

Parameters Parameter values

Flight altitude 12 m

Flight Speed 5.4 km/h

Course overlap ratio 75%

Lateral overlap rate 75%

Spectral type Blue, Green, Red, Red_edge, Nir

TABLE 2 | Manas UAV multispectral images and chlorophyll content (CC) data

acquisition program.

Date Stages Data

2021.5.8 Heading CC and Multispectral Images

2021.5.21 Flowering CC and Multispectral Images

2021.5.28 Filling CC and Multispectral Images

cold winters, hot summers, dryness and low rainfall, sufficient
sunshine, high evaporation, and low precipitation. In this study,
there were 2 irrigation water treatments: DI and DS. A total
of186 plots were selected for each irrigation treatment, 62
wheat varieties were selected for the experiment, each plot
contained 1 variety, randomized group design, 3 repeats, 1-
row zone(each of size 1.5m × 0.3m), and water restriction
treatment was not watering during the wheat heading, flowering,
filling, and maturity stages. The field management was by the
local conventional cultivation management mode, and the wheat
field grows well. Fertilizer application, drip irrigation, insect
control, and weed control were also the same as the local
field management.

UAV Platform and Flight Configuration
In this study, the UAV platform was DJI Phantom 4 (Shenzhen
Dajiang Technology Co. Ltd., Shenzhen, China), which carried
a multispectral camera to collect multispectral images of the
winter wheat canopy. The multispectral camera carried a camera
with one RGB and multispectral channels with five wavelengths,
centered at 450 nm (Blue), 560 nm (Green), 650 nm (Red),
730 nm (Red_edge), and 840 nm (Nir). Besides, the UAV is
equipped with a light intensity sensor and a gray plate for
radiation correction.

In the process of multispectral image acquisition, clear
and windless weather at noon was selected, the UAV flew
autonomously and recorded images according to the set route,
and the multispectral camera lens was vertically downward, and
the flight parameters were shown in Table 1.

Data Collection Plan
The data collection included CC of winter wheat canopy and
UAV multispectral images. These data were collected at three
different stages of wheat fertility: heading, flowering, and filling.
Also, all the data in the acquisition plan contain two different
water treatments. The specific acquisition plan for CC and UAV
multispectral images were shown in Table 2.

Measurement of Chlorophyll Content
The correlation coefficients between SPAD values and
chlorophyll content of wheat leaves had a significant level
and can reflect the high and low levels of chlorophyll content
of the crop (Netto et al., 2005). The measurement periods
were three different fertility stages of wheat: heading stage,
flowering stage, and filling stage. The relative chlorophyll
content of different genotypes was measured simultaneously
on the same day of the UAV flight by taking five uniformly
growing wheat plants from each variety and using the SPAD-
502 Plus chlorophyll meter, an instrument manufactured
by Minolta Camera, Japan, which had been used by many
scholars to obtain wheat CC data (Wang et al., 2012;
Zhang et al., 2019b). The CC values were measured and
recorded at the top, middle, and bottom of the flag leaf of
selected winter wheat plants in the experiment field, and
the average of the chlorophyll content of the three parts
was taken as the CC values of the plant winter wheat, and
then, the average of the CC values of five winter wheat
plants was calculated as the CC values of this variety of
winter wheat.

Image Processing
In this study, Pix4Dmapper software (Version 1.4, Pix4d,
Lausanne, Switzerland) (https://pix4d.com/) was used to stitch
the acquired multispectral images of the UAV in 5 bands.
The multispectral images were firstly corrected with the
corresponding ground control point data to generate Digital
Orthophoto Map (DOM); then, the reflectance correction of
the multispectral images was performed with the gray plate to
obtain the test site reflectance images, which were stored in TIF
format; finally, ARCGIS software (Version 10.3.1, Esri, USA)
(http://www.esri.com/arcgis/about-arcgis) was used to extract
the vector surface of the cell and obtain the spectral reflectance
images in 5 bands, and the average reflectance of this study
area was extracted as the spectral reflectance of the sample in
this band. The specific image processing flow was shown in
Figure 1.

Selection of Vegetation Index (VI)
The combination of changes in reflectance of different bands
constitutes vegetation indices, which can reduce the degree of
influence of factors, such as background soil on vegetation
spectra, to a certain extent and improve the accuracy of
estimating chlorophyll content. In this article, the importance
of vegetation indices was evaluated by 13 vegetation indices
in Table 3 except Green Band Optimized Soil Conditioning
Vegetation Index (GOSAVI) using the Random Forest algorithm
(Breiman, 2001). First, finding the top five vegetation indices
in terms of contribution under different treatments, then, the
vegetation indices were preferentially selected by combining
the correlation between 14 vegetation indices and CC values,
and, finally, the model inversion and prediction of CC values
are carried out by using the preferential vegetation indices. In
total, we selected 14 vegetation indices. The vegetation index
calculation formula is shown in Table 3.
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FIGURE 1 | Flowchart of unmanned aerial vehicle (UAV) image processing.

Modeling Methods
Using remote-sensing images that predicted the chlorophyll
content of ground crops by modeling, the analysis from
mathematical models was the process of predicting chlorophyll
by observing specific variables. Since the 1980s, machine
learning has attracted wide interest in the artificial intelligence
community as a way to achieve artificial intelligence, especially
in the last decade or so, a rapid development of research
work in the field of machine learning, and it has become
one of the important topics of artificial intelligence. The

algorithms of traditional machine learning had all shown
strong advantages in data prediction regression. To predict the
chlorophyll content of winter wheat, this study investigated
the most classical machine learning algorithms of RidgeCV
(Pelckmans et al., 2005), Ridge (Houwelingen, 1992), Adaboost
Regression (Freund and Schapire, 1997), Bagging_Regressor
(Hall and Turlach, 2007), K_Neighbor (Cover and Hart, 1967),
Gradient_Boosting_Regressor (Friedman, 2001), Random Forest
(Breiman, 2001), and SVM, Lasso (Tibshirani, 2011), and then,
model inversion was performed with the studied data, and
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TABLE 3 | Vegetation index and its calculation formula.

Vegetation index Formula to calculate Reference

Normalized vegetation index (NDVI) NDVI = (RNir − RRed )/(RNir + RRed ) Schnell, 1974

Green Normalized Vegetation Index

(GNDVI)

GNDVI = (RNir − RGreen)/(RNir + RGreen ) Wagner, 1996

Normalized Green and Blue Difference

Index (NGBDI)

NGBDI = (RGreen − RBlue )/(RGreen + RBlue) Hunt et al., 2005

Green Band Optimized Soil Conditioning

Vegetation Index (GOSAVI)

GOSAVI = 1.16 ∗ [(RNir − RGreen )/(RNir + RGreen + 0.16)] Gilabert et al., 2002

Red edge optimized soil Regulating

Vegetation Index (REOSAVI)

REOSAVI = 1.16 ∗ [(RNir − RRed )/(RNir + RRed + 0.16)] Kim et al., 1994

Optimization of Soil Conditioning

Vegetation Index (OSAVI)

OSAVI = (RNir − RRed )/(RNir + RRed + 0.16) Rondeaux et al., 1996

Over Green Index (EXG) EXG = 2RGreen − RRed − RBlue Torres-Sánchez et al., 2014

Green band atmospheric impedance

vegetation index (VARIgreen)

VARIgreen = (RGreen − RRed )/(RGreen + RRed − RBlue) Gitelson et al., 2002

Red-band atmospheric impedance

vegetation index (VARIred)

VARIred = (RRed_edge − 1.7 ∗ RRed + 0.7 ∗ RBlue )/(RRed_edge + 2.3 ∗ RRed − 1.3 ∗ RBlue) Gitelson et al., 2002

Modified simple ratio(MSR) MSR = RNir/RRed−1√
RNir/RRed+1

Chen, 1996

Simple Ratio(SR) SR = RNir/RRed Wagner, 1996

Green Chlorophyll Index(GCI) GCI = RNir/RGreen − 1 Gitelson, 2005

Normalized Difference

Red-edge Index(NDREI)

NDREI = (RRed_edge − RGreen )/(RRed_edge + RGreen) Muhammad et al., 2018

Normalized Green-Red Variance

Index(NDRGI)

NDRGI = (RGreen − RRed )/(RGreen + RRed ) Schnell, 1974

RBlue, RGreen, RRed , RRed_edge and RNir represent the reflectance of Blue wave band, Green band, Red band, Red_edge band, and Nir band, respectively.

through an experimental cross-reference of the data, an attempt
was made to find out the optimal regression learning algorithm
that was most suitable for this study and provided model support
for subsequent data prediction. The specific flow chart of the
program implementation was shown in Figure 2.

To discuss the prediction model of CC in winter wheat at
different fertility stages with different water treatments, data sets
of different genotypes were used to construct the crop chlorophyll
inversion model. In the process of model construction, the
datasets were partitioned separately, and the datasets were
distributed in a 7:3 ratio according to the random selection
method of validation set and testers.

Accuracy Evaluation
Pearson correlation coefficient (r), root mean square error
(RMSE), and the normalized root mean square error (NRMSE)
were used as evaluation indexes for different models, where
the closer r was to 1, the lower the RMSE value indicates that
the predicted and measured values of the model agreed. Also,
the smaller the NRMSE value, the higher the accuracy of its
estimation model and the better the effect. When the NRMSE is
less than 10%, the model accuracy is very high, and the accuracy
of the model is relatively high when the NRMSE is between 10
and 20%. The accuracy is at a normal level, when the NRMSE
is between 20 and 30%, and when the NRMSE is more than
30%, the accuracy is poor. All data statistics experiments were
implemented in Spyder by using Python 3.8.8 on a workstation
with an Intel i7-6800K 3.40 GHz CPU, 16 GB memory, and
an Nvidia GeForce GTX 2080Ti graphics, running the Win10

operating system. Pandas 1.3.2, Matplotlib 3.4.2, and Scikit-Learn
0.24.2 were chosen for statistical analysis, correlation analysis,
and significance of differences test for wheat CC.

RESULTS

Reliability Verification of UAV Multispectral
Imaging Data
The images of the UAV were extracted for the reflectance of
different brands of spectra according to the plots, as shown in
Figure 3, the spectral reflectance of different fertility periods were
all in the range of 450–550-nm band, and the spectral reflectance
curves of different regions showed an increasing trend, and the
phenomenon of green light wave peak appeared around 550 nm,
and this result was more consistent with the results of literature
(Fu et al., 2019). The position of the green wave peak appeared
differently in different fertility stages, and the wavelengths were
from large to small in the filling stage, flowering stage, and
heading stage. A red trough appeared between 630 and 670 nm,
and the pattern of the red trough was the same as that of the green
peak. In the range of 466–830 nm, the reflectance of multispectral
data has high accuracy, and this result was more consistent
with the results of literature (Aasen et al., 2015), and the five
multispectral bands selected in this article were all in this range,
which can estimate the canopy chlorophyll of winter wheat.

Distribution of CC in the Winter Wheat
The CC values of winter wheat, under different water treatments
of normal irrigation and water-limited treatment, were obtained
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FIGURE 2 | Flow chart of the inverse model of multiple machine learning algorithms.

FIGURE 3 | Different spectral reflectance maps of five bands of Manas winter wheat drones at different growing stages: (A) Manas winter wheat heading stage; (B)

Manas winter wheat flowering stage; and (C) Manas winter wheat filling stage. A–C denote three replicates under normal irrigation; D–F denote three replicates under

water-limited treatment.
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at the heading, flowering, and filling stages, respectively. It was
evaluated by four dimensions: mean value was expressed by µ,
median by a median, coefficient of variation by cv, and standard
deviation by σ . From Figure 4A, it can be seen that the mean
values of CC in winter wheat at the heading stage were distributed
between 54.39-56.38, the median ranged from 56.26-57.02, the σ

ranged from 3.71-4.66, and the cv ranged 6.2%-8.4%. The cv of
the CC under normal irrigation ranged from 6.6 to 7.6% as seen
in GraphA, B, and C in Figure 4A.While the cv of the population
under water limitation treatment ranged from 6.2 to 8.4%, as seen
in Graphs D, E, and F. From Figure 4B, it can be shown that
the mean values of CC in winter wheat at the flowering stage
ranged from 55.59 to 56.39, the median ranged from 56.06 to
57.22, the σ ranged from 3.88 to 4. 22, and the cv ranged from
6.9 to 7.9%. The coefficient of variation of the population under
normal irrigation ranged from 6.9%-7.3% as seen in plots A, B,
and C in Figure 4B. While in plots D, E, and F, the cv of the
population under water limitation treatment ranged from 6.9 to
7.9%. From Figure 4C, it can be observed that the mean values of
CC in winter wheat at the filling stage ranged from 56.41 to 59.88,
the median ranged from 56.7 to 60.36, the σ ranged from 3.56 to
4.66, and the cv ranged from 5.9 to 8%. The cv of the population
under normal irrigation ranged from 5.9 to 6.2% as seen in plots
A, B, and C in Figure 4C, while in plots D, E, and F, the cv of
the population under water limitation treatment ranged from 6.4
to 8%.

In summary, the overall dispersion and variation of the
data were large, indicating that the population showed great
variation in CC at the heading, flowering, and filling stages, and
indicating that the population was rich in genetic variation. In
terms of water and drought treatments, the range of variation
was 1.2% for the water treatment over normal irrigation at
the heading stage, 2.6% for the water treatment over normal
irrigation at the flowering stage, and 1.3% for the water
treatment over normal irrigation at filling stage. The range of
variation became larger from the heading stage to the flowering
stage, and then gradually decreased with the extension of the
reproductive period.

Preferred Vegetation Index (VI)
Many selections of vegetation indices were made based on
empirical values, and the visualization of the selection process
was rarely given. In this study, experiments on the contribution of
vegetation indices relative to CC were conducted in combination
with the random forest algorithm at the heading, flowering,
and filling stages of wheat under normal irrigation and water-
limited treatment, respectively. It can be seen from Figure 5

that the contribution of vegetation index to CC was different
under different water treatments in different periods. From
Figure 5A, it can be seen that the magnitude of contribution
under normal irrigation at the heading stage was as follows:
REOSAVI>VARIgreen>NDREI>NDRGI>NDVI>VARIred>
NGBDI>OSAVI>MSR>SR>EXG>GCI>GNDVI; from
Figure 5B, we can see that the magnitude of contribution
under water irrigation at the heading stage was: VARIgreen>

OSAVI> NDREI> NDRGI> EXG> REOSAVI> VARIred>
NGBDI> NDVI> MSR> GCI> SR> GNDVI. As seen

in Figure 5C, the magnitude of contribution under
normal irrigation during flowering was in the following
order: NDVI>GCI>VARIgreen>NDREI>MSR>SR>NDRGI>
OSAVI>VARIred>EXG>REOSAVI>.

NGBDI; as seen in Figure 5D, the magnitude of contribution
under water irrigation during flowering was in the following
order: REOSAVI > NDRGI > NDREI > VARIgreen> VARIred
> GCI> GNDVI> NGBDI> EXG> NDVI> OSAVI> MSR>

SR. From Figure 5E, it can be observed that the magnitude of
contribution under normal irrigation during the filling period
is in the following order: VARIgreen > NDRGI > NDVI >

VARIred > GNDVI > GCI > NGBDI > REOSAVI > OSAVI
> SR > MSR > EXG > NDREI; from Figure 5F, it can be seen
that the magnitude of contribution under water irrigation during
the filling period is in the following order: VARIgreen > NDRGI
> VARIred > REOSAVI > NDREI > OSAVI > EXG > GCI
> GNDVI.

In general, the contribution of vegetation indices under two
different water treatments can be found in winter wheat at the
heading stage, and the overall contribution was ranked in the top
5 with three vegetation indices, VARIgreen, NDREI, and NDRGI,
which were used as the priority vegetation indices when the
model was constructed at the heading stage. In the flowering stage
of winter wheat, the contribution of vegetation indices under
two different water treatments was found to be different, and the
overall contribution was ranked in the top 5 with two vegetation
indices, VARIgreen and NDRGI, which were used as the priority
vegetation indices in the model construction of the flowering
stage. In winter wheat, the contribution rates of vegetation
indices under two different water treatments were found to
be different in the filling stage, and the overall contribution
rates were ranked in the top 5 with three vegetation indices,
VARIgreen, NDRGI, and VARIred, which were used as the
priority vegetation indices in the model construction of the
filling stage.

Correlation Analysis Between SPAD and
Vegetation Index of Winter Wheat
The spectral parameters of the three fertility stages of heading,
flowering, and filling were correlated with winter wheat CC
and the results were shown in Figures 6–8. From Figure 6A,
it can be seen that most of the spectral vegetation indices
selected under normal irrigation at the heading stage reached
highly significant levels (p < 0.0001). Among them, Normalized
Green and Blue Difference Index (NGBDI) showed no significant
correlation during the heading period, while the rest of
the parameters showed correlation, among which the highest
positive correlations were NDVI, MSR, and SR with correlation
coefficients r reaching.5, followed by NDREI with correlation
coefficient r reaching.48. It can be seen from Figure 6B that
most of the selected spectral vegetation indices under water
limitation treatment reached highly significant levels (p <

0.0001). Among them, Over Green Index (EXG) and NGBDI
showed no significant correlation at the heading stage, while
the rest of the parameters showed correlation, with the highest
negative correlation being NDVI and VARIred, with a correlation
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FIGURE 4 | CC distribution of different growing stages of Manas winter wheat: (A) heading stage of Manas winter wheat; (B) flowering stage of Manas winter wheat;

and (C) filling stage of Manas winter wheat. A–C denote three replicates under normal irrigation; D–F denote three replicates under water-limited treatment.
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FIGURE 5 | Contribution rate distribution of vegetation indices relative to CC at different growing stages of winter wheat: (A) normal irrigation at heading stage of

Manas winter wheat; (B) water limited treatment at heading stage of Manas winter wheat; (C) normal irrigation at flowering stage of Manas winter wheat; (D) water

limited treatment at flowering stage of Manas winter wheat; (E) normal irrigation at filling stage of Manas winter wheat; and (F) water limited treatment at filling stage of

Manas winter wheat. All vegetation indices that appear in the figure are explained in Table 3.
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FIGURE 6 | Plot of correlation between different vegetation indices and CC of winter wheat during heading stage: (A) normal irrigation of Manas winter wheat during

heading stage, and (B) water limited treatment of Manas winter wheat during heading stage. All vegetation indices that appear in the figure are explained in Table 3.

coefficient r reaching−0.5, followed by MSR and NDREI, with a
correlation coefficient r reaching−0.49.

While the correlation coefficient r of VARIgreen in section
Preferred Vegetation Index (VI), using the preferred vegetation
index of the random forest, was −0.43 under normal irrigation
and −0.45 under water-limited treatment; the correlation
coefficient r of NDREI was 0.48 under normal irrigation and
−0.49 under water-limited treatment; the correlation coefficient
r of NDRGI was−0.45 under normal irrigation and−0.43 under
water limitation treatment; all three vegetation indices reached a
highly significant level (p < 0.0001).

Most of the spectral vegetation indices selected under
normal irrigation during flowering reached a highly significant
level (p < 0.0001) as can be seen in Figure 7A. Of these,
EXG and NGBDI showed no significant correlation, while the
rest of the parameters showed correlation, with the highest
positive correlation being NDVI and MSR, with SR correlation
cefficient r reaching 0.5, followed by VARIred, with correlation
coefficient r reaching 0.46. From Figure 7B it can be seen
that most of the spectral vegetation indices selected under
water limitation treatment reached highly significant levels
(p < 0.0001). Among them, EXG showed no significant

correlation, while the rest of the parameters showed correlation,
with the highest positive correlation being NDVI and MSR,
with a correlation coefficient r reaching 0.5, followed by
GNDVI, SR, and VARIred, with a correlation coefficient r
reaching−0.49.

In contrast, in the preferred vegetation index using the
random forest in Section Preferred Vegetation Index, the
correlation coefficient r for VARIgreen was 0.45 and 0.33,
respectively, under normal irrigation and water-limited
treatment; the correlation coefficient r for Red Edge Index
(NDREI) was 0.46 under normal irrigation and 0.48 under
water-limited treatment, and both 2 vegetation indices reached a
highly significant level (p < 0.0001).

It is evident from Figure 8A that most of the spectral
vegetation indices selected under normal irrigation during the
filling period reached a highly significant level (p < 0.0001).
The positive correlation was highest for NDVI with a correlation
coefficient r of 0.51, followed by VARIgreen with a correlation
coefficient r of 0.42, and the negative correlation was highest
for GNDVI with a correlation coefficient r of −0.50. It can be
seen from Figure 8B that the spectral vegetation indices selected
under water limitation treatments all reached highly significant

Frontiers in Plant Science | www.frontiersin.org 10 May 2022 | Volume 13 | Article 896408

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Wang et al. Prediction of Chlorophyll Content by Multispectral

FIGURE 7 | Plot of correlation between different vegetation indices and CC of winter wheat during flowering stage: (A) Normal treatment of Manas winter wheat during

flowering stage, and (B) water limited treatment of Manas winter wheat during flowering stage. All vegetation indices that appear in the figure are explained in Table 3.

levels (p < 0.0001). All the vegetation indices selected under
the water limitation treatment reached a highly significant level
(p < 0.0001). The highest positive correlations were OSAVI
and REOSAVI with a correlation coefficient r of 0.51, followed
by MSR and GOSAVI with a correlation coefficient r of 0.50.
The highest negative correlation was NDVI, and the correlation
coefficient r reached−0.50.

Meanwhile, the correlation coefficient r of VARIgreen under
normal irrigation and −0.44 under water-limited treatment in
the preferred vegetation index using the random forest in section
Preferred Vegetation Index was 0.42; the correlation coefficient
r of NDRGI was 0.42 under normal irrigation and −0.44
under water-limited treatment, and the correlation coefficient r
of VARIred under normal irrigation was −0.41 under normal
irrigation and.46 underwater limitation treatment, all three
vegetation indices reached significant levels (p < 0.0001).

Therefore, the correlation analysis of vegetation indices and
CC of winter wheat for the three fertility periods of winter
wheat was combined, and the correlations of the vegetation
indices preferred in the previous section all reached significant
levels, and in addition, the model estimation was carried out by
combining the vegetation indices with the highest correlation in
that fertility period.

Algorithm Development for CC Estimation
The model inversions were conducted using nine machine
learning algorithms, Adaboost Regression, Bagging_Regressor,
Gradient_Boosting_Regressor, K_Neighbor, Random Forest,
SVM, Lasso, RidgeCV, and Ridge, for the SPAD values of winter
wheat at the heading, flowering, and filling stages under two
water treatments. The results in Table 4 show that the correlation
coefficients between predicted and true values under normal
irrigation at the heading stage ranged from 0.36 to 0.63 for r,
3.28–3.67 for RMSE, and 16.2–18.1% for NRMSE. The highest
correlation was the RidgeCV model with correlation coefficient
r = 0.63, which had RMSE = 3.28 and NRMSE = 16.2% for
both Random Forest and RidgeCV in terms of model accuracy.
Overall, it shows that the RidgeCV model has the best prediction
accuracy and prediction effect under normal water treatment
at the heading stage. In contrast, the correlation coefficients r
between the predicted and true values under the water-limited
treatment at the heading stage ranged from 0.41 to 0.63, RMSE
from 3.44 to 3.95, and NRMSE from 18.8 to 21.9%. The highest
prediction correlation is the SVM model with a correlation
coefficient of r= 0.63, RMSE= 3.47 andNRMSE= 19.2%, which
is still very good in terms of prediction accuracy. In terms of
the prediction accuracy of the model, Adaboost Regression has
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FIGURE 8 | Plot of correlation between different vegetation indices and CC of winter wheat during the filling period: (A) Normal treatment of Manas winter wheat

during the filling period, and (B) Water treatment of Manas winter wheat during the filling period. All vegetation indices that appear in the figure are explained in Table 3.

TABLE 4 | Model analysis of CC for vegetation index prediction at the heading

stage.

Models DI DS

r RMSE NRMSE (%) r RMSE NRMSE (%)

Adaboost Regression 0.44 3.5 17.3 0.60 3.39 18.8

Bagging_Regressor 0.49 3.39 16.8 0.48 3.77 20.9

Gradient_Boosting_

Regressor

0.36 3.67 18.1 0.41 3.95 21.9

K_Neighbor 0.50 3.38 16.7 0.58 3.44 19.1

Random Forest 0.55 3.28 16.2 0.56 3.5 19.4

SVM 0.62 3.58 17.3 0.63 3.47 19.2

Lasso 0.61 3.37 16.7 0.60 3.48 19.3

RidgeCV 0.63 3.28 16.2 0.61 3.44 19.1

Ridge 0.61 3.47 17.1 0.60 3.47 19.2

DI, normal irrigation; DS, limited water treatment.

the smallest NRMSE of 18.8%, while the prediction correlation is
r = 0.60.

The results of the model analysis of the predicted CC of
vegetation index under normal irrigation and water limitation
treatments during flowering are shown in Table 5. The

correlation coefficients r between predicted and true values under
normal irrigation ranged from 0.27 to 0.50, RMSE from 2.79
to 3.20, and NRMSE from 17 to 19.5%. The highest model
prediction correlation is the SVMmodel, which has a correlation
coefficient of r = 0.50, RMSE = 2.79 and NRMSE = 17%, and
the SVM also has the lowest NRMSE in terms of model accuracy.
The correlation coefficients R2 between predicted and true values
under water-limiting treatment ranged from 0.42 to 0.50, RMSE
from 2.90 to 3.03, and NRMSE from 19.1 to 20.3%. The highest
correlation predicted by the models was the Bagging_Regressor
model, which had a correlation coefficient of r = 0.50, RMSE =
2.90, and NRMSE = 19.1%, with Bagging_Regressor having the
lowest NRMSE as far as the accuracy of the model is concerned.
Overall, it shows that the Bagging_Regressor model has the best
prediction accuracy and prediction under flowering duration
water treatment.

Analysis of the model for predicting CC of vegetation index
under normal irrigation and water limitation treatments during
the irrigation period is shown in Table 6. The correlation
coefficients r between the predicted and true values under normal
irrigation ranged from 0.21 to 0.43, RMSE from 2.91 to 3.49,
and NRMSE from 21.6 to 25.8%. The model with the highest
model prediction correlation is the SVM, which has a correlation
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TABLE 5 | Model analysis of CC for predicting vegetation index during flowering.

Models DI DS

r RMSE NRMSE (%) r RMSE NRMSE (%)

Adaboost Regression 0.34 3.09 18.8 0.44 3.03 19.9

Bagging_Regressor 0.40 2.96 18.0 0.50 2.90 19.1

Gradient_Boosting_

Regressor

0.49 2.81 17.1 0.43 3.08 20.3

K_Neighbor 0.27 3.20 19.5 0.44 3.02 19.9

Random Forest 0.46 2.83 17.2 0.45 3.01 19.8

SVM 0.50 2.79 17.0 0.46 2.98 19.6

Lasso 0.47 2.81 17.1 0.43 3.02 19.8

RidgeCV 0.47 2.81 17.1 0.42 3.03 20.0

Ridge 0.47 2.81 17.1 0.44 3.00 19.7

DI, normal irrigation; DS, limited water treatment.

TABLE 6 | Determination coefficient (r), root mean square error (RMSE), and

relative error (RE) of the algorithms for modeling estimation of chlorophyll content

(CC) of wheat in different filling period and normal irrigation (NI) and drought stress

(DS) conditions.

Models DI DS

r RMSE NRMSE (%) r RMSE NRMSE (%)

Adaboost Regression 0.34 3.08 22.8 0.35 4.08 18.6

Bagging_Regressor 0.21 3.49 25.8 0.37 4.04 18.4

Gradient_Boosting_

Regressor

0.27 3.36 24.9 0.32 4.17 19.0

K_Neighbor 0.41 2.97 22.0 0.43 3.78 17.2

Random Forest 0.26 3.28 24.3 0.40 3.91 17.8

SVM 0.43 2.91 21.6 0.51 3.57 16.3

Lasso 0.41 2.96 21.9 0.48 3.69 16.8

RidgeCV 0.41 2.94 21.8 0.48 3.69 16.8

Ridge 0.40 2.96 22.0 0.49 3.68 16.8

DI, normal irrigation; DS, limited water treatment.

coefficient of r = 0.43, RMSE = 2.91, and NRMSE = 21.6%, and
the SVM also has the lowest NRMSE in terms of the accuracy of
the model. The correlation coefficients r between predicted and
true values under water-limiting treatment ranged from 0.32 to
0.51, RMSE from 3.57 to 4.17, and NRMSE from 16.3 to 19%.
The highest correlation predicted by the models was the SVM
model, which had a correlation coefficient of r = 0.51, RMSE =
3.57, and NRMSE= 16.3%, and the SVM had the lowest NRMSE
in terms of the accuracy of the model. Overall it shows that
the SVM model has the best prediction accuracy and prediction
under normal irrigation and water limitation treatment during
the irrigation period.

In general, among the prediction models of CC using
nine machine learning algorithms for three different fertility
stages, namely, heading, flowering, and filling, the correlation
coefficients of the RidgeCV model under normal irrigation
and the SVM model underwater restriction treatment were
the highest in the heading stage; the correlation coefficients
of the SVM model under normal irrigation and the SVM

model underwater restriction treatment were the highest
in the flowering stage; the correlation coefficients of the
Bagging_Regressor model were the highest in both normal
irrigation and water restriction treatments. The correlation
coefficient of the SVM model was the highest under normal
irrigation and the SVM model was the highest underwater
restriction. In terms of prediction accuracy, Random Forest
and RidgeCV models had the highest prediction accuracy
under normal irrigation in the heading stage, and the
Adaboost Regression model had the highest prediction accuracy
under water restriction treatment; the SVM model had the
highest prediction accuracy under normal irrigation in the
flowering stage, and Bagging_Regressor model had the highest
prediction accuracy under water restriction treatment. The
highest prediction accuracy was achieved by the SVM model
under normal irrigation and water restriction treatment at the
flowering stage, and the highest prediction accuracy was achieved
by the SVMmodel underwater restriction treatment.

DISCUSSION

Effect of Water and Drought Treatment on
Chlorophyll
In drought environments, plants themselves evolve a series of
mechanisms for self-protection and adaptation and resistance
to unfavorable environmental stresses, and their phenotypic
characteristics are significantly altered to minimize the impact
of the adverse environment on their growth and development.
At the same time, drought stress causes complex effects on the
population structure and physiology of crops in various ways
(Roessner, 2012). Concerning the reproductive stages of wheat,
the whole reproductive period is divided into four stages: early-
stage (sowing-pulling), developmental stage (pulling-heading),
middle stage (pulling-potting), and late-stage (potting-harvest).
Previous studies on the effects of drought stress on different
fertility stages of wheat have suggested that drought stress affects
the internal physiological and biochemical phenotypes of wheat
to different degrees, and these changes are manifested in changes
in chlorophyll content (Cao, 2010), indicating that chlorophyll
content is closely related to drought resistance and yield traits
in wheat.

In this study, for the analysis of canopy chlorophyll content
of winter wheat, the results in Figure 9 showed that normal
irrigation conditions increased the canopy chlorophyll content of
wheat from the heading stage to the filling stage very significantly,
compared with drought stress. In addition, chlorophyll is the
most important pigment for photosynthesis, which affects the
physiological and biochemical processes in the crop under
drought stress. Drought stress causes reactive oxygen species
produced by the plant body to disrupt cell membranes, which
hinders chlorophyll synthesis and accelerates degradation, thus
reducing chlorophyll content.

Meanwhile, previous studies had found that drought stress
leads to increased accumulation of malondialdehyde (MDA) and
peroxide dismutase (POD) in plants (Shao et al., 2006). MDA
was a class of highly reactive lipid peroxides that cross-link and
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FIGURE 9 | CC distribution of winter wheat at different fertility stages under two water treatments. Heading_DI, Heading_DS, Flowering_DI, Flowering_DS, Filling_DI,

and Filling_DS refer to normal treatment at heading stage, water treatment at heading stage, normal treatment at flowering stage, water treatment at flowering stage,

normal treatment at filling stage, and water treatment at filling stage, respectively.

polymerize lipid nucleic acids, proteins, etc., and affected the
components of cytoplasmic membranes, including chloroplast
lamellae. POD can generate reactive oxygen species and trigger
lipid membrane peroxidation under longer drought stress. Both
substances can lead to changes in membrane structure and affect
water metabolism by causing water loss in the chloroplasts, and
thus the rate of chlorophyll synthesis was reduced. It has been
suggested that drought stress can lead to reduced chlorophyll
content in wheat, accelerated leaf senescence, and reduced green
leaf area, resulting in reduced wheat yield (Verma et al., 2004).
Also, previous studies had shown that the CC values of wheat
flag leaves under drought stress tend to decrease and that wheat
varieties with higher CC values under stress have higher dry
matter quality and better drought resistance (Sun et al., 2019).
These findings were consistent with the results of this article that
the CC values of wheat flag leaves under drought stress showed a
decreasing trend.

Generality of CC Inversion Model
Current UAV multispectral with high spectral resolution and
flexible mobility played an important role in crop high-
throughput phenotyping studies. In this article, we use UAVs
with multispectral cameras for ground image data acquisition
and estimation of ground CC content. The reflectance extraction
of the image data revealed that the spectral reflectance curves

of different fertility stages studied in this article and the
phenomenon of a green light wave peak at a wavelength of about
550 nm can be seen, and this result was more consistent with the
results of the literature (Aasen et al., 2015). The positions of the
green light peaks differed among the different fertility stages, with
the wavelengths of the peaks appearing at the filling, flowering,
and heading stages ranging from large to small. A red trough
appeared between 630 and 670 nm, and the pattern of the red
trough was consistent with that of the green peak. In the range
of 466–830 nm, the reflectance of the multispectral data has high
accuracy, and this result is more consistent with the results of the
literature (Aasen et al., 2015).

A single vegetation index does not adequately reflect the crop
growth, but too many vegetation indices as input parameters of
the model will lead to an increase in the complexity of the model.
Therefore, the optimal vegetation indices for different fertility
periods were obtained by a random forest algorithm before
model construction, and the vegetation indices for different
treatments involved in model construction at different periods
were determined by combining the correlation of CC and
vegetation indices later. The vegetation indices involved in
model construction under normal treatment at the heading
stage were REOSAVI, VARIgreen, NDREI, NDVI, MSR, and SR,
and vegetation indices under water limitation treatment were
VARIgreen, OSAVI, NDREI, NDVI, and VARIred; the vegetation
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indices involved in model construction under normal treatment
at the flowering stage were NDVI, GCI, VARIgreen, NDVI,
and VARIred. GCI, VARIgreen, NDREI, MSR, and SR, and
the vegetation indices under the water-limited treatment were
REOSAVI, NDRGI, NDREI, NDVI, and MSR; the vegetation
indices involved in the model construction under the normal
treatment at flowering were VARIgreen, NDRGI, NDVI, EXG,
and NGBDI, and the vegetation indices under the water-
limited treatment were. The preferred vegetation indices under
different water treatments in three different periods were
different, but NDVI was not selected only in the water
treatment during the filling period, while all other models were
involved, which also indicates the prevalence of NDVI vegetation
indices in crop model construction and the importance of
NDVI vegetation indices. This is also consistent with many
current types of research using NDVI vegetation indices in
modeling studies.

In terms of CC prediction models, this article investigates CC
prediction models by nine machine learning algorithmic models
for three different fertility stages, namely, heading, flowering, and
filling, under normal irrigation and water limitation treatments,
respectively. The prediction models were found to be different
for different water treatments at different fertility stages, but
the model with the higher correlation between both predicted
and true values under different treatments at different fertility
stages was the SVM model, which embodied a strong fit and
accuracy among all the models. The modeling of SVM under
the normal treatment at the heading stage (r = 0.62, RMSE
= 3.58, NRMSE = 17.3%) ranked second in correlation, and
the modeling of SVM under the water limitation treatment
(r = 0.63, RMSE = 3.47, NRMSE = 19.2%) ranked first in
correlation; the modeling of SVM under the normal treatment
at the flowering stage (r = 0.50, RMSE = 2.79, NRMSE =
17%), ranked second in correlation, modeling of SVM under
water limitation treatment (r = 0.46, RMSE = 2.98, NRMSE
= 18.6%), ranked second in correlation, and modeling of SVM
under normal treatment at filling stage (r = 0.43, RMSE = 2.91,
NRMSE = 21.6%), ranked first in correlation, and modeling
of SVM under water-limited treatment (r = 0.51, RMSE =
3.57, NRMSE = 16.3%), ranked first in correlation. From the
overall point of view, SVM showed the most advantage in the
filling stage, this is related to the adaptability of the model
under different water treatments at different fertility stages, that
is, the prediction effect of different models applying different
water treatments at different fertility stages is different. From
the distribution of SPAD, the distribution of SPAD in the
heading stage, flowering stage, and filling stage were significantly
different, the distribution of the filling stage was more stable, and
the time nodes of the population in the filling stage were more
consistent with the fertility stage, and the prediction model of
SVM had higher accuracy.

CONCLUSION

The multispectral images acquired by the UAV were used to
extract the reflectance of five spectra of different genotypes (Blue,
Green, Red, Red_edge, andNir) and calculate different vegetation
indices, combined with the ground canopy data collected by the

handheld CC instrument underwater and dry treatments at the
heading, flowering, and filling stages. Then the relevant research
analysis was carried out, and the analysis of the reflectance curve
of the spectrum showed a phenomenon that the green wave
peak appeared at around 550 nm, and the position of the red
wave valley appeared once between 630 and 670 nm, obviously,
and the occurrence law of the red wave trough is consistent
with that of the green wave peak. It shows that the reflectance
data obtained in this study are of high quality and have good
accuracy. In the study of CC phenotype distribution, it can
be found that the range of variation of this population under
different water treatments at different fertility periods is large, the
genetic variation of the population is rich and the CC content
under normal irrigation is significantly higher than that of
water-limited treatment. The vegetation indices under different
water treatments at different fertility periods were selected by
combining the preferred vegetation indices and the correlation
evaluation of CC with vegetation indices. This study examined
a series of machine learning algorithms, including Adaboost
Regression, Bagging_Regressor, Gradient_Boosting_Regressor,
K_Neighbor, Random Forest, SVM, Lasso, RidgeCV, and Ridge
in the high-throughput phenotyping context. The results showed
that the highest predicted correlation under normal irrigation
at the heading stage was the RidgeCV model with correlation
coefficient r = 0.63, which had RMSE = 3.28 and NRMSE
= 16.2%, and the one with highest correlation under water
limitation treatment was the SVM model with correlation
coefficient r = 0.63, RMSE = 3.47 and NRMSE = 19.2%; under
normal irrigation at the flowering stage, the highest correlation
was from the SVM model, which had a correlation coefficient
of r = 0.50, RMSE = 2.79, and NRMSE = 17%, and the
model with the highest correlation was Bagging_Regressor under
water restriction treatment, which had a correlation coefficient
of r = 0.50, RMSE = 2.90, and NRMSE = 19.1%; and under
normal irrigation at the filling stage, the highest correlation
came from the SVM model, which had a correlation coefficient
of r = 0.43, RMSE = 2.91, NRMSE = 21.6%, and also the
SVM model has the highest correlation under water limitation
treatment with coefficient of r = 0.51, RMSE = 3.57, NRMSE
= 16.3%. The results of this study showed that the prediction
model constructed using the SVM model under different water
treatments at different fertility stages could better invert the
chlorophyll content of winter wheat canopies with different
growth differences.

Many machine learning and empirical models can be selected
to correlate hyperspectral reflectance with CC; therefore. it was
worth investigating which models worked better and whether
the combination of individual regression techniques can provide
better predictive performance. The study of CC model inversion
by a large number of machine learning algorithms also provided a
reference for machine learning in model prediction applications.
The cumulative data obtained through field trials were still
empirical models obtained through statistics, which have some
limitations in the spatial and temporal domain. Altogether, our
results provide insights into the capacity of UAV-based remote
sensing for switchgrass high-throughput phenotyping in the field,
which will be useful for breeding and cultivar development.
Moreover, the UAV-based approaches proposed in this study,
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including the wheat’s SPAD-phenotyping and predicting model,
facilitated high-throughput, and precise phenotype mapping,
which should have an impact on wheat breeding as well as
practical use in the field. In the future, we will try to add
environmental factors while improving the accuracy of UAV
remote sensing images to reduce the limitation of environment
on the model and give full play to the advantages of UAV
high-throughput phenotype acquisition.
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