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An accurate and robust pest detection and recognition scheme is an important step
to enable the high quality and yield of agricultural products according to integrated
pest management (IPM). Due to pose-variant, serious overlap, dense distribution, and
interclass similarity of agricultural pests, the precise detection of multi-classes pest
faces great challenges. In this study, an end-to-end pest detection algorithm has been
proposed on the basis of deep convolutional neural networks. The detection method
adopts a deformable residual network to extract pest features and a global context-
aware module for obtaining region-of-interests of agricultural pests. The detection
results of the proposed method are compared with the detection results of other
state-of-the-art methods, for example, RetinaNet, YOLO, SSD, FPN, and Cascade
RCNN modules. The experimental results show that our method can achieve an
average accuracy of 77.8% on 21 categories of agricultural pests. The proposed
detection algorithm can achieve 20.9 frames per second, which can satisfy real-time
pest detection.

Keywords: deep learning, convolutional neural network, deformable residual network, agricultural pest, target
detection

INTRODUCTION

Automatic insect recognition has attracted more and more attention in the field of agricultural
engineering. Conventional pest management in farmland has relied mainly on periodic spraying
plans based on schedules. With the increasing attention to environmental impact and pest control
cost, integrated pest management (IPM) (Bernardo, 1993) has become one of the most effective and
accurate pest management methods. It abandons the conventional spraying procedure and depends
more on the actual existence or possibility of field insects. The use of insect attractants and traps
is commonly adopted to monitor agricultural pest in the farmland. Growers and IPM consultants
regularly monitor the pest situation of farmland by manually counting harmful insects on traps, and
control agricultural pests according to specific insect distribution. However, it is time-consuming
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and inefficient. Therefore, automatic identification and counting
of pests is the important step of IPM, which makes a major
contribution for producers with large farmland.

As described in the study by Guo et al. (2021), the process
of frequently used automatic recognition and counting methods
can be described as follows: collecting insect pest images using
trapping devices followed by automated counting via computer
vision-based detection methods. Thus, the precise pest detection
will be decided by computer vision-based detection algorithms.
Wen and Guyer (2012) developed image-based orchard insect
identification and classification methods by using the local
features model, global features model, and the combination
model, respectively. The method is more robust and can work on
field insect images considering the messy background, missing
insect features, and varied insect size and pose. Because each
target of the sample case has different colors and distinctive
body shapes, Hassan et al. (2014) proposed an automatic
insect identification framework that can identify grasshoppers
and butterflies by manipulating insects’ color and their shape
feature. Yalcin (2015) used multiple feature descriptors, i.e., Hu
moment, elliptic Fourier descriptors, radial distance function,
and local binary patterns, to identify and classify the insect images
under complex background and illumination conditions. We
know that the insect pest recognition accuracy of traditional
approaches heavily depends on the hand-designed features by
various algorithms. However, precise and proper features need
to be carefully designed and selected for high accuracy, leading
to expensive works and expert knowledge. It will be even worse
when the background is complex.

Convolutional neural networks (CNNs) are effective in the
fields of image recognition and classification due to the powerful
ability of feature extraction. The framework of region-based
CNN was developed to improve the detection accuracy (Girshick
et al., 2014). CNN modules were used to automatically extract
the feature representations from images, ignoring hand-crafted
features. Two-stage object detection methods are the mainstream
detection framework (Lin et al., 2017a; Ren et al., 2017; Cai and
Vasconcelos, 2018). Specifically, the region proposal generation
algorithms, such as Selective Search (Uijlings et al., 2013),
EdgeBox (Zitnick and Dollár, 2014), and RPN (Ren et al., 2017),
AF-RPN (Jiao et al., 2020), are applied to generate a set of region
candidates (region of interests, ROIs) in the first stage, and then,
these region proposals are used for obtaining multi-class labels
and refining the bounding boxes using the R-CNN network.
CNN-based object detection algorithms have been applied to pest
detection in precision agriculture. Gomez Selvaraj et al. (2019)
use Faster R-CNN detector with ResNet50, InceptionV2, and
single-shot detector (SSD) with MobileNetV1 to detect banana
disease and pest, and detection results show that deep CNN is a
robust and easily deployable strategy for banana pest recognition.
He et al. (2020) used a two-stage detection framework, Faster
RCNN, to detect brown rice plant hopper, and compared it with
a one-stage detection method, YOLO V3 (Redmon and Farhadi,
2018). Experimental results demonstrate that the performance
of the two-stage detection algorithm significantly outperforms
the one-stage detector. Wang et al. (2021) proposed a sampling-
balanced region proposal network (S-RPN) and attention-based

deep residual network for detecting multi-classes pests with a
small size, achieving good performance compared with other
state-of-the-art detectors. Jiao et al. (2020) developed a two-stage
end-to-end agricultural detection method named AF-RCNN to
recognize and localize multi-classes pest targets, achieving 56.4%
mAP and 85.1 mRecall on a 24-types pest dataset. However,
there are pose-variant, serious overlap, dense distribution, and
interclass similar pests in our experimental dataset, leading to
poor performance of pest feature extraction. Thus, the accurate
and robust pest detection system still faces great challenges.

The hypothesis of this study is that the features of agricultural
pests can be obtained by machine learning through images
analysis, while they traditionally need professional knowledge of
the expert. However, deep learning-based pest detection methods
still face some challenges according to the aboded description.
For example, there are pose-variant, serious overlap, dense
distribution, and interclass similar pests in our experimental
dataset, leading to poor performance of pest feature extraction.
Thus, the accurate and robust pest detection system still faces
great challenges. It is necessary to propose a new method to
address the precise recognition of pest with pose-variant, serious
overlap, dense distribution, and interclass similar pests. A deep
CNN is applied to automatically extract rich feature information
from pest images with multi-pose, high similarity, and high
overlap. A feature extractor module is used to enhance the
features of region-of-interest of pest by merging the global
information of pest image. The objectives of this work are to (1)
develop a deformable residual block (DRB) network to extract
detailed feature information of multi-class pest with pose-variant,
serious overlap, dense distribution, and interclass similar pests;
(2) propose a global context-aware module to get high-quality
feature of region-of-interests of pests; and (3) introduce an end-
to-end two-stage pest detection algorithm to accomplish the
identification and detection of 21-types of agricultural pest.

MATERIALS AND METHODS

In this part, the whole framework of our agricultural pest
detection network is first demonstrated. Second, the materials
used in this study are presented. Third, the proposed DRB
network (DRB-Net) is described in detail. Finally, the region
proposal generation algorithm and the global context-aware
feature extraction module are introduced, respectively.

Agricultural Pest Detection Framework
In this part, the overview of the whole detection framework
is shown in Figure 1. A pest collection equipment is used to
obtain a large number of pest images and then these pest images
are labeled by professional experts. Pest images are input into
DRB-Net for extracting deformable feature information, and
feature pyramid network (FPN) is applied to extract multi-scale
fusion pest features. These extracted features are input to region
proposal network (RPN) to generate a set of pest proposals,
and then a global context-aware feature (GCF) extractor is
developed to produce region-of-interest (RoI) with global context
information. Following R-CNN (Girshick et al., 2014), two-stage

Frontiers in Plant Science | www.frontiersin.org 2 June 2022 | Volume 13 | Article 895944

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-895944 May 27, 2022 Time: 15:37 # 3

Jiao et al. Deep Learning-Based Multi-Categories Pest Detection

FIGURE 1 | Whole framework of agricultural pest detection. FC represents the fully connected layer.

CNNs are used for specific-class classification and localization
of each RoI via an end-to-end way. Finally, the NMS (Non-
Maximum Suppression) algorithm (Rosenfeld and Thurston,
1971) is adopted to filter redundant bounding boxes, and obtain
pest detection results.

Materials
In this study, the experimental images are collected by an
automatic device that uses a multispectral light trap for attracting
crop pests. HD camera above the tray of this device is set to take
images, which were saved in a JPG format with 2, 592× 1, 944
pixels. In this work, the width and height of the pest images
are resized to 800× 600 for high efficiency. The dataset contains
24,412 images and 21 types of pests. Table 1 shows details of
our collected agricultural pest dataset, including the scientific
names, the pest images, the number of pest instances and pest
images, and the average relative scale of each pest instance.

In order to train and evaluate the performance of the CNN-
based objector, all pest images are randomly split into train set
(15,378 images), validation set (6,592 images), and test set (2,442
images), respectively.

To recognize the object of an image using deep CNN, the
class and localization of each pest instance needs to be labeled.
In this study, these pest instances are hand-annotated by several
pest experts using LabelImg software, which is provided by the
Computer Science and Artificial Intelligence Laboratory at MIT.
Generally, rectangular bounding boxes are used to annotate
the location of a pest instance, which can be represented as
(x1, y1, x2, y2), here (x1, y1) is the coordinate of top-left and
(x2, y2) is the coordinate of bottom-right. Figure 2 shows some
examples of agricultural pest images. Pose variations of the same
types of pest will decrease the precise recognition, as presented
in Figure 2A. Besides, the distribution of pest targets is seriously
dense and worse is that the pest targets are overlapped, as shown
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TABLE 1 | Details of 21 types of agricultural pest, including the pest images,
number of pest instances of each category, number of pest images of each
category, and the average relative scale of each pest instance.

Classes Image Number of
instances

Number of
pest

images

Average
relative

scale (%)

Cnaphalocrocis
medinalis (CM)

1,224 932 0.1214

Chilo suppressalis
(CS)

1,285 454 0.1793

Mythimna separate
(MS)

8,374 3,637 0.3978

Helicoverpa armigera
(HA)

26,588 8,740 0.2814

Pyrausta nubilalis
(PN)

15,739 5,294 0.2267

Athetis lepigone
(AL)

28,932 7,200 0.1298

Spodoptera litura
(SL)

1,896 1,543 0.4572

Spodoptera exigua
(SE)

7,116 3,527 0.1377

Sesamia inferen (SI) 1,768 1,335 0.2776

Agrotis ypsilon (AY) 3,890 2,314 0.5703

Mamestra brassicae
Linnaeus (MbL)

2,170 1,632 0.4259

Scotogramma trifolii
Rottemberg (StR)

4,393 3,051 0.2816

Agrotis segetum
(AS)

1,615 1,330 0.4024

Agrotis tokionis Butle
(AtB)

465 351 0.6375

Holotrichia oblita
Faldermann (HoF)

82 70 0.3348

Holotrichia parallela
(HP)

11,325 3,002 0.2518

Anomala corpulenta
(AC)

52,134 5,083 0.2466

Gryllotalpa orientalis
Burmeister (GoB)

6,480 3,589 0.9530

Pleonomus
canaliculatus (PC)

157 109 0.3281

Agriotes subrittatus
Motschulsky (AsM)

6,161 1,729 0.1129

Melanotus caudex
Lewis (McL)

677 224 0.1584

in Figures 2B,C, respectively. The appearance of two different
categories of pest has a high similarity, for example, the class “HA”
and “MS,” as shown in Figure 2D.

Deformable Residual Block Network
As we know, a deep residual network is a common backbone for
extracting features. For ResNet50 (He et al., 2016), it contains 16
residual blocks with 50 convolutional layers. The output feature
map of each residual block in ResNet50 network has different
resolutions. The details of the ResNet50 are reported in Table 2.
For the same class pest instances with different poses and shapes,
the common backbone cannot effectively extract the feature
information of pest, leading to poor recognition of pest with
different shapes and poses.

Inspired by previous work (Dai et al., 2017), it is known that
deformable convolution can enhance the capability of CNNs of
modeling geometric transformation of objects. The difference
between traditional convolution and deformable convolution can
be shown in Figure 3. It shows that the sampling locations of
deformable convolution are irregular compared with the regular
sampling of traditional convolution.

Additionally, from the aspect of mathematical description, the
standard convolution can be defined as following:

y
(
p0
)
=

∑
pn∈R

w
(
pn
)
.x(p0 + pn) (1)

where y
(
p0
)

denotes the output feature map for each location p0;
R represents the sampling space in the input feature map x; w
is the learnable weight; pn enumerates the location of sampling
space R.

However, in deformable convolution, the sampling space
is enlarged by adding the offsets, which can be defined by
Equation (2):

y
(
p0
)
=

∑
pn∈R

w
(
pn
)
.x(p0 + pn +4pn) (2)

where 4pn denotes the offset, which can be obtained by network
learning. However, 4pn is typically fractional. The bilinear
interpolation operation is used for obtaining the final offsets.

Therefore, to detect pose-invariant and shape-invariant pest
instances, a deformable convolution module has been embedded
into the deep residual network, which can extract multi-scale and
deformable pest features. The architecture of DRB is presented
in Figure 4. The deformable module is designed for extracting
shape information of pest. Finally, the DRB is introduced into
the residual blocks of ResNet50 backbone, achieving the effective
extraction of deep deformable pest feature information.

As we know that low-level features usually have large spatial
size and more-grained detail information, while high-level
features tend to contain more semantic knowledge. Generally,
low-level features are beneficial for the detection of small
objects. To identify pest with different sizes, a multi-scale feature
extraction network, i.e., FPN (Lin et al., 2017a) is adopted
to fuse pest feature information from low-level and high-
level feature maps.

Generation of Pest Region Proposal
In Faster RCNN (Ren et al., 2017), Ren et al. (2017) proposed the
RPN to generate a set of region proposals. This region proposal is
the region that contains the object instance. As shown in Figure 5,
RPN model consists of two fully connected layers: classification
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FIGURE 2 | Some examples of agricultural pest images. (A) Different shapes of the same class of pests. (B) Serious overlap. (C) Dense distribution. (D) High
similarity between the classes “HA” and “MS.”

layer and regression layer. The former outputs 2k-dimension
vector encoding the classification confidence (objects or not
objects), and the latter outputs 4k-dimension vector encoding the

TABLE 2 | Description of standard ResNet50.

Layer name Setting of convolutional layers

Conv1 7× 7, 64, stride 2

3× 3 max pool, stride 2

Conv2_x (block 1)

 1× 1, 64

3× 3, 64

1× 1, 256

× 3

Conv3_x (block 2)

 1× 1, 128

3× 3, 128

1× 1, 512

× 4

Conv4_x (block 3)

 1× 1, 256

3× 3, 256

1× 1, 1, 024

× 6

Conv5_x (block 4)

 1× 1, 512

3× 3, 512

1× 1, 2, 048

× 3

Average pooling, 7× 7, stride 1

coordinates of bounding box. In this study, k denotes the number
of anchor boxes in RPN. The parameter k is set to 1, leading to
fewer parameters of RPN and improving the efficiency without
decreasing the quality of pest region proposals. The stochastic
gradient descent (SGD) (LeCun et al., 1989) method was used for
end-to-end training, which allowed the convolutional layers to be
shared between the RPN and the Fast R-CNN components. The
feature maps from deformable FPN are propagated forward to
pest proposal generation network, and then a set of pest proposals
with classification scores and coordinates of bounding boxes is
received as output.

However, these pest proposals may be reductant and of low
quality. Generally, the NMS algorithm is adopted to decrease the
overlapped bounding box candidates and improve the quality.
Given a series of proposals with classification scores in an image,
the IoU ratios between the bounding box with the highest score
and its neighboring bounding boxes are calculated. The scores of
neighboring bounding boxes will be suppressed when their IoU
ratios are lower than the preset values. The process of NMS can
be described mathematically as Equations (3 and 4):

si =
{
si IoU(B, bi) < t
0 IoU(B, bi) ≥ t

(3)
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FIGURE 3 | Illustration of sampling location of traditional and deformable convolutions. (A) Regular sampling of traditional convolution. (B) Irregular sampling
(indicated in deep blue arrows) of deformable convolution.

FIGURE 4 | Architecture of the deformable residual block.

IoU(B, bi) =
area(B

⋂
bi)

area(B
⋃

bi)
(4)

where B is the bounding boxes with the highest score, bi represent
the i-th neighboring boxes of B with confidence score Si. t is
the threshold value of IoU ratio, which is set to 0.7; area(B∩bi)
denotes the intersection of boxes with the highest scores and their
neighboring boxes, and area(B∩bi) is their union.

The low-quality bounding box candidates can be removed
using the NMS algorithm. Notably, a different number of region

proposals are used during training and testing. In our study,
1,000 proposals are selected according to their scores for network
training and testing. Besides, the effect of different numbers of
proposals is explored in the section of experiments.

Global-Context Feature Module
For the challenging scenarios in agricultural pest detection,
such as cluttered background, foreground disturbance, simple
integration of high-level, and low-level features may fail to detect
the pest targets due to lacking the global context. A global
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context-aware feature module is designed in this work to extract
rich information of agricultural pest, as shown in Figure 6. Given
the full-image convolutional feature map in the FPN, the feature
maps are pooled by global pooling, which can be implemented
by an adaptive average pooling using the entire image’s bounding
box as the RoI. The pooled features are input into the post-RoI
layer to get a global context pest feature. And the global feature is
concatenated with the local RoI feature developed by RoI pooling.
Therefore, additional global context information is accessible for
each pest proposal, improving the recognition and localization of
pest under complex scenes.

Unified Pest Detection Network
To detect the multi-categories pest, the RPN (Ren et al., 2017) and
Fast R-CNN (Girshick, 2015) module are combined into a single
network via an end-to-end way, as shown in Figure 1. These
two networks can be separately trained. However, the separate

training will lead to different convolutional layers. Therefore,
according to the training procedure in Ren et al. (2017), joint
training between RPN and R-CNN was performed, which allows
for shared convolutional layers. In each SGD iteration, the
forward pass generates pest proposals, which are then fed into
the Fast R-CNN detector for training. The backward propagation
happens as usual, and for the sharing convolutional layer, the
backward propagated signals come from the combination of RPN
losses and Fast R-CNN losses. Additionally, another advantage of
the end-to-end training method is that it can reduce the training
time compared with the separate training model.

Evaluation Metrics
To verify the performance of our proposed agricultural pest
detection method, the metrics of average precision (AP) and
recall are adopted. A true positive (TP) is when the network
correctly identifies the pest target. A predicted box is viewed as

FIGURE 5 | Network structure of pest region proposal generation module.

FIGURE 6 | Description of global context-aware feature module.
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false positive (FP) when the model falsely identifies a pest target,
for example, calling something an “Agrotis ypsilon” that is not an
“Agrotis ypsilon.” The precision (P) and recall (R) are defined as
follows:

precision =
#TP

#TP + #FP
(5)

recall =
#TP
GT

(6)

In which #TP, #FP present the number of TP and FP,
respectively. Ground Truth (GT) denotes the total number of
ground truth boxes.

The average precision (AP) can be calculated based on the
shape of the precision/recall curve.

AP=
∫ 1

0
PdR (7)

The mean AP (mAP) averaged over all object classes is employed
as the final measure to compare performance over all object
classes, and it is defined as follows:

mAP =
1
C

∑C

j=1
APj (8)

where C is the number of classes, which is 21 in this study.
Additionally, the AP0.75 denotes the AP at IoU 0.75, which

is applied to evaluate the detection accuracy of pest detection.
The strict metrics, for example, mean AP and Average recall (AR)
across IoU thresholds from 0.5 to 0.95 with an interval of 0.05, are
used to further verify the performance of the proposed method.
ARs, Arm, and ARl is the average recall of small, medium, and
large pest target, respectively. In this study, the small, medium,
and large pest target can be defined in Table 3.

EXPERIMENTAL RESULTS AND
ANALYSIS

Experimental Details
The proposed method and other state-of-the-art models are
trained using the back-prorogation algorithm and SGD method,
with momentum 0.9 and initialize learning rate to 0.0025 that
will be dropped by 10 at the 8-th and 11-th epoch followed by
Ren et al. (2017). The batch size is set to 4 during training. The
proposed detection module is trained via an end-to-end way.
These experiments are performed on a dell T3630 computer
workstation with NVIDIA TITANX, 24G graphics card, and Intel
core i9-9900K. Deep CNN was built based on Pytorch framework
under Ubuntu18.02 operating system.

Comparison Results of Each Category of
Agricultural Pest
Table 4 reports the detection results. It presents the AP of 21
pest classes performed by our method and other state-of-the-
art models. Table 4 suggests that that our method can achieve
more precise recognition accuracy on all the categories. It is

TABLE 3 | Definition of the small, medium, and large pests.

Min rectangle area (pixel) Max rectangle area (pixel)

Small pest 0 × 0 32 × 32

Medium pest 32 × 32 96 × 96

Large pest 96 × 96 ∞ × ∞

TABLE 4 | Detection results (AP) compared with other methods on pest
dataset (unit: %).

Method

Class SSD YOLOv3 RetinaNet FPN YOLOF Cascade
RCNN

Our
method

CM 68.7 64.7 68.2 70.0 63.9 69.6 78.1

CS 69.7 73.6 73.1 74.7 71.6 76.5 80.0

MS 79.7 77.3 75.3 82.3 79.6 82.0 85.4

HA 91.1 87.1 88.1 90.5 88.8 90.3 91.6

PN 79.6 77.0 76.7 82.0 79.9 82.7 85.4

AL 72.0 69.3 62.8 74.7 72.7 73.8 78.9

SL 81.4 73.8 78.3 83.2 81.8 84.2 85.9

SE 53.1 47.1 48.1 57.2 53.8 56.2 64.9

SI 77.1 73.0 79.1 82.6 76.9 81.5 85.2

AY 89.2 84.5 83.7 89.2 86.8 89.2 91.4

MbL 66.9 54.3 57.6 67.8 64.5 69.7 77.0

StR 58.2 55.6 52.5 61.4 55.8 59.9 68.8

AS 63.8 53.8 42.5 60.9 46.1 58.8 68.2

AtB 60.0 48.0 44.7 53.1 60.3 53.8 64.0

HoF 3.0 0.0 7.3 4.2 0.0 0.0 16.8

HP 93.0 89.4 87.8 90.8 88.8 90.8 92.1

AC 95.8 89.1 89.3 90.7 88.4 90.7 91.6

GoB 97.3 97.5 98.2 97.5 98.4 97.6 97.6

PC 54.2 44.1 43.4 53.1 42.0 52.7 56.7

AsM 79.0 81.6 75.2 81.9 74.9 82.0 86.5

McL 74.7 83.2 27.6 74.0 73.3 76.8 87.5

Average 71.8 67.8 64.7 72.5 70.0 72.3 77.8

The detection results of our method are shown in bold.

obvious that the proposed method significantly outperforms
one-stage detectors, for example, 6.0% improvements for SSD
(Liu et al., 2016), 10.0% improvements for YOLO (Redmon and
Farhadi, 2018), and 13.1% improvements for RetinaNet (Lin
et al., 2017b), and 7.8% inprovements for YOLOF (Chen et al.,
2021). Additionally, the detection accuracy of our method is also
higher than the multi-stage methods [e.g., FPN (Lin et al., 2017a)
and Cascade RCNN (Cai and Vasconcelos, 2018)]. Specifically,
it improves 5.3 points and 5.5 points compared with FPN and
Faster RCNN, respectively.

However, Table 4 also shows that the detection accuracy
of the pest “HoF” is only 16.3%, which largely falls behind
other categories of pests with adequate samples. This is
because the number of samples of the pest “HoF” is only
70, leading to insufficient learning during network training.
Therefore, the number of pest samples will significantly affect the
detection results.

Table 4 summarizes that the “HoF” seems to be difficult
to recognize on all detection models, while all the models
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could classify the “HA” pest. The proposed method can achieve
16.8% AP, obviously outperforming other methods. Especially,
for the YOLO and Cascade RCNN detectors, the detection
accuracy is 0.0%, which does not recognize this class of
pests. The improvement of our method contributes to the
introduction of the deformable residual network and global
feature extractor, which can extract rich global pest features in
deformed pest images.

Compared Results Evaluated by Strict
Metrics
The stricter standards (e.g., AP0.5:0.9, AP0.75, and AR) are
applied to evaluate the detection results. The AR is used to
evaluate the localization accuracy of pest targets, and ARs,
ARm, and ARl are the AR of small, medium, and large-scale
pest, respectively. Table 5 shows the compared detection results
among SSD (Liu et al., 2016), RetinaNet (Lin et al., 2017b),
YOLO (Redmon and Farhadi, 2018), Cascade RCNN (Cai and
Vasconcelos, 2018), FPN (Lin et al., 2017a), YOLOF(Chen
et al., 2021), and the proposed method. It is observed from
Table 5 that AP @IoU [0.5:0.95] and AP@IoU = 0.75 of our
method can achieve 49.6 and 58.8%, respectively, outperforming
other state-of-the-art detectors. This demonstrates that our
method can not only improve the accuracy of classification but
also localization.

Ablation Experiments
The proposed pest detection method has contributed two
elements, including global-context feature (GCF) module and
deformable residual block network (DRB-Net). To analyze the
contribution of each component, the ablation experiments are
shown in Table 6. In this study, the baseline is Faster R-CNN with
FPN. We first add the GCF module to the baseline, as shown in
the second row of Table 6. The DRB-Net leads to a gain of 2.5%
AP. This is because of the addition of global context information,
which is instrumental in the recognition of crop pest. The third
row of Table 6 demonstrates that the DRB-Net can effectively
boost the performance from 75.0 to 76.6%. The improvements
may be result from the extraction of agricultural pest with various
scales and poses. Finally, we analyze the influence of multi-scale
training. From the fourth row of Table 6, we can observe that
multi-scale training can improve the accuracy of pest detection.
This is because the multi-scale training enhances the diversity of
training samples.

TABLE 5 | Compared results evaluated by strict evaluation criteria.

Method SSD RetinaNet YOLOv3 Cascade
RCNN

YOLOF FPN Proposed
method

AP0.5:0.9 44.2 41.2 39.6 46.4 42.1 45.9 49.6

AP0.75 51.4 48.4 42.3 54.9 47.3 53.7 58.8

AR 61.3 61.5 51.3 58.0 58.3 59.3 62.0

ARs 47.7 51.6 40.2 43.5 48.1 45.3 51.1

ARm 64.0 65.6 53.9 60.1 61.2 63.0 61.9

ARl 45.0 45.0 50.0 30.0 35.0 35.0 50.0

Detection Efficiency
Aside from detection accuracy, the detection speed also needs
to be considered. Table 7 reports the results of the detection
speed of the proposed method and other excellent detection
models. The proposed model can run at a speed of 20.9 FPS,
which outperforms Cascade RCNN (Cai and Vasconcelos, 2018).
However, it underperforms other detection models, such as SSD
(Liu et al., 2016), RetinaNet (Lin et al., 2017b), and YOLOv3
(Redmon and Farhadi, 2018). This is because the proposed pest
detection network is a two-stage framework that uses RPN for
generating pest proposals, leading to consumption of time. But
one-stage detection models are proposal-free, directly regressing
the bounding box of pest and classifying, resulting in higher
efficiency. In summary, the precision of our method is higher
than other methods, and the detection speed could satisfy
the requirement of real-time detection; therefore, our method
balances the pest detection efficiency and accuracy.

Analysis Experiments of Pest Proposals
As we know that the quality of pest proposals will
decide the final detection accuracy of agricultural pest,

TABLE 6 | Ablation study on the major components.

GCF module DRB-Net Multi-scale training mAP (%)

72.5

X 75.0

X X 76.6

X X X 77.8

TABLE 7 | Detection efficiency of agricultural pest using our method and other
state-of-the-art models.

Method Efficiency (FPS) Accuracy

SSD 41.1 71.8

RetinaNet 21.4 64.7

YOLOv3 54.7 67.8

YOLOF 35.7 70.0

Cascade RCNN 17.2 72.3

FPN 22.0 72.5

Proposed method 20.9 77.8

TABLE 8 | Recalls of different number of pest region proposals generated by RPN
with DRB-Net and without DRB-Net.

Number of proposals 10 50 100 1,000

With DRB-Net 55.1 89.0 95.2 95.2

Without DRB-Net 54.4 87.6 93.8 93.8

TABLE 9 | Recalls of pest proposals generated from RPN without DRB-Net and
with under different IoU thresholds.

IoU thresholds 0.5 0.6 0.7 0.8 0.9

Without DRB-Net 93.8 92.5 85.5 58.7 8.4

With DRB-Net 95.2 94.1 87.7 61.7 13.3
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Table 8 lists the recall of different numbers of pest
proposals produced by RPN without and with DRB-Net.
It shows that the quality is higher when using DRB-Net.
For example, when using 50 proposals, the RPN with
DRB-Net can achieve 89.0% recall, which obtains 1.4%
improvements compared with RPN without DRB-Net. Thus,
the introduction of DRB-Net contributes to the improvement of
agricultural pest detection.

From the view of localization of pest, Table 9 shows
the recalls of pest proposal produced from RPN with

and without DRB-Net under different IoU thresholds
while using 100 proposals. It demonstrates that the
performance of RPN with DRB-Net outperforms
that without using DRB-Net. With the increase of
IoU, the recalls of pest proposals will gradually
decrease; however, the recall of RPN with DRB-Net
can achieve 13.3, obtaining 4.9% improvements than
without DRB-Net. This phenomenon suggests that the
DRB-Net is the main factor to promote the quality
of pest proposals.

FIGURE 7 | Selected examples of agricultural pest detection results by using YOLO, RetinaNet, SSD, Cascade R-CNN, and our method.
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Visualization of Agricultural Pest
Detection Results
For visualization purpose, several examples of pest detection
results are given in Figure 7. The row from the top to the bottom
is expressed as the result of Ground truth, YOLO, RetinaNet,
SSD, Cascade R-CNN, and our method. The detection results
are marked by boxes with different colors. The proposed method
could obtain good performance on the pest targets with sparse
and dense distribution. For example, the class “HP” is undetected
by using YOLO version 3 algorithm, as shown in Figure 7
(a1), while the recognition accuracy can achieve 99.0% for the
proposed method, as shown in Figure 7 (d1). Additionally, for
pest targets with dense distribution, our method has a higher
precision of classification than other methods.

CONCLUSION

As we know, insect pests are one of the main factors affecting
agricultural product yield. Precise recognition and localization
of insect pests benefit to timely preventive measures to decrease
economic losses. However, recent pest detection methods cannot
effectively recognize and localize the pest targets. In this study, a
deformable residual network is developed to extract deformable
feature information of crop pest. Furthermore, a global context-
aware extractor is designed to obtain global features of pest
images, which are combined with local features, contributing to
the improvement of the detection of pest targets. Quantitative
experiments were conducted on the constructed large-scale

multi-class pest dataset to evaluate the performance of the
proposed method, demonstrating that the proposed method
outperforms other state-of-the-art detectors in the view of pest
localization and classification.
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