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The genus Campylotropis Bunge (Desmodieae, Papilionoideae) comprises about 37 
species distributed in temperate and tropical Asia. Despite the great potential in soil 
conservation, horticulture, and medicine usage, little is known about the evolutionary 
history and phylogenetic relationships of Campylotropis due to insufficient genetic 
resources. Here, we sequenced and assembled 21 complete chloroplast genomes of 
Campylotropis species. In combination with the previously published chloroplast genomes 
of C. macrocarpa and closely related species, we conducted comparative genomics and 
phylogenomic analysis on these data. Comparative analysis of the genome size, structure, 
expansion and contraction of inverted repeat (IR) boundaries, number of genes, GC 
content, and pattern of simple sequence repeats (SSRs) revealed high similarities among 
the Campylotropis chloroplast genomes. The activities of long sequence repeats 
contributed to the variation in genome size and gene content in Campylotropis chloroplast 
genomes. The Campylotropis chloroplast genomes showed moderate sequence variation, 
and 13 highly variable regions were identified for species identification and further 
phylogenetic studies. We also reported one more case of matK pseudogene in the legume 
family. The phylogenetic analysis confirmed the monophyly of Campylotropis and the 
sister relationship between Lespedeza and Kummerowia, the latter two genera were then 
sister to Campylotropis. The intrageneric relationships of Campylotropis based on genomic 
scale data were firstly reported in this study. The two positively selected genes (atpF and 
rps19) and eight fast-evolving genes identified in this study may help us to understand 
the adaptation of Campylotropis species. Overall, this study enhances our understanding 
of the chloroplast genome evolution and phylogenetic relationships of Campylotropis.
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genome
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INTRODUCTION

The genus Campylotropis Bunge belongs to the tribe Desmodieae 
(Benth.) Hutchinson in the legume subfamily Papilionoideae. 
It comprises c. 37 species of deciduous shrubs and subshrubs 
that distributed in Asia from the Himalaya region through 
Southeast Asia to China and Korea (Barham, 1997; Iokawa 
and Ohashi, 2008; Huang et  al., 2010). Southwest China is 
the diversity center of Campylotropis as it harbors c. 80% of 
the species, and c. 20 species are endemic to this region (Iokawa 
and Ohashi, 2008). Most species in this genus have important 
value in soil conservation due to their tolerance of arid soils 
(Huang et  al., 2010). Some Campylotropis species are also 
valuable for horticulture and medicine usage. For example, 
C. polyantha is widely used in gardening due to its numerous 
racemes of showy flowers and long-lasting fluorescence (Barham, 
1997). The dried roots of C. hirtella can be  used as traditional 
Chinese medicine for the treatment of benign prostate hyperplasia 
(Wen et  al., 2007), and C. trigonoclada contains daucosterol 
linoleate which can be  used for the treatment of breast cancer 
(Han et  al., 2018).

As suggested by previous molecular phylogenetic studies, 
Campylotropis is sister to the other two genera of subtribe 
Lespedezinae (i.e., Lespedeza and Kummerowia) in tribe 
Desmodieae (Xu et  al., 2012; Jabbour et  al., 2018; Jin et  al., 
2019). Much effort has been made to clarify species relationships 
within Campylotropis, mostly based on morphological characters 
such as leaf and calyx morphology (e.g., Iokawa and Ohashi, 
2008; Huang et al., 2010). However, most of the morphological 
characteristics (e.g., persistence of bracts, the color of flowers, 
and shape of keel petals) are polymorphic and vary continuously 
among species, causing controversial species delimitation in 
this genus (Iokawa and Ohashi, 2008). Besides, little is known 
about its intrageneric and interspecific relationships due to 
the lack of comprehensive molecular phylogenetic studies.

Chloroplasts, derived from photosynthetic bacteria, play 
critical roles in the survival, adaptation, and evolution of plants 
(Wicke et  al., 2011; Zhao et  al., 2019; Dopp et  al., 2021). 
Although the chloroplast (cp) genomes are much smaller than 
most nuclear genomes, they encode essential proteins related 
to photosynthesis, fixation of carbon and nitrogen, and 
biosynthesis of starch, pigments, fatty acids, and amino acids 
(Howe et  al., 2003; Wicke et  al., 2011; Daniell et  al., 2016). 
Chloroplast genomes have relatively stable structure and gene 
content compared to nuclear genomes. The typical structure 
of angiosperm cp genome is a circular double-stranded DNA 
molecule, exhibiting a conserved quadripartite structure [i.e., 
two inverted repeats (IRs) separated by a large single-copy 
region (LSC) and a small single-copy region (SSC)] and 
containing 110–130 genes (Sugiura, 1992; Daniell et  al., 2016). 
The characteristics of cp genomes including lack of recombination, 
low nucleotide substitution rates, and usually uniparental 
inheritance make them the primary source to explore phylogenetic 
evolution of plant species (Shaw et al., 2005). Besides, structural 
variants such as expansion and contraction of IRs, gains or 
losses of genes and introns, and dynamics of repeat sequences 
(e.g., simple sequence repeat, SSR) provide resources for 

evaluating genomic evolutionary history (e.g. Sabir et al., 2014; 
Keller et al., 2017). The development of sequencing technology 
and analysis tools makes the acquisition of cp genomes much 
easier than before, thus promptly extending gene-based 
phylogenetics to phylogenomics (Lu et al., 2017). In fact, recent 
phylogenomic studies have been successful in reconstructing 
phylogenies at various taxonomic scales (e.g., genera and families) 
across angiosperms using the cp genome datasets (e.g., Cai 
et  al., 2015; Ruhsam et  al., 2015; Luo et  al., 2016; Zhang 
et  al., 2017, 2021).

Here, we  present 21 complete cp genomes of Campylotropis 
species assembled from Illumina short reads. In combination 
with the previously published cp genomes of C. macrocarpa 
(Jin et  al., 2019) and closely related species, we  conducted 
comparative genomics and phylogenomic analyses on these data 
with the following aims: (1) to reveal the global structural 
patterns of Campylotropis cp genomes; (2) to investigate variations 
of SSRs and repeat sequences among Campylotropis cp genomes; 
(3) to screen highly variable regions suitable for species 
identification and phylogenetic studies; (4) to reconstruct a robust 
phylogenetic relationship within Campylotropis and among genera 
in the tribe Desmodieae; and (5) to investigate adaptive evolution 
patterns of cp genes in Campylotropis. These results will provide 
insights into the evolutionary history of Campylotropis and tribe 
Desmodieae as well as abundant information for future 
phylogenetic and population genetic studies.

MATERIALS AND METHODS

Taxon Sampling, DNA Extraction, and 
Sequencing
In this study, leaf materials of 21 accessions representing 17 
Campylotropis species (including four subspecies, one variety, 
and one forma) were collected from the field and preserved 
in silica gel (Table  1). Voucher specimens were deposited in 
the Herbarium of the Chengdu Institute of Biology (CDBI; 
Supplementary Table S1). The extraction of total genomic 
DNA, library preparation, and Illumina sequencing for each 
accession were described in our previous study (Liao et al., 2021).

Chloroplast Genome Assembly, 
Annotation, and Comparison
For each accession, ~25  Gb of raw data were generated with 
pair-end 150 bp read length. Trimmomatic v0.39 (Bolger et 
al., 2014) was used to remove low-quality and adapter-containing 
reads. The clean data were then assembled using GetOrganelle 
v1.7.5 (Jin et  al., 2020). Plastid Genome Annotator (Qu et  al., 
2019) was used to annotate the cp genomes based on one 
published accession of Campylotropis (C. macrocarpa; NC_044100; 
Jin et  al., 2019) and 15 accessions of closely related legume 
species (Supplementary Table S2). Manual corrections for start 
and stop codons and the determination of pseudogenes were 
performed in Geneious v11 (Biomatters Ltd., Auckland, 
New  Zealand). For the matK pseudogene annotated in the cp 
genome of C. bonii (see section “Results”), we  further mapped 
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raw reads to the assembled sequence of the matK gene, and 
performed Sanger sequencing to validate the accuracy of the 
assembled sequence. Raw reads were remapped to 400-bp 
surroundings of the IRb ends to quantify the IR junctions. 
Genome map of the cp genomes was generated using the 
online OrganellarGenome DRAW tool (OGDRAW; Lohse et al., 

2013). To compare the contraction and expansion of IRs among 
cp genomes of Campylotropis and closely related genera, 
we  identified and visualized boundaries of LSC, SSC, and IRs 
of the 25 whole cp genomes (including 22 Campylotropis 
accessions, two Lespedeza accessions, and Kummerowia striata) 
using IRscope (Amiryousefi et  al., 2018).

TABLE 1 | Characteristics of the 22 complete chloroplast genomes for Campylotropis, including 21 newly generated accessions and the previously published 
accession of Campylotropis macrocarpa.

Sample 
code

Species name Size (bp) GC content (%) total 
(LSC/SSC/IR)

No. of genes 
(PCGs/tRNA/

rRNA)

GenBank 
accession

Sample location

Total Large 
single-copy 

region 
(LSC)

Small 
single-copy 

region 
(SSC)

Inverted 
repeat 

(IR)

xubo1489 Campylotropis 
albopubescens

149,165 82,871 18,854 23,720 34.84 
(32.23/27.94/42.15)

128 (83/37/8) OM775444 China. Yunnan: 
Shiping

S867 Campylotropis 
bonii

153,122 82,869 18,899 25,677 34.98 
(32.31/28.02/41.84)

129 (82/39/8) OM775455 China. Guangxi: Jingxi

XB-DR-C Campylotropis 
brevifolia

148,855 82,648 18,805 23,701 34.83 
(32.23/27.90/42.13)

128 (83/37/8) OM775434 China. Yunnan: 
Derong

xubo1390 Campylotropis 
capillipes

152,978 82,903 18,701 25,687 34.95 
(32.24/28.13/41.81)

130 (83/39/8) OM775435 China. Yunnan: 
Binchuan

xubo1445 Campylotropis 
delavayi

149,088 82,797 18,851 23,720 34.87 
(32.28/27.92/42.15)

128 (83/37/8) OM775436 China. Yunnan: Heqing

xubo1424 Campylotropis 
grandifolia

149,165 82,871 18,854 23,720 34.84 
(32.23/27.94/42.15)

128 (83/37/8) OM775437 China. Yunnan: Mile

xubo1429 Campylotropis 
harmsii

149,291 82,992 18,859 23,720 34.86 
(32.23/28.01/42.16)

128 (83/37/8) OM775438 China. Yunnan: 
Jinhong

xubo1483 Campylotropis 
henryi

149,153 82,851 18,904 23,699 34.89 
(32.30/28.01/42.17)

128 (83/37/8) OM775440 China. Yunnan: 
Xinping

xubo1375 Campylotropis 
howellii

149,312 82,965 18,823 23,762 34.81 
(32.17/27.92/42.13)

128 (83/37/8) OM775439 China. Yunnan: 
Tengchong

xubo1430 Campylotropis 
latifolia

149,176 82,881 18,855 23,720 34.84 
(32.23/27.93/42.15)

128 (83/37/8) OM775441 China. Yunnan: 
Shiping

-- Campylotropis 
macrocarpa

148,814 82,566 18,808 23,720 34.86 
(32.27/27.89/42.14)

128 (83/37/8) NC_044100 Jin et al., 2019

xubo1425 Campylotropis 
cytisoides f. 
parviflora

148,932 82,655 18,846 23,715 34.83 
(32.19/27.93/42.15)

128 (83/37/8) OM775442 China. Yunnan: 
Jinhong

xubo1426 Campylotropis 
pinetorum 
subsp. velutina

149,227 82,933 18,848 23,723 34.86 
(32.24/28.02/42.16)

128 (83/37/8) OM775443 China. Yunnan: Eshan

xubo1447 Campylotropis 
polyantha

149,191 82,810 18,941 23,720 34.84 
(32.25/27.84/42.16)

128 (83/37/8) OM775447 China. Yunnan: Dali

xubo1427 Campylotropis 
polyantha var. 
tomentosa

149,001 82,772 18,801 23,714 34.83 
(32.22/27.88/42.15)

128 (83/37/8) OM775445 China. Sichuan: 
Shimian

xubo1481 Campylotropis 
capillipes subsp. 
prainii

149,092 82,892 18,746 23,727 34.88 
(32.25/28.09/42.16)

128 (83/37/8) OM775446 China. Yunnan: Eshan

xubo1406 Campylotropis 
teretiracemosa

149,169 82,868 18,863 23,719 34.82 
(32.17/28.04/42.16)

128 (83/37/8) OM775449 China. Sichuan: 
Yanyuan

xubo1428 Campylotropis 
thomsonii

148,963 82,676 18,822 23,732 34.85 
(32.23/27.94/42.15)

128 (83/37/8) OM775450 China. Yunnan: 
Mengla

xubo1393 Campylotropis 
trigonoclada

149,227 82,957 18,840 23,715 34.83 
(32.18/28.05/42.17)

128 (83/37/8) OM775451 China. Yunnan: 
Binchuan

xubo1407 Campylotropis 
wilsonii

149,113 82,771 18,870 23,736 34.85 
(32.26/27.90/42.13)

128 (83/37/8) OM775452 China. Sichuan: 
Wenchuan

xubo1434 Campylotropis 
yunnanensis 
subsp. filipes

149,122 82,822 18,862 23,719 34.84 
(32.24/27.90/42.14)

128 (83/37/8) OM775453 China. Sichuan: 
Panzhihua

xubo1435 Campylotropis 
yunnanensis

148,548 82,269 18,841 23,719 34.90 
(32.32/27.95/42.14)

128 (83/37/8) OM775454 China. Yunnan: 
Yongsheng
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Repeat Sequence Analysis
For 21 newly generated cp genomes and the published accession 
of C. macrocarpa, SSRs were identified using MISA software 
(Beier et  al., 2017) with parameter settings of 11 for mono-, 
6 for di-, 5 for tri-, 4 for tetra-, and 3 for penta- and hexa-
nucleotide SSRs. For each of the 22 Campylotropis cp genomes, 
forward, reverse, palindrome, and complementary repeat 
sequences in LSC, IRb, and SSC regions were identified using 
REPuter program (Kurtz et  al., 2001).

Molecular Marker Identification
The 22 whole cp genomes were firstly aligned using MAFFT 
v7 (Katoh and Standley, 2013). To identify hypervariable regions 
that can be  used in species identification and phylogenetic 
studies for Campylotropis, nucleotide diversity (Pi) values were 
calculated in sliding windows along the alignment with a 
window length of 600 bp and step size of 200 bp. Pi values of 
each window were calculated using a custom Python script,1 
with the formula referring to the algorithm implemented in 
pixy (Korunes and Samuk, 2021) to obtain unbiased estimations 
of nucleotide diversity in the presence of alignment gaps. 
Adjacent windows with a Pi value > 0.01 and a number of 
parsimony informative sites >25 were joined together as one 
single hypervariable region. The number of singleton variable 
sites, number of parsimony informative sites, and Pi values 
were calculated for each hypervariable region using the custom 
Python script.

Phylogenetic Analysis
To estimate the cp-genome-based phylogenetic relationships of 
Campylotropis as well as the tribe Desmodieae, we  included 
the whole cp genomes of 22 Campylotropis accessions and 15 
outgroups (Supplementary Table S2). The phylogenetic analyses 
were performed using Maximum likelihoods (ML) and Bayesian 
inference (BI) methods based on both whole cp genomes and 
shared protein-coding genes (PCGs). For the former dataset, 
MAFFT v7 was used to obtain the alignment of 37 whole cp 
genomes. As for the latter dataset, the shared PCGs were 
extracted and translated into amino acid sequences, and ClustalW2 
(Larkin et al., 2007) was used to align the amino acid sequences. 
The codon alignment of each PCGs was obtained using PAL2NAL 
(Suyama et al., 2006). The ML trees were inferred using RAxML 
v8 (Stamatakis, 2014) based on the alignment of 37 whole cp 
genomes and the concatenated matrix of 72 PCGs. For each 
RAxML analysis, GTRGAMMA + I  was set as the nucleotide 
substitution model and 1,000 bootstrap replicates were conducted 
to determine branch support. The BI analyses were performed 
using MrBayes v3.2 (Ronquist et  al., 2012) with the nucleotide 
substitution model GTR + G + I (lset nst = 6 rates = invgamma). 
For each analysis, the posterior probability was estimated with 
two independent Markov Chain Monte Carlo (MCMC) chains 
(10 million generations and sampled every 1,000 generations) 
with the preliminary 25% of sampled data discarded as burn-in.

1 https://github.com/Fengyaa/Campylotropsis_cp_genome

Analysis of Selective Pressure
To explore the selective pressure of PCGs in Campylotropis, 
the CODEML program implemented in the PAML v4.9 package 
(Yang, 2007) was used to estimate the rate of non-synonymous 
(dN) and synonymous (dS) substitutions for PCGs. In general, 
the ratio of dN/dS (ω) was supposed to equal 1 when under 
neutral evolution, a larger ω indicates higher positive selection 
pressure, while a smaller ratio of ω indicates higher pressure 
of negative selection.

All the 37 accessions in the above phylogenetic analysis 
were included, and the resulting phylogenetic tree was used 
as the input topology for CODEML. The codon-wise alignments 
of nucleotide sequences, which were used as the input 
sequences for CODEML, were generated with PAL2NAL 
(Suyama et  al., 2006) guided by the peptide alignments. To 
determine whether each shared PCG has undergone a different 
evolutionary force in different lineages, we  ran branch-site 
models with a one-ratio model (null hypothesis; ω0) in which 
all branches share the same ω and a two-ratio model in 
which the foreground branches (Campylotropis spp.; ωf) have 
a different ω (alternative hypothesis; ωb). Likelihood ratio 
tests with χ2 distribution were used to determine whether 
the alternative hypothesis significantly differ from the null 
hypothesis (Chi-square test, p < 0.05).

RESULTS

Characteristics of Campylotropis cp 
Genomes
In this study, a total of 21 whole cp genomes of Campylotropis 
were newly generated and were submitted to GenBank under 
the accession numbers list in Table  1. Taken together with 
the previously published one of C. macrocarpa (NC_044100), 
the whole cp genomes of Campylotropis ranged from 148,548 bp 
(C. yunnanensis) to 153,122 bp (C. bonii), exhibiting a typical 
quadripartite structure comprising two IR regions (IRa and 
IRb) of 23,699–25,687 bp, an LSC region of 82,269–82,992 bp, 
and an SSC region of 18,746–18,941 bp (Table  1). The GC 
contents of the Campylotropis cp genomes were similar (34.81%–
34.93%; Table  1). The IRs have the highest GC content 
(41.81%–42.18%), followed by the LSC region (32.17%–32.32%), 
and the SSC region (27.84%–28.13%).

The Campylotropis cp genomes were similar in gene contents, 
most of which encode 128 genes, including 83 PCGs, 37 
tRNA genes, and eight rRNA genes (all located in the IRs; 
Table  1; Figure  1). Three species had a few pseudogenes 
and/or duplicated genes (Table  2). Specifically, C. capillipes 
and C. bonii has two more copies of the trnI-CAU gene, 
and C. bonii has a pseudogene (ψmatK; Table  2), which 
was confirmed by both raw reads mapping and Sanger 
sequencing (see Supplementary Figure S1 and 
Supplementary Dataset). Among the 83 PCGs, 77 were 
unique, and six (ndhB, rpl12, rpl23, rps7, rps12, and ycf2) 
were duplicated due to their location in the IRs. Likewise, 
30 of the tRNA genes are unique, while seven tRNA genes 
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(trnA-UGC, trnI-CAU, trnI-GAU, trnL-CAA, trnN-GUU, trnR-
ACG, and trnV-GAC) and all four rRNA genes (rrn23, rrn16, 
rrn5, and rrn4.5) were duplicated. Eight PCGs (petB, petD, 
atpF, ndhB, ndhA, rpoC1, rpl16, and rps16) and six tRNA 
genes (trnA-UGC, trnI-GAU, trnG-UCC, trnL-UAA, trnV-UAC, 
trnK-UUU) contained one intron, while only three PCGs 
(rps12, ycf3, and clpP) contained two introns (Table  2). In 
all newly generated Campylotropis cp genomes, the 5′ end 
of the rps12 gene was located in the LSC region, and the 
3′ end was duplicated in the IRs.

Comparative Analysis of IR Boundaries
The IR boundary of the assembled cp genomes were 
quantified by the remapping of short reads, which showed 
above 300× for the IRb ends and surrounding areas 
(Supplementary Table S3). We  compared the IR boundaries 
of 25 cp genomes from subtribe Lespedezinae, including 
Lespedeza maritima, Lespedeza cuneata, Kummerowia striata, 
and 22 Campylotropis accessions, and found a little 
variation of the expansion/contraction of the IRs 
(Supplementary Figure S2). The JLA (IRa-LSC) and JSA 

FIGURE 1 | The chloroplast genome map of Campylotropis species. Genes inside and outside of the circle are transcribed clockwise and counterclockwise, 
respectively. Genes belonging to different functional groups are shown in different colors, with extra duplicated genes in Campylotropis bonii highlighted in light blue. 
The dark gray area in the inner circle denotes GC content while the light gray corresponds to the AT content of the genome. LSC, large single copy; SSC, small 
single copy; and IR, inverted repeat.
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(IRa-SSC) boundaries are highly consistent in the 25 cp 
genomes, with the former located between rpl2 and trnH, 
and the latter between ycf1 and trnN. The distances between 
the JLA boundary and trnH were 0–19 bp, while those 
between the JSA boundary and ycf1 varied from 128 to 
144  bp. The JLB (IRb-LSC) boundaries cut through rps19 
in most species, with 32–48 bp of rps19 extended into the 
IRb, while the JLB boundaries of C. thomsonii and C. parviflora 
were 88 bp away from rps19 due to the contraction of IRs. 
The distance between the JSB (IRb-SSC) boundaries and 
ndhF varied from 2 to 33  bp in most species except 
Kummerowia striata, where ndhF extended 11 bp into IRb 
due to the expansion of IRs.

Characteristics of Repeat Sequences
The number of SSRs in the Campylotropis species varied 
from 50  in C. harmsii to 115  in C. teretiracemosa 
(Supplementary Table S4), in which mononucleotide SSRs 
were most abundant, followed by component and dinucleotides 
SSRs (Figure  2A). Among the motifs in the SSRs, A/T, AA/
TT, and AT/AT were the most frequently occurring motifs 
(Figure  2B). Besides, most of the SSRs were located in the 
LSC (38–56) and SSC (10–18) regions, and very few were 

located in the IRs (Supplementary Table S5). REPuter identified 
40–71 repeat sequences with length > 30 bp, covering 1,647–
4,278 bp in the cp genomes of Campylotropis species 
(Figures  2C,D). Palindromic repeat sequences were most 
abundant (22–32), followed by forward (14–20) and reverse 
(2–13) repeat sequences (Figure 2C; Supplementary Table S6). 
All the repeat sequences with length > 30 bp were located in 
LSC (33–64) and IRs (6–10), while none of them were identified 
in the SSC region (Supplementary Table S6). Most of the 
repeat sequences were less than 100 bp, a few of them were 
larger than 100 bp (Figure  2D; Supplementary Table S6). 
Notably, C. bonii and C. capillipes each had a forward repeat 
sequence with a length of 2,219 and 2,217 bp, respectively 
(Figure  2D; Supplementary Table S7). Both repeat sequences 
were located between rpl23 and ycf2 in the IRs, which caused 
the duplication of trnI-CAU and resulted in four copies of 
this gene (Supplementary Figure S3).

Identification of Candidate Molecular 
Markers
Using sliding window analysis, we  found that most genetic 
variations in the cp genomes of Campylotropis occurred in 
the LSC and SSC regions (Figure  3). A total of 13 intergenic 
spacer regions located in the LSC region, ranging from 547 
to 1,995 bp, were identified as potential molecular markers 
for phylogenetic and population genetic studies (Figure  3; 
Table  3). Among them, the intergenic spacer of atpA and 
psbI (atpA-psbI) was the longest (1,995) and contained the 
greatest number of parsimony informative sites (109), while 
the intergenic spacer of ycf4 and cemA (ycf4-cemA) had the 
highest Pi value (0.0117).

Phylogenetic Relationships of 
Campylotropis
The phylogenetic trees inferred from Maximum likelihood (ML) 
and Bayesian inference (BI) based on the whole cp genome shared 
an identical topology and showed little differences in support 
values (Figure  4). The concatenated alignment of PCGs resulted 
in similar topologies, with a few differences with regard to the 
relationships within Campylotropis (Supplementary Figures S4, S5). 
All topologies fully supported the reciprocal monophyly of the 
two subtribes in tribe Desmodieae [100% bootstrap support (BS) 
and 1 posterior probability (PP)]. In the subtribe Lespedezinae, 
Kummerowia striata and the two Lespedeza species formed a 
clade (BS = 100%, PP = 1), and Campylotropis was also a monophyletic 
clade (BS = 100%, PP = 1).

As for the relationship within Campylotropis, both ML and 
BI trees based on the whole cp genome supported C. bonii 
(lineage A) as sister to the remaining species (Figure  4), and 
the latter clade (BS = 86%, PP = 0.99) segregated into two subclades 
(lineages B and C), each with full support values (BS = 100%, 
PP = 1). Lineage B included C. yunnanensis subsp. filipes, 
C. yunnanensis, C. polyantha var. tomentosa, C. macrocarpa, 
C. wilsonii, C. polyantha, C. brevifolia, C. cytisoides f. parviflora, 
and C. thomsonii. And, lineage C included C. albopubescens, 
C. grandifolia, C. latifolia, C. delavayi, C. capillipes, C. capillipes 

TABLE 2 | Summary of gene contents present in the Campylotropis chloroplast 
genomes.

Group of genes Name of genes

Ribosomal RNAs rrn16(x 2), rrn23(x 2), rrn4.5(x 2), rrn5(x 2)

trnA-UGC (1)(x 2), trnI-GAU (1)(x 2), trnL-CAA(x 2), 
trnN-GUU(x 2), trnR-ACG (x 2), trnV-GAC (x 2), 
trnI-CAU (x 2)*, trnL-UAG, trnP-UGG, trnW-CCA, 
trnQ-UUG, trnS-GCU, trnG-UCC (1), trnR-UCU, 
trnC-GCA, trnE-UUC, trnY-GUA, trnD-GUC, trnT-
GGU, trnS-UGA, trnG-GCC, trnfM-CAU, trnS-
GGA, trnT-UGU, trnL-UAA (1), trnF-GAA, trnV-
UAC (1), trnM-CAU, trnK-UUU(1), trnH-GUG

Transfer RNAs

Proteins of small ribosomal 
subunit

rps2, rps3, rps4, rps7 (x 2), rps8, rps12 (2)(x 2), 
rps14, rps15, rps18, rps19, rps16 (1)

Proteins of large ribosomal 
subunit

rpl2 (x 2), rpl14, rpl16(1), rpl20, rpl23(x 2), rpl32, 
rpl33, rpl36

Subunits of RNA polymerase rpoA, rpoB, rpoC1 (1), rpoC2
Subunits of photosystem I psaA, psaB, psaC, psaI, psaJ
Subunits of photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, 

psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ
Subunits of ATP synthase atpA, atpB, atpE, atpF(1), atpH, atpI
Subunits of cytochrome b/f 
complex

petA, petB(1), petD(1), petG, petL, petN

Subunits of NADH-
dehydrogenase

ndhA (1), ndhB(1)(x 2), ndhC, ndhD, ndhE, ndhF, 
ndhG, ndhH, ndhI, ndhJ, ndhK

Large subunit of RuBisco rbcL
Acetyl-CoA carboxylase accD
Cytochrome c biogenesis ccsA
Envelope membrane protein cemA
Maturase matK**
Protease clpP(2)
Conserved hypothetical 
chloroplast reading frames

ycf1, ycf2 (x 2), ycf3(2), ycf4

(1) Genes with one intron; (2) Genes with two introns; (x 2) Genes with two copies. 
*Campylotropis bonii and Campylotropis capillipes have four copies of trnI-CAU.
**The matK gene is a pseudogene in Campylotropis bonii.
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subsp. prainii, C. pinetorum subsp. velutina, C. harmsii, C. henryi, 
C. howellii, C. trigonoclada, and C. teretiracemosa. The ML three 
based on the PCGs dataset showed the same topology as that 
based on the whole cp genome with regard to the relationship 
among the three subclades of Campylotropis, albeit the supporting 

values were lower (lineage B: BS = 93%; lineage B sister to lineage 
C: BS = 79%; Supplementary Figure S4). However, the BI inference 
based on the PCGs dataset revealed a different topology, in which 
C. bonii was weakly supported to be  a sister clade of lineage B 
(PP = 0.604; Supplementary Figure S5).

A

B

C

D

FIGURE 2 | Patterns of simple sequence repeats (SSRs; A,B) and long sequence repeats (LSRs; C,D) for the 23 chloroplast genomes of Campylotropis species. 
(A) Number of motifs and their abundance of SSRs in each species. (B) Type of motifs and their abundance of SSRs in each species. (C) Type and abundance of 
LSRs in each species. (D) Accumulative length of LSRs in each species.
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Selective Pressure of cp Genes in 
Campylotropis
A total of 68 shared PCGs were subjected to the selective 
pressure analysis (Supplementary Table S8). Most of the genes 
were subjected to purifying selection (ω < 1; Figure  5). Using 
the likelihood ratio test, we  found that 11 genes showed 
significantly different selective pressure in Campylotropis 
(Figure  5; Supplementary Table S8). Among them, two genes 
(atpF and rps19) showed obvious signatures of positive selection 
(ωf > 1, p < 0.05) in Campylotropis and eight genes (ndhC, ndhD, 
psbA, rpoC1, rpoC2, rps4, ycf1, and ycf2) evolved faster in 
Campylotropis than in the background branches (ωf > ωb, p < 0.05; 
Figure  5; Supplementary Table S8).

DISCUSSION

Variations and Evolution of Whole cp 
Genomes in Campylotropis
The 21 newly assembled and one previously published 
Campylotropis cp genomes showed little variation in genome 

structure and genome length, as found in other legume 
species (Wang et  al., 2018; Oyebanji et  al., 2020; Zhang 
et al., 2020; Liao et al., 2021). The Campylotropis cp genomes 
exhibit the typical quadripartite structure and no large 
structural variant was found (Table  1). The genome length 
of these species was similar (148,548–153,122 bp) and fell 
within the range of subfamily Papilionoideae (c. 140–160 kb; 
Oyebanji et  al., 2020). Other genome features, including 
lengths of LSC, SSC, and IRs, expansion and contraction of 
IR boundaries, number of genes, GC content, the pattern 
of SSRs also varied little within this genus, which is comparable 
to other genera from the legume family (e.g., Oyebanji et al., 
2020; Liao et  al., 2021).

Despite the general homogeneity characteristics mentioned 
above, there are some interesting inconsistencies worth 
mentioning in Campylotropis cp genomes. Previous studies 
demonstrated that expansion and contraction of IRs substantially 
contribute to the change in the size of cp genomes (Ruhlman 
and Jansen, 2014; Zheng et  al., 2017; Gu et  al., 2020). In our 
study, the JLB (IRb-LSC) boundaries cut through rps19 in 
most species, except in C. thomsonii and C. parviflora, where 

FIGURE 3 | Nucleotide diversity (Pi, black line, vertical left axis) and number of parsimony informative sites (blue dots, vertical right axis) of the Campylotropis 
chloroplast genomes based on sliding window analysis. The window length is 600 bp and the step size is 200 bp. The horizontal axis indicates the position of the 
midpoint of a window. The 13 regions with high diversity are indicated above the peaks.

TABLE 3 | Hypervariable regions identified among the 22 cp genomes of Campylotropis.

Start End Length # SVS # PIP Pi Gene name

0 547 547 101 50 0.01154744 trnH-psbA
3,248 4,977 1,729 141 72 0.00815403 matK-rbcL
11,237 12,215 978 61 39 0.00847844 ndhK-ndhJ
12,770 13,801 1,031 241 58 0.01136576 trnF-trnL
14,560 15,451 891 158 49 0.01037634 trnT-rps4
18,421 19,380 959 71 43 0.0078191 ycf3-psaA
31,452 32,596 1,144 116 44 0.01010241 psbM-petN
51,126 53,121 1,995 269 109 0.01122222 atpA-psbI
57,121 58,064 943 84 46 0.01088579 accD-psaI
58,636 59,422 786 48 37 0.01167507 ycf4-cemA
61,206 62,172 966 77 52 0.01052879 petA-psbJ
78,264 79,190 926 147 42 0.00917555 rps8-rpl16
81,692 82,566 874 163 55 0.01090692 rps3-rps19

The start and end positions are referred to Campylotropis macrocarpa. # SVS: number of singleton variable sites; # PIP: number of parsimony informative sites.
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JLB was located between rps19 and rpl2, causing less than 
100-bp length variation of the IRs (Supplementary Figure S2). 
However, the cp genomes of C. bonii and C. capillipes were 
3–4 kb longer than the rest without showing any significant 
signal of IR expansion (Figure  2; Supplementary Figure S2). 
Both cp genomes have a ~2 kb long sequence repeat in each 
IR region, causing a ~4 kb increase in total genome length. 
These results indicate that similar to nuclear genomes (Bennetzen 
et al., 2005), dynamics in repeat sequences rather than expansion 
and contraction of IRs played an important role in the length 
variation of Campylotropis cp genomes. The long sequence 
repeats also caused duplication of trnI-CAU and resulted in 

four copies of this gene (Supplementary Figure S1; 
Supplementary Table S7).

The Campylotropis cp genomes showed moderate sequence 
variation, most occurring in the LSC region (Figure  3). 
Consequently, all 13 candidate molecular markers were located 
in the LSC region, which may be  useful in further studies of 
species delimitation, phylogenetic, and population genetic studies 
(Table 3). Many of these molecular markers have been reported 
in other studies, such as trnH-psbA (Li et  al., 2021), accD-psaI 
(Chen et  al., 2021), and petN-trnD (Liao et  al., 2021). Notably, 
the matK gene, which encodes a protein essential for in vivo 
splicing of Group II introns (Ahlert et al., 2006), is a pseudogene 

FIGURE 4 | Phylogenetic tree obtained using the Maximum Likelihood (ML) and Bayesian Inference (BI) method for Campylotropis spp. and closely related species 
based on whole cp genomes. Numbers above branches indicate ML bootstrap supports (BS; before the slash) and Bayesian posterior probabilities (PP; after the 
slash). The full support values are not indicated.
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in C. bonii. As one of the most frequently used molecular 
markers in angiosperm phylogenetic studies (Patwardhan et al., 
2014), matK has a high overall evolutionary rate in contrast 
to other chloroplast genes (Wanke et  al., 2007). In fact, 
pseudogenic copies of matK pseudogene were reported in 
orchids (Kocyan et  al., 2008), Piperales (Wanke et  al., 2007), 
and Ericaceae (Braukmann et  al., 2017). In the legume family, 
matK pseudogenes were found in Tadehagi triquetrum (GenBank 
accession: MW557314.1; unpublished) and reported in Tylosema 
spp. (Wang et  al., 2018). Here, C. bonii provided one more 
case for legume plants living with pseudogenic matK gene.

Phylogenetic Relationships
The phylogenetic trees reconstructed on both whole cp genome 
and shared PCGs in this study fully supported the monophyly 
of the two subtribes of Desmodieae (Figure  4; 
Supplementary Figures S4, S5). The subtribe Desmodiinae was 
divided into two fully supported monophyletic groups as described 
in previous studies (Jabbour et al., 2018; Jin et al., 2019). Subtribe 
Lespedezinae consist of three genera: Campylotropis, Lespedeza, 
and Kummerowia (Figure  4). Since the first Chinese species of 
Campylotropis (C. macrocarpa) was described as Lespedeza 
macrocarpa Bunge (Bunge, 1835), a number of species have 
been recorded under Lespedeza, Campylotropis was thought to 
be  derived from Lespedeza (Fu, 1987). However, molecular 
phylogenetic studies based on one or several molecular markers 
found a sister relationship between Lespedeza and Kummerowia 
(Xu et al., 2012; Jabbour et al., 2018). Likewise, whole cp genomes 
in both Jin et al. (2019) and this study confirmed that Lespedeza 
was sister to Kummerowia, and the two genera were then sister 
to Campylotropis.

The intrageneric and interspecific relationships of Campylotropis 
have been unsettled for a long time due to complex morphological 
characteristics and lack of molecular phylogenetic studies (e.g.,  
Jabbour et  al., 2018). Our results strongly support Campylotropis 
as a monophyletic group, consisting of three lineages (i.e., A, B, 

and C; Figure  4). Lineage A contains only one species, C. bonii, 
which was sister to all the remaining species of Campylotropis 
(lineage B and lineage C). Species from lineage C were mostly 
restricted in southwestern China and Southeast Asia, while lineage 
B contained regional endemic and widely distributed species. For 
example, among species in lineage B, C. wilsonii is endemic to 
western Sichuan while C. macrocarpa is distributed 
throughout southwestern China and East Asia (Huang et  al., 
2010). However, the relationships among the three lineages were 
not resolved, as the support value of the sister relationship 
between lineage B and lineage C was relatively low (Figure  4; 
Supplementary Figure S4), and the BI inference resulted in a 
different topology (Supplementary Figure S5). The former topology 
agrees with a previous study that included five Campylotropis 
species in the phylogenetic analysis of the tribe Desmodieae, but 
the results were only based on several molecular markers: chloroplast 
(rbcL, psbA-trnH) and nuclear (ITS-1) DNA sequences (Jabbour 
et  al., 2018). Thus, phylogenetic studies with more extensive 
sampling and nuclear genomic data are needed to elucidate the 
intrageneric relationships of Campylotropis.

Selective Pressure
Positive selection is assumed to play key parts in the adaptation 
of organisms to diverse environments (Moseley et  al., 2018), 
while negative (purifying) selection is a ubiquitous evolutionary 
force responsible for genomic sequence conservation across 
long evolutionary timescales (Cvijović et al., 2018). For example, 
the positive selection pressure of genes related to photosynthesis 
was found less than other types of genes (Du et  al., 2016; 
Gao et  al., 2018; Li et  al., 2020). As expected, the ω values 
for most genes, especially photosynthesis genes, were less than 
1, either in Campylotropis or in background branches (Figure 5). 
The two genes under significant positive selection in 
Campylotropis: atpF and rps19 (ωf > 1; p < 0.05) were also found 
under positive selection in other species, e.g., atpF in two 
deciduous Quercus species (Yin et  al., 2018), and rps19 in 

FIGURE 5 | The ratio of non-synonymous (dN) and synonymous (dS) substitutions (dN/dS; ω) for protein-coding genes shared by the Desmodieae species. The 
asterisks under the gene names indicate statistical significance (p < 0.05) between the null hypothesis and the alternative hypothesis.
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Garcinia paucinervis (Wang et  al., 2021). As indicated in Yin 
et  al. (2018), atpF gene is highly divergent between deciduous 
and evergreen sclerophyllous oaks since the former loses its 
leaves in cold and drought seasons. Despite having ωf < 1, eight 
genes (ndhC, ndhD, psbA, rpoC1, rpoC2, rps4, ycf1, and ycf2) 
significantly accelerated their evolution in Campylotropis 
compared to background branches (ωf > ωb, p < 0.05). Some of 
them were reported to be  under significant positive selection 
in other taxa, such as ycf1 in seed plants (Zheng et  al., 2017), 
ndhC in Echinacanthus (Gao et al., 2019), and rpoC2 in Rehmannia 
(Zeng et  al., 2017). Therefore, these positively selected and 
fast-evolving genes may play an important role in the adaptation 
of Campylotropis species to arid soils and various types of habitats.

CONCLUSION

In this study, we  assembled 21 whole cp genomes for 
Campylotropis spp. Comparative analysis of the cp genome 
size, structure, expansion and contraction of IR boundaries, 
number of genes, GC content, and pattern of SSRs revealed 
high similarities among the Campylotropis cp genomes. The 
activities of long sequence repeats contributed to the variation 
in genome size and gene content in Campylotropis cp genomes. 
The Campylotropis cp genomes showed moderate sequence 
variation, and 13 candidate regions were identified for further 
studies of species identification and phylogenetic studies. We also 
reported one more case of matK pseudogene for legume species 
in C. bonii. The phylogenetic analysis confirmed the monophyly 
of Campylotropis and the sister relationship between Lespedeza 
and Kummerowia, the latter two genera were then sister to 
Campylotropis. And, its intrageneric relationships based on 
genomic scale data were firstly reported in this study. The 
two positively selected genes (atpF and rps19) and eight fast-
evolving genes identified in this study may help us to understand 
the adaptation of Campylotropis species.
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