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Triticum aestivum (wheat), a major staple food grain, is affected by various biotic
stresses. Among these, fungal diseases cause about 15–20% of yield loss, worldwide. In
this study, we performed a comparative analysis of protein-protein interactions between
two Puccinia graminis races (Pgt 21-0 and Pgt Ug99) that cause stem (black) rust
in wheat. The available molecular techniques to study the host-pathogen interaction
mechanisms are expensive and labor-intensive. We implemented two computational
approaches (interolog and domain-based) for the prediction of PPIs and performed
various functional analysis to determine the significant differences between the two
pathogen races. The analysis revealed that T. aestivum-Pgt 21-0 and T. aestivum-Pgt
Ug99 interactomes consisted of ∼90M and ∼56M putative PPIs, respectively. In the
predicted PPIs, we identified 115 Pgt 21-0 and 34 Pgt Ug99 potential effectors that
were highly involved in pathogen virulence and development. Functional enrichment
analysis of the host proteins revealed significant GO terms and KEGG pathways
such as O-methyltransferase activity (GO:0008171), regulation of signal transduction
(GO:0009966), lignin metabolic process (GO:0009808), plastid envelope (GO:0009526),
plant-pathogen interaction pathway (ko04626), and MAPK pathway (ko04016) that are
actively involved in plant defense and immune signaling against the biotic stresses.
Subcellular localization analysis anticipated the host plastid as a primary target for
pathogen attack. The highly connected host hubs in the protein interaction network
belonged to protein kinase domain including Ser/Thr protein kinase, MAPK, and cyclin-
dependent kinase. We also identified 5,577 transcription factors in the interactions,
associated with plant defense during biotic stress conditions. Additionally, novel host
targets that are resistant to stem rust disease were also identified. The present study
elucidates the functional differences between Pgt 21-0 and Pgt Ug99, thus providing
the researchers with strain-specific information for further experimental validation of the
interactions, and the development of durable, disease-resistant crop lines.

Keywords: wheat, stem rust, computational modeling, effectors, interolog method, domain-based approach,
disease resistance
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INTRODUCTION

Triticum aestivum L. (family Poaceae) is one of the highly
cultivated staple food grains, and ranks third in terms of global
production, owing to about 35% of the world’s food grain produce
(Obembe et al., 2021). It contributes significantly to the daily
nutrient intake of the human population, thus providing plant-
derived proteins, carbohydrates, calories, vitamins, and a wide
range of other nutrients (Shewry and Hey, 2015; Miransari
and Smith, 2019). The gradual increase in the world’s human
population leads to increased threat to global food security, which
further demands to improve the crop yield substantially to meet
the food supply of the world in the future (El Sabagh et al., 2021).
Apart from the climate change, the global wheat production is
also affected by various unpredictable biotic and abiotic stresses,
which further leads to reduced genetic diversity of the crop (Afzal
et al., 2015). Annually, the diseases caused by plant-pathogenic
fungi lead to yield losses varying from 15 to 20%. Among these
pathogenic fungi, the obligately biotrophic rust fungi emerge as a
major threat to wheat production, leading to an economic loss of
$4.3–5.0 billion dollars (Figueroa et al., 2018).

Stem (black) rust, caused by Puccinia graminis f. sp. tritici
(Pgt), is considered as one of the highly destructive diseases of
wheat. The occurrences of the disease have also been found in
crops such as barley, rye, and other cereals (Dean et al., 2012).
The disease can cause enormous yield losses ranging from 50
to 70% or more, depending on the environmental conditions
(Saari and Prescott, 1985). Stem rust is also responsible for
contraction of grain size, reduced photosynthetic area, diversion
of photosynthetic assimilates, and water loss (Willocquet et al.,
2021). Pgt consists of a wide range of strains, the most significant
being the African strain “Ug99” (race TTKSK), which later
evolved into variants of its own (Olivera et al., 2012; Li et al.,
2019). Another Pgt isolate, “21-0,” was found in Australia, which
has been used for the comparative study of stem rust in wheat.
The draft genome of Pgt 21-0 was built using reference-based and
de novo assembly (Upadhyaya et al., 2015). The infection by Pgt
occurs in a series of steps, typically initiating by the germination
of urediniospores on the surface of plant stem, followed by the
formation of appressorium, mitosis of nuclei, and differentiation
of haustorial mother cells into haustoria, which acquires nutrients
from the plant cells (Leonard and Szabo, 2005).

The tremendous losses caused by the fungal pathogens
have spurred the researchers to study the in-depth infection
mechanism of the pathogen. Various studies have progressed
the detection and genetic mapping of genes, and QTLs that
confer resistance to Pgt in wheat (Duplessis et al., 2011), but
a frequent resistance breakdown has been observed, owing to
mutations in the Pgt isolates (Stokstad, 2007). The fungicides
are an effective way against the fungal pathogens, but these
pathogens develop resistance against the fungicides/chemicals,
and also the fungicides have a negative impact on human
health and environment (Van de Wouw et al., 2014). The
protein-protein interactions (PPIs) in plant cells perform various
functions, involving immune responses against biotic or abiotic
stresses. The pathogens secrete effector proteins into the plant
cell, sabotage the intercellular mechanisms of the host cell, and

cause infection (Garbutt et al., 2014). Thus, the understanding
of pathogen infection and the subsequent plant cell defense
response is highly crucial. Computational prediction of PPIs
reveals relationship among the proteins on a genome-wide
scale. Various computational methods exist for the prediction
of host-pathogen interactions (HPIs) such as protein sequence
homology-based interolog approach, domain-based approach,
gene co-expression, phylogenetic profiles, and others (Matthews
et al., 2001; Ng et al., 2003; Sun et al., 2007; Piya et al., 2014;
Kataria et al., 2022). In the present study, we delineated the
PPIs between T. aestivum and Puccinia species proteins by
employing two most widely used computational approaches,
i.e., interolog (homology-based) and domain-based approach.
Different molecular strategies for PPI detection are available,
but those are expensive, time-consuming, and labor-intensive
(Chen et al., 2008). Our research is mainly focused on elucidating
genome-wide scale PPIs to unravel the complex intermolecular
networks of T. aestivum-Puccinia interactome.

MATERIALS AND METHODS

Data Source
The whole proteomes of T. aestivum, Pgt isolate 21-0, and
Pgt isolate Ug99 were obtained from Ensembl Plants,1 National
Center for Biotechnology Information (NCBI),2 and Ensembl
Fungi,3 respectively. All the proteomes were analyzed with CD-
HIT (Fu et al., 2012) at 100% to cluster the identical proteins. The
total number of proteins are described in Table 1. In the research
analysis, the proteins with prefixes “Traes,” “KAA,” and “GMQ”
refer to T. aestivum, Pgt 21-0, and Pgt Ug99 proteins, respectively.

Interactome Prediction Between Triticum
aestivum and Puccinia Species
The HPIs between T. aestivum and Puccinia species were
predicted using two most widely implemented computational
approaches: interolog-based, and domain-based. Interolog
method is based on sequence homology that determines the
conserved interactions between protein pairs of two species
(Nourani et al., 2015). The interolog-based approach employs
seven protein-protein interaction (PPI) databases, viz., BioGRID
(Chatr-Aryamontri et al., 2017), DIP (Salwinski et al., 2004),
HPIDB (Kumar and Nanduri, 2010), IntAct (Kerrien et al.,
2012), MINT (Licata et al., 2012), PHI-base (Urban et al.,
2020), and STRING (Szklarczyk et al., 2019). The interaction
data from these databases was downloaded and implemented
locally using SQL. The proteomes of host and pathogen species
are aligned against these PPI databases using BLAST v2.7.1,
followed by filtering of the results using random BLAST
parameter combinations of sequence identity (30, 40, 50,
and 60%), sequence coverage (40, 50, 60, and 80%), and
e-value (1e-10, 1e-50, 1e-05, 1e-04, 1e-20, 1e-30, and 1e-25).
In the past, there are no substantial reports for selecting an

1https://plants.ensembl.org/index.html
2https://www.ncbi.nlm.nih.gov/
3https://fungi.ensembl.org/index.html
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TABLE 1 | Protein datasets used in the study.

Species Number of proteins

Downloaded Non-redundant

Triticum aestivum 133,346 104,701

Puccinia graminis 21-0 (Pgt 21-0) 37,843 35,376

Puccinia graminis Ug99 (Pgt Ug99) 24,524 22,524

appropriate combination of BLAST parameters to predict PPIs
https://academic.oup.com/bib/article/22/3/bbz162/5842243. A
study on human and Escherichia coli HPIs determined the
homologs using 30% sequence identity, 80% coverage, and
e-value ≤1e-10 (Bose et al., 2017). In Arabidopsis-Pseudomonas
system, the researchers identified homologs with 80% coverage,
1e-04 e-value, and 50% identity (Sahu et al., 2014). In our
study, using different BLAST parameters (identity, coverage,
and e-value), 112 combinations were generated, and an
optimal combination was selected based on the maximum
number of effectors.

On the other hand, in the domain-based approach, three
domain-domain interaction (DDI) databases were implemented
locally: 3did (Mosca et al., 2014), DOMINE (Raghavachari et al.,
2008), and IDDI (Kim et al., 2012). In this method, the PPIs are
predicted on the basis of Pfam domain composition. The proteins
of host and pathogen were analyzed against Pfam database
using “hmmscan” program in HMMER v3.3.1, which identified
the significant domains. To filter the results of hmmscan, an
e-value of 1e-23 and coverage 0.2 was used for host proteins,
while those of pathogen proteins were filtered with e-value and
coverage of 1e-17 and 0.45, respectively. The identified Pfam
domains were then further used for the prediction of PPIs
using local SQL queries. The details of number of sequences,
and interaction pairs from each database are available in
Supplementary Material 1, Sheet 1.

Effector and Secretory Proteins
Prediction
Effector proteins, secreted by the fungi, interact with host
proteins and manipulate the immune responses of host cell
(Sonah et al., 2016). The secretory proteins contain a secretion
signal peptide, less than 300 amino acids, that employs various
cell wall degrading enzymes and phytotoxins to modulate the
crucial host cell defense mechanisms (Kim et al., 2016). To
identify the effector proteins, we analyzed the proteomes of Pgt
21-0 and Pgt Ug99 in EffectorP 2.04 (Sperschneider et al., 2018),
while the secretory proteins were identified using SignalP-5.05

(Almagro Armenteros et al., 2019).

Functional Enrichment Analysis of the
Proteins
The classification of the proteins into different functional
categories such as molecular function, biological process,

4http://effectorp.csiro.au/
5https://services.healthtech.dtu.dk/service.php?SignalP-5.0

and cellular component was carried out by obtaining the
functional annotation of the proteins. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analyses were conducted using the clusterProfiler (Yu et al.,
2012) package in R. GO databases for T. aestivum and
Puccinia species was created locally using makeOrgPackage
function of the R package “AnnotationForge.” GO enrichment
was then performed by implying Benjamini and Hochberg
test correction method (Benjamini et al., 1995), followed by
filtering the enriched terms on adjusted p-value cutoff of
≤0.05. Similarly, KEGG enrichment was also conducted at a
p-value cutoff of 0.05.

Subcellular Localization
According to the studies, a high correlation is observed
between the protein function and its subcellular localization,
which provide more insights into the protein function
(Chi, 2010). The pathogens secrete effector proteins into
the host cell, which then translocate to various cellular
compartments, and suppress the immune system of the
host (Sperschneider et al., 2017). Thus, the prediction of
subcellular localization of the host and pathogen proteins
is an essential component of the plant-pathogen interaction
studies. The subcellular localization of T. aestivum proteins
was performed using standalone version of Support Vector
Machine (SVM)-based tool, Plant-mSubP (Sahu et al.,
2021). While for the subcellular localization of Puccinia
proteins, we employed a deep learning-based tool, DeepLoc 1.0
(Almagro Armenteros et al., 2017).

Comparison Between Host-Pathogen
Interactions of Pgt 21-0 and Pgt Ug99
Different races of P. graminis cause stem rust infection in
wheat. We were interested in comparing the PPIs between
two major strains (Pgt 21-0 and Pgt Ug99) to uncover the
differences between the two fungal species. With regard to
this, we identified the orthologs between both the fungal
species using OrthoFinder, which implements phylogenetic-
based prediction of the orthologs (Emms and Kelly, 2019).
The interactions from the orthologs were referred to as
common subnetwork. Further, we also focused on the strain-
specific functional analysis of the Puccinia species. For this,
we analyzed the “unique proteins,” i.e., the Puccinia species
proteins that were not the orthologs of each other. This
provided us more insights into the functionality of an
individual strain.

Network Visualization and Analysis
The protein-protein interaction network is an extensively
employed tool to study the functioning of cellular machinery
by highlighting the crucial protein complexes and the
relationship between the proteins, based on various network
parameters such as node degree, centrality, etc. (Agapito
et al., 2013). We analyzed the protein networks using
the most widely used tool, Cytoscape v3.8.2 (Shannon
et al., 1971). Various in-built layout algorithms and styles
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were used to analyze and enhance the visualization of
the network.

RESULTS AND DISCUSSION

To predict the protein-protein interactions, the proteomes
of T. aestivum and Puccinia species were randomly paired,
followed by the estimation of the interaction probability
of an individual pair using interolog, and domain-based
approaches. The interactome was predicted using the BLAST
parameter combination of 30% sequence identity, 40% sequence
coverage, and e-value of 1e-04. Using both the computational
approaches, the predicted interactome for T. aestivum-Pgt 21-
0 consisted of 90,493,282 interactions, whereby 84,125 host
proteins interact with 9,022 pathogen proteins, of which 115
proteins were effectors (Table 2). While the T. aestivum-
Pgt Ug99 interactome accounted for 56,755,414 interactions,
involving 84,069 host and 5,863 pathogen proteins, consisting
of 34 effectors (Table 3). The randomly employed (112)
BLAST parameter combinations, and the resulting interactions
from each combination for Pgt 21-0 and Pgt Ug99 have
been described in Supplementary Material 1, Sheets 2, 3,

TABLE 2 | Triticum aestivum-Pgt 21-0 interactome.

Interaction
database

Number of
interactions

Number of
host proteins

Number of pathogen
proteins

Interolog-based

BioGRID 22,129,912 53,400 7,214

DIP 2,484,487 27,287 4,839

HPIDB 62,505 6,844 418

IntAct 8,870,790 49,486 6,641

MINT 2,497,106 23,672 5,251

PHI-base 154 7 22

STRING 60,582,077 83,058 5,369

Total (Interolog) (I) 73,877,190 83,821 7,758

Domain-based

3DID 2,336,648 27,053 4,891

DOMINE 11,148,777 25,649 5,130

IDDI 22,963,441 33,862 5,982

Total (Domain) (II) 27,163,377 35,734 6,305

I and II (combined) 90,493,282 84,125 9,022

I and II (consensus) 10,547,285 31,143 4,689

Interolog (unique) 63,329,905 83,816 7,755

Domain (unique) 16,616,092 34,159 6,190

Total (Interolog) (I): The predicted HPIs from all the seven interolog databases were
merged and duplicates were removed.
Total (Domain) (II): The predicted HPIs from all the three domain databases were
merged and duplicates were removed.
I and II (combined): The predicted HPIs from both the methods were merged and
the duplicates were removed.
I and II (consensus): From both the methods, the consensus of the predicted HPIs
was taken and duplicates were removed.
Interolog (unique): The unique HPIs containing the interactions only from interolog-
based method.
Domain (unique): The unique HPIs containing the interactions only from domain-
based method.

TABLE 3 | Triticum aestivum-Pgt Ug99 interactome.

Interaction
database

Number of
interactions

Number of
host proteins

Number of pathogen
proteins

Interolog-based

BioGRID 14,058,763 53,443 4,453

DIP 1,613,309 27,005 3,021

HPIDB 41,663 6,883 266

IntAct 5,752,184 48,653 4,122

MINT 1,641,961 23,550 3,286

PHI-base 77 7 11

STRING 38,432,627 83,007 3,620

Total (Interolog) (I) 46,736,430 83,767 5,104

Domain-based

3DID 1,510,939 27,010 2,942

DOMINE 6,770,500 25,471 3,117

IDDI 13,827,014 33,824 3,602

Total (Domain) (II) 16,528,057 35,737 3,809

I and II (combined) 56,755,414 84,069 5,863

I and II (consensus) 6,509,073 30,901 2,834

Interolog (unique) 40,227,357 83,759 5,100

Domain (unique) 10,018,984 34,272 3,741

Total (Interolog) (I): The predicted HPIs from all the seven interolog databases were
merged and duplicates were removed.
Total (Domain) (II): The predicted HPIs from all the three domain databases were
merged and duplicates were removed.
I and II (combined): The predicted HPIs from both the methods were merged and
the duplicates were removed.
I and II (consensus): From both the methods, the consensus of the predicted HPIs
was taken and duplicates were removed.
Interolog (unique): The unique HPIs containing the interactions only from interolog-
based method.
Domain (unique): The unique HPIs containing the interactions only from domain-
based method.

respectively. For clarification, the term “effectors” has been used
to represent the pathogen proteins that serve both as effector and
secretory proteins.

Puccinia Orthologs Interactome
The ortholog analysis resulted in 1,958 proteins that are
orthologs between Pgt 21-0 and Pgt Ug99. These orthologs
were found to interact with 83,340 host proteins, involved in
21,901,125 interactions (referred to as “common subnetwork”
throughout the analysis). For the subsequent functional
analysis, the interactions from ortholog analysis were taken
into consideration.

Highly Connected Protein Hubs
The host-pathogen protein-protein interaction network
represents the functional clustering of the interacting proteins,
which allows in-depth understanding of a specific protein with
respect to the proteins in its surrounding (Wachi et al., 2005;
Jonsson and Bates, 2006). The identification of the protein
function helps gaining the knowledge of the disease infection
mechanism by providing information about various biological
processes and molecular mechanisms (Kuzmanov and Emili,
2013). In our study, the proteins hubs were determined from
common subnetwork using the metric “node degree.” The
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FIGURE 1 | Protein-protein interaction network for top 20 host protein hubs.
Blue nodes represent host proteins, red nodes are pathogen proteins, and
green nodes are effector proteins. Orange edges depict the interactions from
interolog-based approach, while cyan edges belong to domain-based
approach.

average degree of host and pathogen proteins was found to
be 263 and 11,185, respectively (Supplementary Material
2, Sheets 1, 2). The pathogen proteins have higher degree
in comparison to host proteins, which is in-line with the
host-pathogen protein ratio obtained by the researchers in
the past (Li et al., 2012; Kurubanjerdjit et al., 2013). The
top 20 protein hubs for each host and pathogen have been
discussed below.

Triticum aestivum Protein Hubs
The protein network analysis revealed that majority of the host
proteins belonged to protein kinase domain family, of which
serine/threonine (Ser/Thr) protein kinase was found to form
highly interconnected hubs (TraesCS4D02G250600.1.cds1,
TraesCS7A02G437400.1, TraesCS5B02G254600.1.cds1, TraesCS
5A02G255500.1.cds1, TraesCS5D02G263800.1.cds1, TraesCS
2D02G120200.1, TraesCS3A02G247700.1.cds1, TraesCS4B02G2
60700.1.cds1, TraesCS3B02G271700.1.cds1, TraesCS4B02G1231
00.1, and TraesCS4A02G192300.1) (Figure 1). The physiological
importance of Ser/Thr kinases play a crucial role in the
regulation of various environmental stress responses, particularly
in signaling pathway (País et al., 2009). SnRK Ser/Thr kinase
is divided into 3 subgroups: SnRK1, SnRK2, and SnRK3 (Mao

et al., 2010). In wheat, PKABA1 (a member of SnRK2) has been
reported to be induced by ABA. The levels of ABA increase
during stress conditions, thus showing its role in plant defense
(Johnson et al., 2002). Another most interconnected protein
(TraesCS6D02G339600.1), interacting with 1,497 pathogen
proteins, belonged to heat shock protein 70 (hsp70) family.
The members of hsp70 are thought to play a crucial role in
different cellular processes during biotic and abiotic stress
conditions (Usman et al., 2017). These proteins are also involved
in R protein stability, and regulation of immune signaling
pathways (Van Ooijen et al., 2010; Park and Seo, 2015). Five host
proteins (TraesCS5A02G295800.1, TraesCS7A02G029700.1,
TraesCS4A02G336800.2, TraesCS5B02G536500.1, and
TraesCS5D02G534000.2) were identified as mitogen-activated
protein kinases (MAPKs), which are known to be critical in
response to pathogenic infection including the generation of
hypersensitive response (HR), defense hormone responses,
and ROS signaling (He et al., 2020). Another major hub
was formed by the proteins (TraesCS5A02G521700.1,
TraesCS4B02G353600.1, and TraesCS4D02G347600.1) that
function as cyclin-dependent kinases (CDKs). A study shows
the regulation of Arabidopsis resistance against Alternaria
brassicicola by CDK8 that regulates the intermediates of the
secondary metabolites, hydroxycinnamic acid amides (HCAAs),
that play a role in fungal resistance. Also, an increased resistance
against Botrytis cinerea was observed in the cdk8 mutant (Bessire
et al., 2007; Zhu et al., 2014).

Puccinia Protein Hubs
The common subnetwork analysis indicated that the
largest hub was formed by aurora kinase that involves the
Puccinia species protein GMQ_15838T0/KAA1117900.1,
interacting with 57,744 host proteins. Various studies
reveal the role of aurora kinase in mitotic processes
such as chromosome segregation and cytokinesis, thus
promoting the growth of fungal pathogens (Tückmantel
et al., 2011; Bavetsias and Linardopoulos, 2015). Heat shock
protein 70 superfamily forms another major hub involving
seven pathogen proteins GMQ_09878T0/KAA1086976.1,
GMQ_23673T0/KAA1112990.1, GMQ_10843T0/KAA107691
6.1, GMQ_14817T0/KAA1118905.1, GMQ_14422T0/KAA108
6735.1, GMQ_13441T0/KAA1119794.1, and GMQ_05646
T0/KAA1072403.1. Heat shock proteins are conserved molecular
chaperones that play characteristic role in activating essential
signal transducers in pathogenic fungi (Tiwari et al., 2015).
In Fusarium pseudograminearum, 14 FpHsp70 genes were
highly expressed at the time of crown rot infection in wheat.
While the knockout of a Hsp70 homolog gene (FpLhs1) in ER
lumenal resulted in reduction of fungal growth and virulence,
implying the role of HSPs in pathogenicity (Chen et al.,
2019). The pathogen proteins (GMQ_03421T0/KAA1111489.1,
GMQ_12489T0/KAA1117418.1, GMQ_08991T0/KAA108750
2.1, GMQ_13869T0/KAA1085281.1, and GMQ_15253T0/KAA1
066088.1) were found to function as calcium/calmodulin-
dependent kinases (CaMKs). Based on hidden Markov model,
the fungal CaMKs are classified into different families (CAMK1,
CAMKL, RAD53, and CAKM-Unique), and subfamilies (Kin4,
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FIGURE 2 | Over-representation of top 15 GO terms from each category (molecular function, cellular component, and biological process) for the host proteins,
based on enrichment score.

Kin1, GIN4, PASK, AMPK, CHK1, and MARK) (Goldberg
et al., 2013; Jiao et al., 2017). FgKin1 and FgKin4 in wheat
fungal pathogen, Fusarium graminearum, are reported
to be responsible for growth and pathogenesis (Wang
et al., 2011; Luo et al., 2014). Similarly, the pathogen hubs
formed by two Ser/Thr protein kinases: glycogen synthase
kinase (GMQ_16722T0/KAA1117762.1), and AGC kinase
(GMQ_11492T0/KAA1086570.1) are critical for pathogenicity
and development in fungi (Qin et al., 2015; Fabri et al., 2019).
The cluster of proteins (GMQ_05648T2/KAA1078421.1,
GMQ_24430T0/KAA1114232.1, and GMQ_09263T0/KAA11
11598.1) served as cyclin-dependent kinases (CDKs).
Researchers in the past established that the rice blast
fungus, Magnaporthe oryzae, requires CDK subunit
Cks1 for infection-associated development (Yue et al.,
2017). Two proteins, GMQ_11353T0/KAA1076537.1 and
GMQ_19044T0/KAA1114913.1, were associated with RNA-
binding domain/RNA recognition motif. In Ustilago maydis, the
causal agent of smut disease in corn, RNA-binding proteins were
found to be involved in the fungal growth and development
during the infection process (Becht et al., 2005).

The protein hubs analysis indicated that the pathogen proteins
invade and subvert the host immune machinery, while the host
activates various signaling cascades and hormones in response to
the pathogen attack. Additionally, the hubs significantly revealed
the crucial protein domain families that are involved in the
disease infection and defense mechanisms in the pathogen and

host, respectively, thus suggesting the cross-talks between the
host and pathogen.

Gene Ontology Analysis: Unifying the Biology of Host
and Pathogen Proteins
Gene Ontology enrichment analysis is an effective approach
of deciphering the underlying biological process, molecular
function and cellular component of the proteins of an organism
(Tomczak et al., 2018). GO enrichment of the host and pathogen
proteins was carried out using enrichment score [-log10(P-
value)]. The enrichment analysis revealed that 83,340 host
proteins in the common subnetwork are involved in 3,570
GO terms, categorized into biological process (2,167), cellular
component (408), and molecular function (995) (Figure 2).
The highly enriched GO terms in different categories involve
gametophyte development (GO:0048229), regulation of response
to stimulus (GO:0048583), plastid envelope (GO:0009526),
chloroplast envelope (GO:0009941), O-methyltransferase activity
(GO:0008171), xyloglucan:xyloglucosyl transferase activity
(GO:0016762), and other significant GO terms (Supplementary
Material 2, Sheet 3). Various studies have reported the direct
or indirect involvement of the above-mentioned significant
biological processes/cellular components/molecular functions
in plant defense mechanisms. Ubiquitin-conjugating enzymes
(E1, E2, and E3) are associated with ubiquitination, which
regulates various plant immune signals. In Arabidopsis, UBC22
(E2 subfamily) showed its involvement in female gametophyte
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FIGURE 3 | Visualization of six Triticum aestivum proteins belonging to chromosome 3D in GO:0008171 (O-methyltransferase activity). Blue nodes represent host
proteins, red nodes are pathogen proteins, and green nodes are effector proteins. Orange edges depict the interactions from interolog-based approach, while cyan
edges belong to domain-based approach.

development, indicating its role in plant defense (Devoto et al.,
2003; Wang et al., 2016). The enzyme hydroperoxide lyase
(HPL) in plastid envelope is known to catalyze C6-aldehyde
that play a role in plant defense. The attack of pathogenic
fungi, B. cinerea, on Arabidopsis showed an upregulation
of AtHPL expression, thus enhancing C6-aldehyde levels,
which further inhibited the pathogen growth (Howe and
Schilmiller, 2002; Kishimoto et al., 2008; Breuers et al., 2011).
Caffeic acid 3-O-methyltransferases (COMT) are implicated
in biosynthesis of lignin, which provides biotic/abiotic stress
resistance to the plants (Bhuiyan et al., 2009; Kataria and
Kaundal, 2021). In wheat, the COMT gene (TaCOMT-3D)
showed significantly high expression level on infection with
Rhizoctonia cerealis. TaCOMT-3D was localized in chromosome
3D (Wang et al., 2018). In our analysis, we identified six wheat
proteins (TraesCS3D02G392500.1, TraesCS3D02G540200.1,
TraesCS3D02G047700.1, 394TraesCS3D02G047800.1,
TraesCS3D02G138700.1, and TraesCS3D02G292000.1)
that belong to chromosome 3D and are associated with
O-methyltransferase activity. These six host proteins were found
interacting with 307 pathogen proteins, accounting to 1,611
interactions (Figure 3). This provides concrete evidence of the
involvement of host proteins in plant defense against fungal
attack. Furthermore, lignification also restricts the diffusion of
nutrients from host to pathogen, thus suggesting the inability of
haustoria to maintain the biotrophic relationship with the host,
resulting in reduced pathogen infection.

On the other hand, 1958 pathogen proteins associated with
the host proteins were involved in 1,362 GO terms. These include
significant GO terms such as proteolysis (GO:0006508), protein
peptidyl-prolyl isomerization (GO:0000413), endoplasmic
reticulum (GO:0005783), GTPase activity (GO:0003924), and
hydrolase activity (GO:0004553). These processes are known to
be involved in pathogen virulence and development (Pogány
et al., 2015; Pinter et al., 2019). The detailed GO enrichment
of Puccinia species has been provided in Supplementary
Material 2, Sheet 4.

Plant Defense and Immune Signaling Pathways
During Biotic Stress
The in-depth knowledge of biological pathways of the proteins
helps in better understanding of a PPI network. KEGG
enrichment analysis of the proteins involved in PPIs was
conducted. A total of 399 highly enriched KEGG pathways
were obtained for the host proteins in the common subnetwork
(Supplementary Material 2, Sheet 5). The over-represented
pathways include NF-kappa B signaling pathway (ko04064),
flavonoid biosynthesis (ko00941), biosynthesis of secondary
metabolites (ko01110), plant-pathogen interaction (ko04626),
MAPK signaling pathway (ko04016), and a few more significantly
enriched pathways related to plant defense mechanism. The
top 20 KEGG pathways have been represented in Figure 4.
The nuclear factor kappa B (NF-κB) transcription factor helps
in the regulation of cellular immune responses against diverse
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FIGURE 4 | Representation of top 20 enriched KEGG pathways for the host proteins involved in HPIs, based on enrichment score.

environmental stresses (Zhao et al., 2018). The interaction of
protein NIM1 with transcription factor NF-κB has been reported
to induce systemic acquired resistance (SAR) and gene-for-
gene resistance against the disease in Arabidopsis (Ryals et al.,
1997). The secondary metabolites are known to play a major
role in plant immune responses to external stimuli. In our
analysis, around 4,640 host proteins were found to be involved in
biosynthesis of secondary metabolites pathway. Previous reports
show the activation of secondary metabolites on recognition
of the pathogen-secreted effectors by resistance proteins in the
host (Ahuja et al., 2012; Piasecka et al., 2015). Flavonoids, a
class of secondary metabolites, have been reported to account
for plant development and defense responses against pathogens
in various crops such as cotton (Mathesius, 2018). Among
the aforementioned pathways, the most significant is mitogen-
activated protein kinase (MAPK) signaling pathway, which is
known to play a critical role in plant immune signaling during
various stresses (Zhang and Klessig, 2001). A study revealed the
induction of rice MAPKs, OsMKK3, and OsMPK7, during the
infection process of Xanthomonas oryzae that causes leaf blight
disease in rice. The overexpression of OsMKK3 and OsMPK7
genes during pathogenesis also suggested the probable disease
resistance mechanism. Also, the silencing of overexpressed
OsMPK7 lead to disease susceptible plants (Jalmi and Sinha,
2016). Also, transcription factors are known to be activated by
MAPKs by the process of phosphorylation, thus regulating the
immune response against the pathogens by integrating defense
signals from various MAPKs (Nadal-Ribelles et al., 2019).

We also performed the KEGG pathway enrichment of
the pathogen proteins, which revealed important pathways
such as MAPK signaling pathway (ko04016), biosynthesis
of secondary metabolites (ko01110), and others, which
have a direct or indirect relationship with pathogenicity
(Supplementary Material 2, Sheet 6). The host proteins are
also involved in these pathways, which suggests the potential
interaction of host and pathogen proteins during plant
defense response.

Thus, the functional enrichment analysis suggested significant
molecular processes and biological pathways in which the host
and pathogen proteins are involved. A comprehensive analysis
of the enriched processes/pathways can further enhance the
study of host-pathogen interaction mechanism, and other related
biological processes occurring within the host cell.

Plastid: A Primary Target for Pathogen Attack in the
Host
The proteins are translocated to various subcellular
compartments, where they perform specific biological functions,
thus revealing the physiology of the cell. Some proteins are
also distributed to multiple cellular locations, depending on
the sorting signal (Briesemeister et al., 2010). The subcellular
localization is also known to be statistically correlated with
the protein function, and its gene expression levels (Garapati
et al., 2020). A significant number of novel proteins have been
identified using sequencing technologies, but their subcellular
location remains unknown.

Frontiers in Plant Science | www.frontiersin.org 8 June 2022 | Volume 13 | Article 895480

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-895480 June 15, 2022 Time: 14:39 # 9

Kataria and Kaundal Unraveling the Complete Wheat-Stem Rust Interactome

FIGURE 5 | Subcellular Localization of the (A) host proteins, and (B) pathogen proteins involved in the common subnetwork.

TABLE 4 | Stem rust resistance genes and QTLs mapped on various
T. aestivum chromosomes.

Gene/QTL Chromosome
number

References

Stem rust resistance
genes

Sr2 3BS Spielmeyer et al., 2003

Sr12 3B Crossa et al., 2007

Sr19 2B

Sr23 2B

Sr26 6AL

Sr31 1BS

Sr36 2B

Sr40 2B

Sr13 6AL Admassu et al., 2011

Sr22 7AL Upadhyaya et al., 2014

Sr28 2BL Rouse et al., 2012

Sr30 5DL Hiebert et al., 2010

Sr42 6DS Ghazvini et al., 2012

Stem rust resistance
QTLs identified

QSr-sparc-2B 2BS Bokore et al., 2021

QSr-sparc-7A 7AL

QSr-sparc-5A 5AL

QSr-sparc-6A 6AS

QSr-sparc-7B 7BL

We predicted the sequence-based subcellular localization
of the T. aestivum and Puccinia proteins to have a better
understanding of the occurrence of PPIs in a particular
subcellular compartment. The subcellular localization analysis
classified the T. aestivum proteins into 14 categories: plastid
(29.56%), nucleus (23.96%), cell membrane (12.94%), endoplasm
(7.07%), cytoplasm (6.91%), extracellular (6.23%), mitochondria
(5.43%), golgi apparatus (2.74%), multi-target (2.66%), vacuole
(1.75%), peroxisome (0.38%), cell wall (0.17%), endoplasmic
reticulum (0.16%), and lysosome (0.03%) (Figure 5A). 2,218

proteins were found to be multi-target (moonlighting proteins),
performing specific functions in various cellular organelles.
24,633 and 19,966 host proteins were localized in plastid and
nucleus, respectively. Researchers in the past have reported the
presence of host proteins in plastid, which plays an essential
role in intracellular signaling pathways (de Dios Barajas-López
et al., 2013; Caplan et al., 2015). Another study demonstrated the
localization of rice OsVQ domain proteins in plastid and nucleus
using rice protoplast system. OsVQ proteins are considered to be
the co-regulators during immune response against biotic stress
(Kim et al., 2013).

On the other hand, the Puccinia species proteins were
localized in cytoplasm (34.78%), nucleus (24.62%), mitochondria
(14.76%), endoplasmic reticulum (6.54%), cell membrane
(6.54%), extracellular (3.88%), plastid (3.37%), peroxisome
(2.55%), golgi apparatus (1.63%), and lysosome (1.28%)
(Figure 5B). In B. cinerea, two ubiquitin-like (UBL) activating
enzymes, BcAtg3 (E2) and BcAtg7 (E1), were determined to be
localized in cytoplasm (Ren et al., 2018), which is coherent to our
localization prediction. The detailed information of the predicted
subcellular localization of the host and pathogen proteins is
available in Supplementary Material 2, Sheets 7, 8, respectively.
Furthermore, we were also interested in predicting the location
of interactions between the host and pathogen proteins. The
analysis indicated that the host proteins are mostly targeted
by the pathogen proteins in the plastid, whereby 24,237 host
proteins interact with 674 pathogen proteins, accounting to
2,630,496 interactions (Supplementary Material 2, Sheet 9).

Pathogenicity of Effectors During Stem Rust Infection
The rust fungal pathogens secrete effectors (using specialized
structures known as haustoria) which subvert the host cell
immune machinery, followed by enhancing their pathogenicity
in the host cell (Ramachandran et al., 2017). Therefore,
understanding the behavior of the effector proteins is a crucial
step in the HPI analysis. From the common subnetwork, we
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FIGURE 6 | Wheat stem resistance gene Sr22 encoded protein. Blue nodes represent host protein, red nodes are pathogen proteins, and green nodes are effector
proteins. Orange edges depict the interactions from interolog-based approach, while cyan edges belong to domain-based approach.

identified 18 effectors interacting with 43,054 host proteins,
resulting in 156,529 interactions (Supplementary Material 3,
Sheet 1). Among the 43,054 host proteins involved in interactions
with effectors, 3367 were identified to be transcription factors.

The functional analysis suggested that the effector
proteins in the interactions are highly enriched in superoxide
metabolic process (GO:0006801), protein dephosphorylation
(GO:0006470), vesicle (GO:0031982), phosphoric ester hydrolase
activity (GO:0042578), and metabolic pathways (ko01100). These
processes are involved in enhancing pathogenicity, development,
and secretion during the host-pathogen interaction mechanism
(Rodrigues et al., 2011; Tamayo et al., 2016; Rafiei et al.,
2021), which helps in the survival of the pathogen under
various stresses in the host cell. The host proteins associated
with the effectors were found to be involved in secondary
metabolic process (GO:0019748), cell wall polysaccharide
metabolic process (GO:0010383), response to external
biotic stimulus (GO:0043207), plant-pathogen interaction
pathway (ko04626), and plant hormone signal transduction
(ko04075). These processes are actively related to the plant
defense and immune signaling against the biotic stresses.
Thus, the predicted interactions of host proteins with the
effectors can be considered of high confidence, and potential

candidates for further studying the infection mechanism of
stem rust in wheat.

Functional Differences Between Pgt 21-0
and Pgt Ug99
Furthermore, we were interested in deciphering the strain-
specific functionalities of the Pgt 21-0 and Pgt Ug99 proteins
involved in the PPIs. Since these proteins were not the orthologs
of each other, hence these are referred to as unique proteins.
The T. aestivum-Pgt 21-0 interactome predicted 68,465,557
PPIs, involving 83,962 host proteins and 7,063 unique Pgt 21-
0 proteins, of which 100 proteins served as effectors. While
the T. aestivum-Pgt Ug99 interactome involved 83,495 host
proteins and 3,905 Pgt Ug99 proteins (16 effectors), accounting
to 34,854,274 interactions. The low number of pathogens
and predicted PPIs in Pgt Ug99 interactome as compared to
that of Pgt 21-0 suggests the virulence of the pathogen, and
that fewer pathogen proteins (mainly effectors) are capable of
causing the infection.

Unique Puccinia graminis 21-0
The GO enrichment analysis of the unique pathogen proteins
suggested that most of the GO terms were similar to that of

Frontiers in Plant Science | www.frontiersin.org 10 June 2022 | Volume 13 | Article 895480

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-895480 June 15, 2022 Time: 14:39 # 11

Kataria and Kaundal Unraveling the Complete Wheat-Stem Rust Interactome

FIGURE 7 | Stem rust resistance gene complex (Sr22, Sr33, Sr35, and Sr45) causing resistance against TTKSK race. Blue nodes represent host proteins, red nodes
are pathogen proteins, and green nodes are effector proteins. Orange edges depict the interactions from interolog-based approach, while cyan edges belong to
domain-based approach.

the common subnetwork. But we also found 180 significant GO
terms that were unique to Pgt 21-0 proteins. These included
cell wall modification (GO:0042545), NADH dehydrogenase
complex assembly (GO:0010257), cyclin-dependent protein
kinase holoenzyme complex (GO:0000307), and SUMO ligase
complex (GO:0106068). The unique KEGG pathways such as
carotenoid biosynthesis (ko00906), and plant hormone signal
transduction (ko4075) were found to be highly over-represented.
Researchers in past have reported the direct or indirect role of
these GO terms/KEGG pathways in pathogen virulence (Avalos
et al., 2017). The detailed information of the significant GO terms
and KEGG pathways for Pgt 21-0 is available in Supplementary
Material 3, Sheets 2, 3, respectively. For the host proteins
interacting with the unique Pgt 21-0 proteins, only 1 significant
GO term (condensed chromosome kinetochore; GO:0000777)
was identified. While no unique KEGG pathway was obtained for
the host proteins.

Unique Puccinia graminis Ug99
In comparison with the common subnetwork, the unique
Pgt Ug99 were highly enriched in 201 GO terms, including
oxidoreductase activity (GO:0016491), regulation of response

to stress (GO:0080134), snoRNA binding (GO:0030515),
and GTPase complex (GO:1905360). The over-represented
KEGG pathways obtained for these proteins involve
monoterpenoid biosynthesis (ko00902), and polyketide
sugar unit biosynthesis (ko00523), which have been shown
to regulate the fungal growth and development (Chiang
et al., 2009; Dallery et al., 2019; Noar et al., 2019). The
significant GO terms and over-represented KEGG pathways
have been detailed in Supplementary Material 3, Sheets 4,
5, respectively. While no significant GO terms or KEGG
pathways were found for the host associated with unique
Pgt Ug99 proteins.

Role of Transcription Factors in Plant
Defense
Recent molecular studies have elucidated the role of transcription
factors (TFs) in diverse cellular mechanisms such as regulating
gene expression, act as transcriptional activators or repressors,
and in plant defense (Seo and Choi, 2015). The plant immune
signal activation is tightly controlled by the gene-specific
transcription factors that bind to cis-elements in the promoter
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region (Li et al., 2016). In line with this, we predicted
the wheat proteins that serve as transcription factors using
PlantTFDB v5.0 (Jin et al., 2017). This resulted in 5,577
wheat proteins that served as transcription factors in the
common subnetwork, involved in 1,311,301 interactions with
1,600 Puccinia ortholog proteins. These transcription factors
were classified into 55 TF families, of which 28 families are
significantly involved in biotic and abiotic stresses. The major
TF families include basic helix-loop-helix (bHLH), ethylene
responsive factor (ERF), myeloblastosis related (MYB), WRKY,
basic leucine zipper (bZIP), and NAM, ATAF1/2, and CUC2
(NAM). The host proteins and their respective TF family has been
described in Supplementary Material 4 (Sheet 1). Researchers
in the past have extensively demonstrated the crucial role of
various transcription factors in diverse biological processes, and
significant immune signaling pathways in response to plant
defense against pathogen attack (Asai et al., 2002; Wu et al.,
2009; Zander et al., 2010; Pieterse et al., 2012; Zhao et al.,
2012).

Novel Stem Rust-Resistant Host Targets
Our study on the host-pathogen interaction system focuses
on understanding the disease infection mechanism, host
immune response, and identifying the host targets that show
resistance against stem rust disease. The resistance (R) genes
in host are responsible for the recognition of effector proteins
(secreted by pathogens), followed by the initiation of immune
responses. According to gene-for-gene hypothesis, a successful
resistant response requires two genes: R gene in the host and
corresponding avirulence (Avr) effector gene in the pathogen,
which makes resistance dependent on the specific pathogen
strain (Flor, 1971). The mutations in Avr genes leads to
the inability of the corresponding R genes to recognize the
Avr genes, thus resulting in the pathogen to overcome host
resistance (Ellis et al., 2014). The recent advancement in plant
breeding techniques, in conjunction with increasing genomic
resources, has accelerated the identification (and cloning)
process of wheat resistance genes (Andersen et al., 2020).
Scientists also created a wheat R-gene atlas to facilitate the
research community with an efficient resource of resistance
genes in wheat, aiming at reducing the pathogen co-evolution
(Hafeez et al., 2021).

In wheat, a total of 46 R genes are officially designated to
show resistance against stem rust, of which only 20 belong to
T. aestivum (Leonard and Szabo, 2005). A few of the identified
R genes in wheat include Sr5, Sr13, Sr23, Sr27, Sr36, Sr40,
etc., which have varying effect on Pgt races. In wheat, R gene
Sr5 is known to limit the growth of avirulent Puccinia strain,
while Sr22 advances the development of Pgt races (Hatta et al.,
2020; Wu et al., 2020). Various researchers mapped Sr genes
on wheat chromosomes 1BS, 2B, 3B, 5DL, 6AL, 6DS, and
7AL (Table 4), conferring resistance against stem rust during
adult-plant stage. A QTL-based study on wheat identified stable
QTLs: QSr-sparc-2B, QSr-sparc-7A, QSr-sparc-5A, QSr-sparc-6A,
and QSr-sparc-7B on chromosome 2BS, 7AL, 5AL, 6AS, and
7BL, respectively (Bokore et al., 2021). Further, we identified
the PPIs associated with these chromosomes, which accounted
to 9,387,396 PPIs, involving 35,809 host and 1,956 pathogen

proteins. Of the 1,956 pathogen proteins in the interactions, 18
proteins were identified as effectors, involved in 66,772 PPIs
(Supplementary Material 4, Sheet 2). The maximum number
of interactions (1,305,326 PPIs) were identified on chromosome
2B, on which five Sr genes (Sr19, Sr23, Sr28, Sr36, and Sr40)
have been mapped. The plant immune response against various
pathogens is mediated by nucleotide-binding and leucine-rich
repeat (NLR) domain proteins. Among the identified 35,809
host proteins, 2,123 proteins were found to be associated
with NLR domain.

To have deeper insight into the resistance mechanism, we
analyzed Sr22 gene located on chromosome 7A and cloned
using MutRenSeq (Steuernagel et al., 2016). In the predicted
interactome, the protein encoded by this gene was found to
be interacting with 230 pathogen proteins (230 PPIs). The host
protein was actively involved in various plant defense pathways
such as MAPK signaling, plant-pathogen interaction, and plant
hormone signal transduction pathway. Additionally, 4 effectors
were also identified (Figure 6). It has also been reported that
the stem rust resistance genes (Sr22, Sr33, Sr35, and Sr45) form
a complex that effectively confers resistance against TTKSK in
wheat (Hatta et al., 2021). Further, we identified the interactions
associated with this complex in the predicted interactome, which
resulted in 1,051 PPIs, involving 327 pathogen proteins, of
which 4 were effectors (Figure 7). The host proteins involved in
the interactions can be considered as the novel targets for the
breeders for development of disease-resistant lines. Further, the
interaction of these novel host proteins with the effectors are the
potential candidate pairs to understand the immune responses
against the fungal pathogen attack during stem rust disease,
thus giving deeper insights to the infection mechanism and host
defense responses.
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