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This study proposes an optimization-based weather-yield model to reduce the basis

risk of weather-based index insurance. This weather-yield model helps us capture the

growing season’s monthly variation as it involves monthly explanatory weather indices. In

addition, it can capture additional extremeweather effects by including extreme cooling or

heating weather indices. This study presents an innovative machine learning framework

incorporating optimization approaches to ensure the parsimony of weather index models

and the accuracy of crop yield predictions, which can be integrated into the conventional

policy design and pricing process. The advantages of this modeling approach and the

effectiveness of weather index-based insurance based on this approach in reducing basis

risk and revenue risk are demonstrated by applying county-level yield data for mid-season

rice in the Anhui province, China.

Keywords: weather index-based insurance, weather-yield model, basis risk, contract design, optimization

approach

INTRODUCTION

According to the World Food Summit (1996), “food security exists when all people, at all times,
have physical and economic access to sufficient, safe and nutritious food that meets their dietary
needs and food preferences for an active and healthy life.” This widely accepted definition
points to four dimensions of food security, i.e., food availability, food access, utilization, and
stability. Agricultural insurance has been playing an important role in addressing some of these
dimensions by reducing the vulnerability of the global food system to acute food shocks, and
thereby contributing to food security’s resilience and sustainability. However, finding an effective
and sustainable risk management approach for agricultural producers, insurance providers, and
the government has proven to be extremely challenging. The urgency of this problem is further
aggravated by the estimation that food productivity needs to be increased by 70% to feed the world’s
growing population by 2050 (FAO, 2009) and the mounting concerns over possible changes in
climate, which can lead to significant widespread agricultural losses.

Prompted by the critical role of agricultural insurance as a risk mitigation strategy, the primary
focus of this study is to design effective agricultural insurance. Broadly speaking, agricultural
insurance can be classified into two main types of design, namely indemnity-based and index-
based. The key difference between them lies in how the indemnity payment is being determined.
The payout from the indemnity-based insurance links directly to the agricultural producer’s
actual incurred loss while the payout from the index-based insurance depends explicitly on some
pre-specified indexes. Plausible indexes include those based on weather (such as temperature
and rainfall) or remote sensing satellite imagery (such as NDVI). From the point of view of
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the agricultural producers, indemnity-based insurance is
preferred as it directly protects the actual incurred agricultural
loss. The insurance providers, on the other hand, prefer
index-based insurance as it entails fewer administrative and
underwriting expenses. Moreover, index-based insurance also
has the added advantage of alleviating moral hazard and anti-
selection since its payout depends on a pre-defined index that is
transparent and does not subject to manipulation, refer to Skees
(1999), Martin et al. (2001), Turvey (2001), and Barnett and
Mahul (2007). These advantages are particularly more important
in developing countries where farms are typically small [such as
87% of the world’s small farms (<2 ha) are in Asia] and hence
underwriting indemnity-based insurance can be impractical.
Studies by Hazell (1992) and Skees et al. (1999) alluded that the
traditional indemnity-based approaches to crop insurance are
not sustainable and the index-based insurance becomes a viable
solution. See also Collier et al. (2009).

Despite the advantages of index-based insurance, it remains
challenging to design index-based insurance that is effective
and sustainable. The difficulty stems from the construction of
the index. An inappropriate specification of an index can lead
to unacceptable high basis risk. Here basis risk refers to the
mismatch between the actual loss suffered by the producer and
the indemnity from the insurance policy; this is triggered by the
imperfect correlation between the producer’s incurred loss and
the chosen index, refer to, for example, Woodard and Garcia
(2008), Elabed et al. (2013), Carter et al. (2015), and Conradt
et al. (2015). Because of the imperfect correlation, it is possible
to generate the following two types of errors in quantifying basis
risk, commonly known as Type I and Type II. Type I error arises
when a producer does not receive any indemnity despite there
being an incurred loss while Type II error attributes to receiving
indemnity even though there is no incurred loss to the producer.
Both forms of errors are undesirable and raise concerns about
the effectiveness of index-based insurance, refer to Woodard and
Garcia (2008) and Norton et al. (2012) for additional discussion
on quantifying basis risk.

The presence of basis risk is the key reason why the
demand for index-based insurance has remained relatively
low. For example, despite substantial premium subsidy (often
in excess of 60%), index-based insurance piloted in Malawi
and India (Gine, 2009; Cole et al., 2011) has not been very
successful, with participation rates of only 20–30%. For this
reason, designing index-based insurance that is beneficial to all
stakeholders is an ongoing challenging problem. In the context
of agriculture, weather risk is the dominant cause of agriculture
loss, with some estimates that as much as 70–90% of crop
loss is attributed to adverse weather (Olen and Auld, 2019).
Hence, accurate modeling of crop yield and its relation to
weather variables is an important first step in the design of
weather-based index insurance (WII). There is quite an extensive
literature that discusses the feasibility of WII for agriculture.
The weather-yield models in many of these studies are based
on a regression approach. For example, Thompson (1986,
2013) establish a multiple regression framework to explain the
relationship between weather, technology, and crop production.
Based on a large fine-scale weather dataset with county-level

crop yields, Roberts and Schlenker (2011, 2012) explore the
non-linear relationship between weather and crop yields and
conclude that temperatures have different effects on plants
during different phases. Roberts et al. (2012) propose a weather-
yield regression model by exploiting a large fine-scale weather
dataset and including the vapor pressure deficit factor as an
explanatory variable. Extreme temperature indexes are shown
to be more relevant to crop yield by agronomic experiments,
and an econometric model linking yields to extreme weather
index could make a prediction for the yield by regression
equation (Schlenker et al., 2006; Schlenker and Roberts, 2009).
Extreme temperatures, such as Growing Degree Days (GDD),
Heating Degree Days (HDD), and Cooling Degree Days (CDD),
have been the most popular indexes that focus on common
weather derivatives (Mueller and Gradi, 2000; Turvey, 2001;
Cao and Wei, 2004; Richards et al., 2004). Most of these
works have been devoted to designing index-based weather
insurance contracts by using the extreme weather index during
the growing period (see Vedenov and Barnett, 2004; Woodard
and Garcia, 2008). In hedging the risk of extreme temperature,
many works set up new weather indexes and then use the
regression model based on these indexes and yields for hedging
crop yields (Manfredo and Richards, 2009; Xu et al., 2010;
Yu and Babcock, 2010). See Odening and Shen (2014) for
additional discussion on the challenges of hedging weather risk
in agriculture.

Based on the lessons learned from the above studies, the
purpose of the WII promotion should be to improve policy
design and actuarial pricing confidence and to develop a generally
applicable platform for various situations. Schlenker and Roberts
(2009) indicate that crop scientists found the roughly optimal
growing temperatures for corn (29◦C), soybeans (30◦C), and
cotton (32◦C), and the temperatures above the optimum were
harmful to yield. However, no studies investigate the impact of
employing optimal baseline temperatures on the WII contract
design. The work of Schlenker and Roberts (2009) is expanded
upon in this study by exploring the effect of optimal baseline
temperatures on weather-yield models. This study develops a
weather-yield model using the optimal approach and investigates
whether this approach minimizes the basis risk and improves the
efficiency of the designed WII policies.

In this study, we propose a new design of WII. We begin
by offering a new weather-yield model that links crop yields
to weather variables. Rather than modeling crop yields using
the weather variables aggregated over the growing season, our
proposed weather-yield model has the flexibility of incorporating
weather variables monthly, thus reflecting that the effect of
weather variables may be different depending on the growth
stages. Two key features of our proposed regression models are
(i) the optimal baseline temperatures in determining the weather
indexes are obtained via an optimization model that minimizes
the regression model’s Root Mean Square Error (RMSE). The
final adopted regression model provides the best-fit regression
coefficients and gives the lowest RMSE among possible baseline
temperatures. After estimating all possible baseline temperatures
from all potential predictor variables, variables are selected based
on the expected changes in RMSE. Here, a grid search with the
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Leave-One-Out Cross-Validation (LOOCV) is used to minimize
the model’s prediction RMSE to find the optimal parameter
combination; (ii) in addition to using extremely high temperature
as one of the explanatory variables, we also introduce a new
weather variable which captures the extremely low temperature.
In our context, minimizing the RMSE is a suitable objective as the
RMSE is a yardstick for determining the quality of the regression
model in that it quantifies the prediction power of the underlying
model. Hence, constructing a WII using a weather-yield model
with the lowest RMSE can reduce the WII’s basis risk.

To illustrate our proposed regression model and demonstrate
our proposed WII’s effectiveness, we conducted an empirical
study by assuming a contract portfolio in Anhui province, China,
interested in WII hedging its middle-season rice production. We
consider middle-season rice data in the Lujiang, He, Wangjiang,
Tongcheng, Dangtu, Xiuning, Guichi, Dingyuan, Wuhu, and
Feidong counties. These counties are major producers of middle-
season rice in the Anhui province. Our interest in designing
WII for rice is that China is the largest rice production and
consumption country globally, producing and consuming about
30 percent of the world’s rice (USDA, 2018). Hence designing an
appropriate mitigation strategy for rice farmers is of paramount
importance in China and is an active research area. For example,
Yang et al. (2015) designed a particular weather index for the
insurance of heat damage to rice in the Anhui province and
compared the insurance compensation with the actual loss. Shi
and Jiang (2016) propose a composite weather index insurance
model for rice using a panel model and evaluating its efficiency
in hedging the yield risk in Jiangsu province, China.

High temperatures and a poor water supply limit the growth
of middle-season rice plants. Yang et al. (2015) studied yield
reduction due to drought during different developmental phases
in rice; they found that rice is susceptible to temperature
during the phase between ‘Blooming’ and ‘Grain filling.’
Numerous WII contracts for rice have been developed in
China. In 2009, the Guoyuan Agricultural insurance company
issued the first rice WII contract in Changfeng county’s
Shuihu town. This WII contract includes the cumulative
high-temperature difference index and the drought index. In
the scenario that the cumulative high-temperature difference
between July 30 and August 15 exceeds the high-temperature
trigger, farmers would be compensated for high temperatures.
In addition, farmers would be available for drought payments
if the accumulated precipitation between May 15 and August
13 or September 1 and October 15 exceeds the drought
trigger. In 2013, Guoyuan Agricultural Insurance Company
provided a new WII contract to the farmers in Wuhu
and Nanling county that considered only a single extreme
heat index.

Existing WII contracts for rice in the Anhui province are
designed using the high-temperature difference and accumulated
rainfall over a specific period as indices. They do not
consider indicators such as GDD, HDD, and CDD that are
currently prevalent. In this study, we develop a hypothetical
standard model using GDD and monthly average precipitation
as benchmarks. Then we propose innovative approaches for
enhancing the performance of this weather-yield model. Note
that if the new approach can make the existing weather-yield

model more accurate, this approach is superior to the
existing one.

While we have used middle-season rice data to illustrate our
methodology and the design of WII, it is important to note that
our proposed methodology and optimization are very general;
they can be applied to any crop (with an appropriate choice of
weather index) to improve the weather-yield models.

DATA SOURCE

This section provides details on the datasets. As seen in Figure 1,
this study investigates mid-season rice yields in ten counties
in the Chinese province of Anhui, including Lujiang, He,
Wangjiang, Tongcheng, Dangtu, Xiuning, Guichi, Dingyuan,
Wuhu, and Feidong. The average yields (kg per mu) of mid-
season rice for these counties from 1980 to 2012 are provided
by the Chinese Ministry of Agriculture. Each county’s average
yield is calculated by dividing the total crop yields by the total
harvested area (mu).

This study’s meteorological datasets were generated by linear
interpolation of weather station data provided by the China
Meteorological Data Service Centre. Our interpolation process
uses the inverse distance weighting (IDW) method to generate
the weather variable for each grid cell. The area-weighted average
of each meteorological variable for the target county is calculated
using each grid cell area. The monthly average precipitation
extends from 1980 to 2012, and the daily average temperature
includes from 1952 to 2013.

METHODOLOGY

Detrending Yield
Empirically, the crop yields over time, in general, exhibit an
upward trend. This phenomenon, in part, is attributed to the
advances in technology (such as better farming practices and
enhanced climate-resilient seeds). For this reason, it is important
to “detrend” the yield data before any modeling. A plausible way
of capturing the trend is via a linear function of the following
form (see Woodard and Garcia, 2008):

Yt = α0 + α1t + ǫt (1)

In the above model, the observed rice yield Yt (per mu) in year
t is captured by two components: the deterministic component
α0 + α1t and the random component ǫt . The parameter α0

measures the central tendency of the yield while α1t reflects
the linear time trend of the yield. The random component ǫt
captures the residual variation due to other factors (such as
natural disasters). In the empirical study to be presented in the
next section, the optimal parameters α0 and α1 are determined
via the best linear fit.

From the linear trend model (1), the equivalent time-t yield
detrended to an arbitrary year t∗, denoted byYdet

t , is calculated by

Ydet
t = Yt + α1

(
t∗ − t

)
(2)

In our empirical illustration, t∗ is set to 2012 for all the counties
as this is the most recent year for which we have the data for our
middle-season rice data for each of the counties.
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FIGURE 1 | County boundaries in Anhui province.

Weather Measures and Weather-Yield
Models
Multiple regression-based statistical models are widely used as an
alternative to agronomic process-basedmodels in predicting crop
yields. The general form of the regressionmodel can be expressed
(Lobell and Burke, 2010):

Ydet
t = β0 + β1X1,t + β2X2,t + · · · + εt , (3)

where Ydet
t represents the detrended crop yield in the year t,

X1,t ,X2,t , . . . , are the explanatory weather variables, and εt is the

error term. The effectiveness of the above multiple regression
model critically depends on the choices of the explanatory
weather variables, which, in turn, depend on the type of crops,
location, etc. While there is no consensus on what kind of
weather variables are for the explanatory weather variables
(see Zhu et al., 2019), weather indexes, such as GDD, HDD,
and CDD, and precipitation are commonly adopted to the
regression model.

In our proposed regression models, we not only take
into consideration typical weather indexes such as GDD
and precipitations, but also other weather indexes based on
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generalizations of HDD and CDD. Following Roberts et al.
(2012), we now describe the weather indexes of relevance to this
study. Let Td be the average temperature on day d. Td is often
defined as the average of the day’s maximum and the minimum
temperatures of the day. Then the GDD on day d is defined as

GDDd = max[min(Td, tupper)− tlower , 0] (4)

where tlower and tupper , tlower < tupper correspond to the lower
and upper baseline temperatures. While the GDD quantifies crop
development, we also consider two other weather indexes that
are detrimental to crop growing. These two weather indexes
are denoted as the Extreme Heating Degree Days (EHDD) and
the Extreme Cooling Degree Days (ECDD), and are defined,
respectively, as

EHDDd = max(Td − tupper , 0) (5)

ECDDd = max(tcold − Td, 0) (6)

Both of these weather indexes capture the extremal temperatures
on day din that EHDD quantifies extreme heat while ECDD
measures extreme coldness. From the daily measures of GDDd,
EHDDd and ECDDd, it is useful to construct their equivalent
indexes but on a monthly basis. By denoting AGDDtj, AHDDtj,
and ACDDtj as, respectively, the accumulated GDD, EHDD, and
ECDD, in j-thmonth of year t, then we have

AGDDtj =
∑

d∈monthj
GDDd (7)

AHDDtj =
∑

d∈monthj
EHDDd (8)

ACDDtj =
∑

d∈monthj
ECDDd (9)

The summation sums over all the daily observations for the given
month. It should be emphasized thatGDDd, EHDDd, and ECDDd

are the daily indexes corresponding to the respective j-th month
in year t.

Finally, we use the notation Ptj to denote the monthly average
precipitation (in centimeters) in the j-th month of year t. Based
on the above weather indexes, we consider the following three
weather-yield models:

Model I:

Ydet
t = β0 +

∑9
j=4 β1j·Ptj +

∑9
j=4 β2j·AGDDtj + ǫt

= f
(
β0,β1j,β2j, Ptj,AGDDtj

)

Model II:

Ydet
t = f

(
β0,β1j,β2j, Ptj,AGDDtj

)

+
∑8

j=7 β3j · AHDDtj

= f
(
β0,β1j,β2j,β3j, Ptj,AGDDtj,AHDDtj

)

Model III:

Ydet
t = f

(
β0,β1j,β2j, Ptj,AGDDtj

)

+
∑5

j=4 β4j· ACDDtj

= f
(
β0,β1j,β2j,β4j, Ptj,AGDDtj,ACDDtj

)

Remarks on the above three regression models:

• The parameter β0 is the intercept and the parameters βi·, i =
1, . . . , 4 are the regression coefficients of the model. These

coefficients will be optimally determined using the stepped
regression approach.

• The growing season for the middle-season rice in the 10
counties is assumed to be from April to September; hence
we are regressing the monthly average precipitation and the
monthly accumulated GDD from April to September. For the
AHDD weather index, we use the monthly data from July
to August (motivated by the agronomy consideration). See
Schauberger et al. (2017) for the importance of incorporating
extreme high-temperature weather variables.

• Unlike Roberts et al. (2012), where the adopted weather
indexes are the accumulated values over the entire growing
season, our proposed models exploit the weather indexes on
a monthly basis.

• Model III is distinct fromModel II in that it employs alternate
explanatory variablesACDDt4 andACDDt5. Numerous studies
have demonstrated that both extremely high and extremely
low temperatures can have a negative impact on plant growth
(Shimono et al., 2007; Chen and Chen, 2017). In particular,
for agronomic reasons, we are only considering April andMay
for ACDD in our suggested Model III. The progressive effect
of the extreme cooling temperature index can be explicitly
analyzed by comparing Model III to Model I.

Enhanced Weather-Yield Model via
Minimization RMSE
One of the challenges of using Model I, Mode II, and Model III
is that the models require as input the values of tlower and tupper ;
these baseline values affect weather indexes GDD, EHDD, and
ECDD. An inappropriate selection of these values can adversely
affect the effectiveness of Model I, Model II, and Model III.
These two parameter values are highly dependent on the location,
climate, crop types, etc. See, for example, Yoshida et al. (1981)
and Sanchez et al. (2014). Specifically, the second study suggests
tlower = 20◦C and tupper = 30◦C. And crop scientists found
the approximate optimal temperatures for corn (29◦C), soybeans
(30◦C), and cotton (32◦C) (Schlenker and Roberts, 2009).

The core concept of our proposed approach is to describe
the task at hand as an optimization problem that determines
tlower and tupper parameters optimally. The adopted criterion
in our proposed optimization problem formulation is the
RMSE. This criterion ensures that the standard deviation of
the prediction errors of the underlying regression model is
optimally minimized by selecting the values of tlower and tupper
that minimize the RMSE. Consequently, our proposed method
is based on historical data and is scientifically and statistically
valid. It captures the predictive ability of the weather-yieldmodel,
indicating a superior model.

We will follow the steps below to obtain our final optimal
weather-yield model calibrated to the middle-season rice data of
the counties in Anhui province. Note that the predetermined set
of weather indexes (i.e., explanatory variables) in the weather-
yield Model I, Model II, and Model III require tlower and tupper as
inputs.We determine the optimal values of temperature baselines
for a given collection of model explanatory variables by solving
the optimization problem. Third, to establish model parsimony

Frontiers in Plant Science | www.frontiersin.org 5 July 2022 | Volume 13 | Article 895183

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Sun Weather-Based Index Insurance Design

and the ideal combination of explanatory variables, a stepwise
regression approach and grid search with LOOCV are utilized.

We select the optimal combination of temperature parameters
by iterating through all optional values of the temperature
baseline. At each stepwise regression, the optimization problem
is solved repeatedly in order to determine the optimal values
of temperature parameters with the minimum attainable RMSE.
And the temperature integer parameter range is set as tlower ∈

[8, 21] and tupper ∈ [30, 35] for the agronomy consideration
(Yoshida et al., 1981; Schlenker and Roberts, 2009).

Efficiency Analysis
Insurers offer the WII product because they believe it will
reduce the economic implications of weather risk on farmers.
This contract’s efficacy is primarily determined by the basis risk
and the farmers’ evaluation of whether the WII contract can
effectively protect their revenues.

We discuss a possible contract design for WII based on the
regression models and then evaluate their relative effectiveness
empirically for farmers aiming to hedge their crop production.
The WII contract, designed in the style of the European put
option, is suitable for weather-related loss indemnity. The WII
contract allows the farmer to execute the option at a particular
time. The owner will receive a payout if the expected yield from
the weather-yield model is less than the triggered yield.

Let IWII
t denote the indemnity of a WII payable at the end of

the contract year t. Then a plausibleWII can be constructed from

IWII
t = max

(
Kt − Ỹdet

t , 0
)
· P (10)

where Kt is the triggered yield in year t, Ỹdet
t is the predicted

yield per mu in year t determined from the calibrated weather-
yield model, and P is the price election that corresponds to the
crop’s market price in the contract year t. At the inception of the
contract, i.e., the beginning of year t, the triggered yield Kt is a
known constant obtained from Kt = Y × CL. Here, Y is the
average historical yield and CL is the coverage level that captures
the proportion of the historical yield the farmer wishes to insure.
A farmer with the above WII policy has downside protection in
the sense that his crop yield for the year will not fall below Kt .
If the crop yield at the end of the contract year of the WII (as

dictated by Ỹdet
t from the adopted regression model) is less than

Kt , then the WII policy assumes that the farmer incurs a loss and

an indemnity of the amount
(
Kt − Ỹdet

t

)
· P is compensated to

the farmer. On the other hand, if Ỹdet
t is greater than Kt , then the

contract assumes that there is no loss to the farmer so there is
no payout from the WII contract. Thus, a WII contract with the
above indemnity function (10) resembles a put option and the
strike rate Kt becomes the minimum guaranteed crop yield for
the farmer who has the WII policy.

Where Kt is the triggered yield in year t, Ỹdet
t is the predicted

yield per mu in year t determined using the calibrated weather-
yield model, and P is the price election corresponding to the
crop’s market price in the contract year t. At the inception of
the contract, i.e., the beginning of year t, the triggered yield Kt

is known constant from Kt = Y × CL. Here, Y represents the
average historical yield, and CL is the coverage level representing
the proportion of the average historical yield that the farmer
intends to insure. A farmer with the above WII contract has
downside protection in that his annual crop yield will not fall
below Kt . If the predicted crop yield in the contract year of the

WII (as dictated by Ỹdet
t from the adopted regression model) is

less than Kt , then the WII policy considers that the farmer has
suffered a loss and compensates them with an indemnity equal

to
(
Kt − Ỹdet

t

)
· P. Alternatively, if Ỹdet

t is greater than Kt , the

contract assumes there is no loss to the farmer, resulting in no
payment under the WII contract. Thus, a WII contract with the
above indemnity function (10) resembles a put option and the
trigger Kt becomes the minimum guaranteed crop yield for the
WII policy-holding farmer.

Because the trigger Kt is based on the farmer’s historical crop
production, it can be interpreted as the crop yield the farmer
expects to produce in year t. For this reason, Kt can serve as a
yardstick for measuring the farmer’s crop loss. More specifically,
the farmer’s actual crop loss can be determined from (10) by

replacing Ỹdet
t with the farmer’s realized crop yield Ydet

t for the

year. We use Iactualt to denote the resulting actual loss that is
incurred by the farmer in year t, then

Iactualt = max
(
Kt − Ydet

t , 0
)
· P (11)

Note that the indemnity IWII
t from the WII depends on Ỹdet

t

(which, in turn, is prescribed by the adopted regression model)
while Iactualt depends on the crop yield Ydet

t that is actually

experienced by the farmer. Because both IWII
t and Iactualt depend

on different underlying variables, it is not surprising that IWII
t and

Iactualt need not match exactly. The discrepancy between IWII
t and

Iactualt gives rise to the so-called basis risk. The effectiveness of a
WII in serving as a hedge to a farmer, therefore, crucially depends
on the severity of the basis risk.

To examine the efficacy of WII, we undertake the following
empirical analysis. We assume a contract portfolio exists that
hedges the mid-season rice yield for each of these counties (one
mu per county). The contract portfolio’s yields were assumed to
match county-level yields. All farmers participating in WII will
be paid if the predicted yield is less than the triggered yield.
Actual farm-level yields may differ from county-level yields in
quantity and variability, and WII’s influence on risk exposure
at an individual farm may differ from the county-level effect.
Variability in actual farm yields would reduceWII’s risk-reducing
efficiency in practical applications compared to its performance
for the representative contract portfolio (Vedenov and Barnett,
2004).

TheWII is assumed to have a 100% coverage level, P= 1, Kt is
given by the average of the past historical yields, and the predicted

yield Ỹdet
t is given by the weather-yield models, i.e., Model I,

Model I-Optimal, Model II-Optimal, and Model III-Optimal.
The farmers are more concerned with the severity of the

deviation of the actual loss relative to the WII’s indemnity
(i.e., Iactualt relative to IWII

t ). The first criterion for selecting the
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superior weather-yield modeling approach is to compare the
basis risk fit by the various approaches. Because of the limited
data availability (1980–2012 for counties in Anhui province), we
establish an out-of-sample method for assessing the basis risk of
the weather-yield models. First, the basis risk of the contract year
2005 is estimated separately based on the weather-yield models
using weather and yield data from 1980 to 2004. Then, the basis
risk of the contract year 2006 is estimated using the 1980–2005
datasets, and this process is repeated until the basis risk of the
contract year 2012 is estimated using the 1980–2011 datasets.

Farmers are more concerned with the deviation between
the actual loss and the WII’s indemnity (i.e., Iactualt vs. IWII

t ).
Comparing the basis risk fitted by the various weather-yield
modeling approaches is the criterion for selecting the best
approach. Due to the limited availability of data (1980-2012 for
counties in the province of Anhui), we developed an out-of-
sample method for evaluating the basis risk of the weather-yield
models. Initially, the basis risk for the contract year 2005 is
assessed individually using weather-yield models and data from
1980 to 2004. This approach is repeated until the basis risk of the
contract year 2012 is evaluated using the 1980 to 2011 datasets.

The total basis risk associated with a group of contracts,
indicated by �, is defined as follows:

BasisRisk� =
∑

kǫΩ
|IWII
t − Iactualt | (12)

Where IWII
t is the estimated payment (in yuan permu), and Iactualt

is the actual loss for a contract in the coverage year t. From 2005
to 2012, we assessed the total basis risks of the sample portfolio in
Anhui province. By comparing the results, we can identify which
of these modeling approaches protects farmers against weather
risk most effectively.

Additionally, the basis risks are classified as “false negative”
or “false positive.” The former means insufficiently compensated
losses for farmers when experiencing yield losses, while the
latter means overpaid than the actual yield losses or even no
yield losses. For insurance design, “false negative” is generally
considered more important (Benami et al., 2021; Vroege et al.,
2021). Hence, this study evaluates the efficacy of WII insurance
in protecting farmers’ income through the use of two additional
indicators of basis risk:

BasisRiskFP� =
∑

kǫΩ
max(IWII

t − Iactualt , 0) (13)

BasisRiskFN� =
∑

kǫΩ
|min(IWII

t − Iactualt , 0)| (14)

Where the “false positive” basis risks BasisRiskFP� are used to
measure the expected payouts larger than the actual losses
connected with the group of contracts, there will be adverse
selection for farmers and wasteful losses for the insurance firm.
Similarly, the “false negative” basis risks BasisRiskFN� are used to
determine contract payouts smaller than actual losses, meaning
that farmers will not receive appropriate coverage even if they
enroll in this WII contract.

The second criterion for selecting the superior weather-yield
modeling approach is whether getting aWII policy can effectively
protect the farmer’s revenue. To determine whether WII policies

TABLE 1 | The optimal values of tlower , tupper and the RMSE for Model I, Model II,

and Model III.

Model tlower tupper RMSE

Model I 20◦C 30◦C 65.5899

Model I-optimal 8◦C 34◦C 63.782

Model II-optimal 9◦C 34◦C 62.4879

Model III-optimal 19◦C 30◦C 61.4811

The tlower = 20oC and tupper = 30oC of Model I have been suggested by Yoshida et al.

(1981).

based on Model I, Model I-Optimal, Model II-Optimal, and
Model III-Optimal effectively guarantee policyholders’ income.
We evaluated the ability of the WII policy to reduce weather
risk by comparing the income risk of farmers who obtained
WII contracts to those who did not. The mean root square loss
(MRSL) was used to quantify farmers’ revenue risk exposure
variation. This criterion has been utilized in various studies on
agricultural commodity hedging (see Turvey and Nayak, 2003;
Vedenov and Barnett, 2004; Kim et al., 2010). The following
equation can be used to calculate the revenues of farmers who
did not buy a WII contract:

RWO
t = P ∗ Ydet

t , (15)

While the revenue of farmers who owned a WII contract was
calculated as:

RWt = P ∗ Ydet
t + IWII

t − Ŵ, (16)

Where P is the corresponding rice price, and Ŵ is the premium
for the farmer.

The MRSL is a simple function of the semi-variance and is
calculated for the revenues of farmers without and with the WII
contract as follows:

MRSLwithout =

√
1

T

∑T

t=1
[max

(
P · Y − RWO

t , 0
)
]
2
, (17)

MRSLwith =

√
1

T

∑T

t=1
[max

(
P · Y − RWt , 0

)
]
2
, (18)

Where Y is the long-term average (target) yield, the actuarially
fair premium Ŵ equals the expected payout. Using empirical
rates, we approximate the actuarial premiums here. Specifically,
the actuarial premium is determined by averaging historical
contract payouts over the study period. Throughout the study
period, a constant actuarial premium is applied to each county.

RESULTS AND DISCUSSION

Using middle-season rice data from the 10 counties in Anhui
province, Table 1 depicts the optimal values of tlower and tupper ,
along with the minimal RMSE. These values are obtained by
applying the optimal algorithms to Model I, Model II, and
Model III and with the additional integer constraints 8 ≤
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TABLE 2 | The simulation results are based on Model I.

April May June July August September

Index

Precipitation / −0.1280 (0.0767) −0.0952 (0.0402) −0.1841 (0.0499) / /

AGDD 0.6397 (0.4494) −0.4568 (0.1762) −0.2891 (0.1574) −0.2820 (0.1916) 0.3994 (0.1496) /

(1) The final model gives the regression coefficients of the dummy variables for the counties of Dingyuan, Lujiang, Wuhu, and Xiuning by using other counties as a reference.

(2) The RMSE of the training model is 65.5899.

(3) The redundant weather indices are indicated by “/”.

(4) Yield is measured in the unit of kg/mu, where 1 mu = 1/15 hectare.

(5) Precipitation is measured in 1mm, temperature in 1◦C.

TABLE 3 | The simulation results are based on Model I-optimal.

April May June July August September

Index

Precipitation / −0.187 (0.0816) −0.1196 (0.0403) −0.1883 (0.0484) / −0.1384 (0.0945)

AGDD 0.2210 (0.1226) −0.5358 (0.1278) −0.2952 (0.1512) −0.2791 (0.1455) 0.4104 (0.1332) /

(1) The final model gives the regression coefficients of the dummy variables for the counties of Dingyuan, Feidong, Lujiang, Wuhu, and Xiuning by using other counties as a reference.

(2) The RMSE of the training model is 63.782.

(3) The redundant weather indices are indicated by “/”.

(4) Yield is measured in the unit of kg/mu, where 1 mu = 1/15 hectare.

(5) The precipitation is measured in 1mm, and the temperature is measured in 1◦C.

TABLE 4 | The simulation results are based on Model II-Optimal.

April May June July August September

Index

Precipitation / −0.1750 (0.0789) −0.1135 (0.0392) −0.1540 (0.0483) / −0.1511 (0.0929)

AGDD 0.1841 (0.1208) −0.5427 (0.1250) −0.2689 (0.1483) −0.2229 (0.1430) 0.4275 (0.1307) /

AHDD NA NA NA / −181.7113 (49.2884) NA

(1) The final model gives the regression coefficients of the dummy variables for the counties of Dingyuan, Lujiang, Wuhu, and Xiuning by using other counties as a reference.

(2) The RMSE of the training model is 62.4879.

(3) The redundant weather indices are indicated by “/”.

(4) Yield is measured in the unit of kg/mu, where 1 mu = 1/15 hectare.

(5) The precipitation is measured in 1mm, and the temperature is measured in 1◦C.

tlower ≤ 21, and 30 ≤ tupper ≤ 35, to ensure tlower <

tupper . The initial conclusion that can be derived from Table 1

is that all three optimization models provide a lower RMSE
than Model I (tlower = 20oC and tupper = 30oC). Second,
compared to tlower = 20oC and tupper = 30oC, which has been
proposed by other researchers, the optimal values of the baseline
temperature derived from our proposed optimization framework
are somewhat different. Lastly, an optimization weather-yield
model that includes ACDD or AHDD in addition to the AGDD
index will have a lower RMSE and better model fit than an
optimization model that solely includes AGDD.

The regression results from fitting the weather-yield models
to the county-level middle-season rice yield data are summarized
in Tables 2–5. Tables 3–5 give the best fit regression results
for Model I, Model II, and Model III in conjunction with the
optimal baseline temperatures obtained from the optimization
algorithm. We label these results as Model I-Optimal, Model
II-Optimal, and Model III-Optimal, respectively. To benchmark

against using the optimal baseline temperature, the results for
Table 2 correspond to Model I but assume the suggested baseline
temperatures tl=20◦C and tu=30◦C.

First, note that the results in Tables 2–5 show that not
all monthly indexes over the growing season are significant;
the redundant weather indices are indicated by “/.” This is
a consequence of applying the stepwise regression method
to eliminate some non-significant explanatory variables. This
analysis suggests that it may be inappropriate to aggregate the
weather indexes over the entire growing season as the effect of
weather indexes on crop yields depends critically on the growth
cycle of crops.

We now assess the impact of the regression models based
on the proposed optimally determined baseline temperatures.
Recall that the results of Model I in Table 2 are obtained using
the baseline temperature tl=20◦C and tu=30◦C. The results of
Model I-Optimal in Table 3 are also based on the same weather-
yield model (i.e., Model I), except it uses the optimal baseline
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TABLE 5 | The simulation results are based on Model III-optimal.

April May June July August September

Index

Precipitation / −0.2234 (0.0785) −0.1421 (0.0421) −0.2659 (0.0498) / −0.1804 (0.0927)

AGDD / / / −0.6410 (0.1761) 0.5491 (0.1453) 0.3410 (0.1452)

ACDD −0.3000 (0.1615) 2.4257 (0.4471) NA NA NA NA

(1) The final model gives the regression coefficients of the dummy variables for the counties of Dingyuan, Feidong, He, Lujiang, and Xiuning by using other counties as a reference.

(2) The RMSE of the training model is 61.4811.

(3) The redundant weather indices are indicated by “/”.

(4) Yield is measured in the unit of kg/mu, where 1 mu = 1/15 hectare.

(5) The precipitation is measured in 1mm, and the temperature is measured in 1◦C.

TABLE 6 | The basis risk of the representative contract portfolio.

Model I Model

I-optimal

Model

II-optimal

Model

III-optimal

MSE 255,255.4 203,588.8 217,972.1 203,682.8

Basis risk 1,956.028 1,884.49 1,839.923 1,725.655

We assume a single contract covering one mu of crop yield in each county, and the basis

risk is the total basis risk of all contracts for these ten counties from 2005 to 2012. The unit

of basis risk is yuan. The total actual yields across all counties are 33,946.53 kg, therefore,

the basis risk proportion of the actual yields is 5.76, 5.55, 5.42, and 5.08%, respectively.

temperatures tlower and tupper that minimize the RMSE. Hence,
comparing the Model I to Model I-Optimal results allows us
to evaluate the incremental impact attributing to the optimal
baseline temperatures. For the direct implementation of Model
I, we have RMSE= 65.5899 for all the counties. By incorporating
the optimal baseline temperature, the corresponding RMSE
decreased to 63.782. The decrease in the RMSE signifies the
effectiveness of our proposed optimization framework of seeking
optimal baseline temperatures.

As shown in Table 4, when additional heating temperature
explanatory variables (i.e., AHDD) are included in Model II, the
regression results indicate that August AHDD is significant, and
the RMSE statistic decreases.Model II-optimal reduces the RMSE
from 63.782 to 62.4879 compared toModel I-Optimal. According
to Table 5, Model III is more innovative in including additional
cooling temperature explanatory variables (i.e., ACDD). The
fitted regression results reveal that both the April andMayACDD
are significant for the regression results, and there is a decrease in
the RMSE statistic. Model III-Optimal reduces the RMSE from
63.782 to 61.4811 compared to Model I-optimal.

For Model I, Model I-Optimal, Model II-Optimal, and Model
III-Optimal implementations, the RMSE values are 65.5899,
63.782, 62.4879, and 61.4811. These results indicate a significant
advantage for the weather-yield model employing the optimal
baseline temperatures and we can further improve the model’s
fitted results by using the heating and cooling temperature
weather index.

From Table 6, in comparison to Model I, the weather-yield
models based on the optimal procedure significantly reduce
the Mean Squared Error (MSE) between predicted and actual
yields, hence reducing the exposure risk in the design of the WII

TABLE 7 | The “false positive” and “false negative” basis risk of the representative

contract portfolio.

Model I Model

I-optimal

Model

II-optimal

Model

III-optimal

“False positive” basis risk 1,044.278 946.8404 891.9111 974.4557

“False negative” basis risk 911.7496 937.6493 948.0115 751.1995

We assume a single contract covering one mu of crop yield in each county, and the basis

risk is the total basis risk of all contracts for these ten counties from 2005 to 2012. The

unit of basis risk is yuan.

policy. Table 6 provides a quantitative assessment of the basis
risk. Farmers are concerned about the severity of the difference
between the actual loss and theWII’s payment (i.e., Iactualt relative
to IWII

t ). The relative efficacy of theWII derived from the optimal
weather-yield model is presented with clarity. Using Model I,
Model I-Optimal, Model II-Optimal, and Model III-Optimal, the
basis risk of the representative contract portfolio is calculated
to be 1,956.028, 1,884.49, 1,839.923, and 1,725.655 yuan. Using
Model I as the benchmark, this results in 3.66% less basis risk for
Model I-Optimal, 5.94% less basis risk for Model II-Optimal, and
11.78% less basis risk for Model III-Optimal.

Table 7 compares the “false negative” and “false positive” basis
risk associated with the WII contract using weather-yield models
developed with the optimum approach. The risk of expected
payouts exceeding actual losses can be quantified using the “false
positive” basis risk. The lower the “false positive” basis risk,
the less likely the farmer will get a WII contract payment that
exceeds the actual loss. Using Model I, Model I-Optimal, Model
II-Optimal, andModel III-Optimal, the portfolio’s “false positive”
basis risk is 1,044.278, 946.8404, 891.9111, and 974.4557 yuan for
the typical contract portfolio. Using the “false negative” basis risk
as a measurement, one can also determine the likelihood that the
expected payout would be less than the actual losses. The lower
the risk of a “false negative” basis risk, the less probable it is that
farmers will incur losses greater than the amount of the policy
payout. The “false negative” basis risk for the representative
contract portfolio is 911.7496, 937.6493, 948.0115, and 751.1995
yuan when employing Model I, Model I-Optimal, Model II-
Optimal, and Model III-Optimal, respectively. Using Model I as
a benchmark, it is clear that Model II-Optimal could reduce the
“false positive” basis risk most among all the models by 14.59%,
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TABLE 8 | The efficiency of the WII contract as Measured by Mean Root Square

Loss (MRSL).

Actual

premium

Out-of-sample (2005–2012)

Without

contract

With

contract

Percent

change

100%

fair premium

Model I 266.8971 283.2946 6.14%

Model I-optimal 286.8537 7.48%

Model II-optimal 283.5939 6.26%

Model III-optimal 231.4057 −13.30%

50%

fair premium

Model I 266.8971 256.207 −4%

Model I-optimal 260.3386 −2.46%

Model II-optimal 260.0747 −2.56%

Model III-optimal 207.2157 −22.36%

30%

fair premium

Model I 266.8971 245.6895 −7.95%

Model I-optimal 250.241 −6.24%

Model II-optimal 251.383 −5.81%

Model III-optimal 198.1609 −25.75%

We assume a single contract covering one mu of crop yield in each county, and the MRSL

for these ten counties from 2005 to 2012 is the sum of the MRSL for all contracts. The

unit of measure is the yuan.

and that Model III-Optimal could reduce the “false negative”
basis risk most among all the models by 17.61%.

In this case, the most reducing basis risk WII
contract is produced using the optimal algorithm. This
indicates that the optimal weather-yield models are
superior and that the impact of including the extreme
cooling weather index in the weather-yield model is
not negligible.

Lastly, we use MRSL to evaluate the losses of farm revenue
in extreme weather when the WII contract is taken vs. when
it is not, as well as the difference between the revenue risk
of purchasing a WII contract based on a different modeling
approach. Table 8 depicts the measurement of the reduction
in revenue risk for farmers from purchasing WII contracts
based on different models. This evaluation is based on the
expected payout of the selected contract portfolio and the
actuarially fair premiums. Since the government subsidizes the
premiums of farmers who purchase agricultural insurance, the
revenue risk of farmers is calculated under the hypothesis
that the actual premiums paid are 100 percent, 50 percent,
and 30 percent of the actuarial premiums, respectively. When
farmers pay < 50% of the actuarial premium, the WII contract
based on Model I, Model I-Optimal, Model II-Optimal, and
Model III-Optimal effectively reduces revenue risk and protects
farmers’ income. It is important to highlight that only the
WII contract based on Model III-Optimal can reduce the
revenue risk of farmers when the actual premium is paid
in full.

In addition, compared to Model I, Model I-Optimal, and
Model II-Optimal, the WII contract based on Model III-Optimal
significantly reduces the revenue risk for farmers. In contrast,
Model I-Optimal, and Model II-Optimal cannot significantly
reduce income risk compared to Model I. It indicates that Model

III-Optimal, which incorporates the extreme cooling weather
index, is much more effective at reducing risk. This model can
reduce revenue risk without government subsidies, whereas WII
contracts employing other models can only reduce income risk
for farmers when government subsidies are provided.

CONCLUSION

This study proposed weather-yield models relating weather
indexes to crop yields. The proposed weather-yield models were
more flexible in that they could capture the month-to-month
variations of the weather indexes and reflect the effect attributed
to the extreme cooling weather and the extreme heating weather.
A stepwise regression method coupled with a new optimization
approach was proposed to calibrate the crop yield data. We
demonstrated the impact of our proposed modeling approach
by using the middle-season rice data in the counties of Anhui
province. Some notable empirical findings were:

• Using our proposed optimization approach of maximizing the
adjusted R-squared, the optimal baseline temperatures were
model-dependent. These values differed from the suggested
values of tl = 20◦C and tu = 30◦C (see Yoshida et al., 1981).

• The impact of optimal baseline temperatures was highlighted
in the RMSE of the model. We observed a remarkable decrease
in RMSE for weather-yield models by using the optimal
baseline temperatures.

• Contrasting Model II-Optimal with Model III-Optimal
indicated the importance of the extreme heat weather index
(AHDD) and extreme cold weather index (ACDD) to crop
yield modeling.

• Finally, we concluded a significant improvement in efficiency
from the hypothetical WII contracts constructed based on our
proposed optimal regression models.

In conclusion, our extensive empirical studies demonstrated the
effectiveness of our proposed optimal regression models and the
resulting optimal design of WII. It should be emphasized that
while we had resorted to the middle-season rice data in the
counties of Anhui province as illustrative examples, the proposed
optimal approach was very general. Similar regression models
and similar optimization ideas could be applied to other crops to
determine the optimal baseline temperature. This work can avoid
arbitrary assigning baseline temperatures while we could expect
similar efficiency gain.
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