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Major parts of anthropogenic and natural aerosols are hygroscopic and deliquesce

at high humidity, particularly when depositing to leaf surfaces close to transpiring

stomata. Deliquescence and subsequent salt creep may establish thin, extraordinary

pathways into the stomata, which foster stomatal uptake of nutrients and water but

may also cause stomatal liquid water loss by wicking. Such additional water loss is not

accompanied by a wider stomatal aperture with a larger CO2 influx and hypothetically

reduces water use efficiency (WUE). Here, the possible direct impacts of aerosols

on physical and physiological parameters of camphor (Cinnamomum camphora) were

studied (i) in a greenhouse experiment using aerosol exclusion and (ii) in a field study in

Taiwan, comparing trees at two sites with different aerosol regimes. Scanning electron

microscopy (SEM) images showed that leaves grown under aerosol exclusion in filtered

air (FA) were lacking the amorphous, flat areas that were abundant on leaves grown in

ambient air (AA), suggesting salt crusts formed from deliquescent aerosols. Increasing

vapor pressure deficit (VPD) resulted in half the Ball-Berry slope and double WUE for

AA compared to FA leaves. This apparent contradiction to the wicking hypothesis may

be due to the independent, overcompensating effect of stomatal closure in response

to VPD, which affects AA more than FA stomata. Compared to leaves in a more

polluted region in the Taiwanese Southwest, NaCl aerosols dominated the leaf surface

conditions on mature camphor trees in Eastern Taiwan, while the considerably lower

contact angles and the 2.5 times higher minimum epidermal conductances might

have come from organic surfactants. Interpretations of SEM images from leaf surface

microstructures should consider amorphous areas as possible indicators of aerosol

deposition and other hygroscopic material. The amount and type of the material

determine the resulting impacts on plant water relations, together with the surrounding

atmosphere and ecophysiological traits.
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1. INTRODUCTION

Atmospheric aerosols are liquid, solid, or mixed suspensions
of heterogeneous chemical composition, ranging from a few
nanometers to almost 100 µm in diameter (Burkhardt and
Grantz, 2017). Natural atmospheric aerosols can be beneficial
for plants as they carry nutrients (Chadwick et al., 1999), but in
many regions aerosol concentrations are dominated by emissions
from anthropogenic sources and may negatively influence both
environments and organisms (Pariyar and Noga, 2018). On both
global and regional scales, previous studies have long focused on
the indirect impacts that atmospheric aerosols bring to plants
such as the impact on water cycle, changes in radiation balance,
and nutrient transport (Mahowald et al., 2017); it has been shown
that the scattering of radiation caused by aerosols contributes to
the photosynthesis efficiency of canopy and stem growth, and
that themicro-environment near the ground also affects plant dry
matter accumulation and water utilization (Liu et al., 2016;Wang
et al., 2018). On the other hand, recent research has started paying
more attention to the direct impact of aerosols on plants, mostly
centering on the hygroscopic action of accumulated deposited
aerosols on foliage. Hygroscopic particulate salts on leaf surfaces
facilitate the formation of microscopic leaf wetness, may cause
“wax degradation” symptoms, and affect the trace gas exchange
in plants (Burkhardt and Pariyar, 2014; Coopman et al., 2021;
Katata and Held, 2021); moreover, the aerosols deposited close to
transpiring stomata become mobile by deliquescence and form
highly concentrated solutions that may enter the stomata and
connect with the liquid water that forms the end of the hydraulic
system. This process (i.e., hydraulic activation of stomata, HAS)
leads to liquid stomatal water loss; it is not accompanied by larger
stomatal aperture and compensating CO2 influx, so it can be
considered unproductive transpiration with a negative impact on
water use efficiency (WUE; Burkhardt, 2010; Song et al., 2015;
Burkhardt and Grantz, 2017). However, such an impact has not
been consistently confirmed by experiment (Pariyar et al., 2013;
Burkhardt and Pariyar, 2016).

Since the hygroscopic action is proposed as a primary factor of
aerosol impact on plants (Burkhardt et al., 2018), and the stomata
play a key role in the adaptation to changing environmental
conditions (Berry et al., 2010; Bauerle and Bowden, 2011;
Miner and Bauerle, 2017), this study focused on the stomatal
response to the impact of aerosols, as well as its consequences
for plant water relations and CO2 assimilation. Leaf-level
physiological differences between Cinnamomum camphora
(camphor) seedlings, grown under the exposure of aerosols and
the elimination of aerosols, were compared, and similarly, the
situation of mature camphor trees was studied at two Taiwanese
field sites with different aerosol concentrations.

The camphor tree is a well-known versatile tree species
growing in eastern Asia. The leaves are rich in bioactive
compounds, and the extracted compounds are extensively
used in medical treatments. With antifungal activities, the
timbers of camphor are often used as building materials
and furniture. Based on these characteristics and additional
historical influences, camphor has become one of the most

important evergreen species in Taiwan, as well as in many
other tropical and subtropical areas close by Hsieh (1981),
Zhou and Yan (2016), Li et al. (2020). On the other hand,
the regional aerosol distribution pattern in Taiwan is strongly
related to industry, geography, and season. The high density
of the population and the subsequent industrial development
causes higher anthropogenic aerosol emissions in western
Taiwan (Tsai and Kuo, 2005; Kishcha et al., 2018). Due to
the natural barrier formed by the Central Mountain Range,
eastern Taiwan has relatively small air pollution. The seasonal
difference in aerosol concentrations is most likely caused by
the meteorological phenomena that dominate the dispersion
of aerosols, and particularly the NaCl concentration varies
with distance to the sea (Tsai and Chen, 2006; Chou et al.,
2010; Fang and Chang, 2010). Based on the information above,
the research species was chosen and the field sites in Taiwan
were defined.

In this study, the aerosol loading of camphor leaves
was accessed by scanning electron microscopy (SEM) and
quantification of water soluble and insoluble particulate matter
from leaf washing. The light saturated photosynthetic rate
(Asat) and ACi response curves were measured in order to
ensure the comparable photosynthetic performance of plants
from different environments. The physiological responses to
aerosols were determined by foliar carbon isotope discrimination
(δ13C) as a long term measure of WUE (Condon et al., 1992;
Cabrera-Bosquet et al., 2007); the minimum leaf conductance
(gmin) as an indicator of uncontrollable water loss and,
together with the leaf water potential at turgor loss (πtlp),
as indicators of drought tolerance (Maréchaux et al., 2015;
Duursma et al., 2019); and the proline accumulation as an
additional indicator of osmotic adjustment to water deficit
(Bates et al., 1973; Dolatabadian et al., 2008). The results of
the gas exchange measurements were then introduced into
the semi-empirical Ball-Berry model, which in the original
form uses the relative humidity on the leaf surface and is
coupled to a photosynthesis model (Farquhar et al., 1980; Ball
et al., 1987). This model has been found to reflect differences
in drought stress conditions between plants, and the slope
factor g1 is inversely related to both WUE and carbon isotope
composition during carbon assimilation (Knauer et al., 2017;
Miner and Bauerle, 2017; Miner et al., 2017). The attraction of
aerosols to water vapor might affect modeling outputs, mainly
because the HAS mechanism creates a parallel transpiration
pathway of liquid water, while the model relies on equivalent
pathways of water vapor and CO2 (Aphalo and Jarvis, 1993;
Monteith, 1995; Burkhardt, 2010). The original objective of
this first study on aerosol- and HAS-caused effects under field
conditions was the identification of physiological responses
to aerosols on C. camphora in two field sites with different
aerosol regimes, and their confirmation and explanation under
greenhouse conditions with seedlings of the same species in
filtered versus unfiltered air. Although the results did not follow
the initial expectations, the study still found differential support
for aerosol caused physiological responses under both field and
greenhouse conditions.
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2. MATERIALS AND METHODS

2.1. Materials Preparation and Sampling
Design
2.1.1. Plant Material
Eight seedlings of camphor were prepared with an initial height
of circa 60 cm. All the present leaves were marked non-
destructively before the seedlings were assigned randomly and
equally into one of two greenhouses for research. After the
placement, all seedlings were irrigated regularly, pruned properly
due to the spatial restriction, and fertilized every other week
with a complete nutrient solution including micro-nutrients
(Ferty 3; Planta Duengemittel GmbH, Hohenstauf, Germany).
All measurements were obtained at 12–24 months after the
seedlings were placed respectively into the greenhouses, with the
plant height circa 150 cm, and only using leaves that developed
inside the greenhouses.

2.1.2. Greenhouse Growing Environment
The main research of this study was held in the greenhouses
at the Institute of Crop Science and Resource Conservation
of the University of Bonn, Germany. The two adjacent
greenhouses were located on the margin of an urban area,
near a multi-lane highway. One greenhouse was ventilated
with ambient air (hereinafter called AA), and the other one
was ventilated with filtered air (hereinafter called FA), with
only about 1% of ambient aerosols remaining, representing the
particles-removed environment (Grantz et al., 2018). The total
aerosol concentrations were monitored by a cloud chamber
condensation nuclei counter (TSI 3783; TSI, Shoreview, MN,
USA). The relative humidity and temperature of the greenhouses
were recorded every minute by a Tinytag data logger (TGP
4017, 1-Kanal Temperatur Datenlogger, Sensor NTC; Gemini, RS
Components GmbH, Germany), showing that the environmental
parameters and conditions besides the concentration of aerosols
were very similar in both greenhouses (AA: 14.35± 6.66◦C, 58.81
± 16.58%RH, VPD: circa 0.86 kPa; FA: 13.48 ± 7.10◦C, 51.79 ±
16.45%RH, VPD: circa 0.95 kPa).

2.1.3. Field Sites in Taiwan
In addition to the greenhouse study, two sites with camphor tree
plantations were chosen to verify and compare the results with.
According to previous long-term monitoring results (between
2008 and 2016), the southwestern region is likely to have a
higher PM2.5 concentration (49.14 ± 15.95 µg/m3) than the
eastern region (15.62 ± 8.73 µg/m3), especially during winter
time (Chen et al., 2018, 2020; Ho et al., 2020; Wang et al.,
2021). Therefore, the two plantations which are located in
Pingtung county (southwestern Taiwan) and Hualien county
(eastern Taiwan) were chosen for the field research. Both sites
are afforestation after the abandonment of a long history of
sugarcane plantation and are composed of circa 15 endemic
broad-leaf tree species. The 675 ha Pingtung site was planted
since 2006, while the 1,250 haHualien site was planted since 2002.
On both sites the plantations are managed and owned by the
Taiwan Sugar Corporation. In order to understand the growth
status of plants and their contribution to carbon sequestration,

TABLE 1 | An overview of Cinnamomum camphora measurements in the

greenhouses and the fields.

Greenhouse Field

Measurement Ambient

air (AA)

Filtered air

(FA)

Pingtung Hualien

Asat v v v v

ACi fitting parameters v v v v

SEM v v

Particulate matter v v

Dissolvable aerosols v v v v

gmin v v v v

δ13C v v v v

πtlp v v

Water potential (predawn, noon) v v

gsw to VPD curves v v

Contact angle v v v v

Proline content v v

The measurements include light saturated net photosynthetic rate (Asat ), photosynthetic

parameters fitted from ACi response curve (the response of net CO2 assimilation to the

CO2 concentration in the intercellular airspaces of the leaf), scanning electron microscopy

images (SEM), aerosol loading evaluation (the concentration of not dissolvable particulate

matter and dissolvable aerosols), minimum leaf conductance (gmin), carbon isotope

composition (δ13C), water potential at predawn, noon, turgor loss (πtlp ), the response

curve of stomatal conductance (gsw ) to vapor pressure deficit at leaf temperature (VPD),

contact angle, and proline content.

flux towers were built and research instruments were installed for
monitoring (Wu et al., 2015; Maneke-Fiegenbaum et al., 2018).
The canopies of camphor trees were accessed by the existing
scaffoldings. In Pingtung site 3 camphor trees were accessible (7
December to 13 December 2019), and in Hualien site 4 camphor
trees were accessible (28 November to 4 December 2019).

2.1.4. Sampling Design and Data Analysis
An overview of measured parameters is given in Table 1.
The investigations tackled physical and physiological processes,
which affected statistical procedures. Measurements of physical
parameters (aerosol loading, contact angle, SEM) were evaluated
as single leaf data in each treatment; while measurements of
physiological parameters (Asat , ACi fitting data, δ13C, gmin, πtlp,
water potential, proline concentration, gsw to VPD, Ball-Berry
model) were evaluated with the mean value of each individual
tree, then further compared between treatments. Statistical
analysis was performed using R Studio (R version 4.0.3). Shapiro-
Wilk test was used as a normality test for distributed data,
and F-test was performed for comparing two variances. For
normally distributed data, the significance of differences between
different groups was estimated by using the Student’s t-test.
For data with non-normal distribution, statistical analysis was
performed with the non-parametric method using Wilcoxon-
Mann–Whitney U-test to find out the differences between
groups. In all statistical analyses, the differences were considered
significant if the p < 0.05.
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2.2. Methodologies and Experimental
Design
2.2.1. Scanning Electron Microscopy
The amount and behavior of deposited aerosols on leaf surfaces
were visualized by scanning electron microscopy (SEM, Leo 1450
VP, Zeiss, Jena, Germany), in the Nees Institute for Biodiversity
of Plants of the University of Bonn, Germany (conducted in
May 2021). Fresh leaves were obtained from camphor seedlings
grown in AA and FA greenhouses and transferred immediately
into the laboratory. All samples were taken from fully expanded
and dark-green leaves from the 120 cm height of the plants.
Due to the requirement of a conductive coating on the surface
of samples, the samples of both adaxial and abaxial sides were
covered by a commonly-used palladium coating for high-vacuum
SEM imaging (Achneck et al., 2010). While interpreting the
SEM images, the edges of the pictures were avoided due to the
possible instabilities caused by the limitation and disturbance
from the instrument.

2.2.2. Aerosol Loading
The concentration of deposited aerosols on leaf surfaces was
determined by foliar rinsing. Each leaf sample was taken pictures
before placing into falcon tubes with 40 ml of Millipore water.
Without the petiole steeped in the deionized water, falcon
tubes were brought to ultrasonic baths (SONOREX, BANDELIN
electronic GmbH & Co. KG, Berlin, Germany) for 5 min at
30◦C. After taking out the washed leaves, the solution in each
falcon tube was filtered with a pore size 0.45 µm and outer
diameter 33 mm syringe filter (Carl Roth GmbH & Co. KG,
Karlsruhe, Germany) in order to remove the not dissolvable
particulate matter (Dzierżanowski et al., 2011; Chen et al., 2022).
The filter was weighed before and after filtering to measure
the amount of not dissolvable particulate matter deposited on
leaf surfaces. The ion concentrations of the solution in falcon
tubes were then measured using ion chromatography (Cl−,
NO−

3 , SO
2−
4 ), atomic absorption spectrometer (Mg2+), flame

photometer (Na+, K+, Ca2+), and a continuous flow analyzer
with photometric detection (NH+

4 ) (Burkhardt and Pariyar,
2016). For calculating the ion concentration based on the unit
of certain leaf area (including both adaxial and abaxial sides of
leaf surface), ImageJ was used to analyze the leaf area of samples
(Schneider et al., 2012; Grantz et al., 2018). The measurements
of the greenhouse study were conducted in March 2021 (AA: n =
12, FA: n = 9); field research was in November to December 2019
(Pingtung: n = 17, Hualien: n = 12).

2.2.3. Contact Angle
In the greenhouse study, contact angles of 1-µl droplets of water
on the cuticles were measured by a goniometer (DSA 30E; Kruess
GmbH, Hamburg, Germany). Fully expanded fresh leaves were
harvested from a 120 cm height of camphor seedlings in both
greenhouse AA and FA (AA: n = 12, FA: n = 9; conducted
in February 2021). The surface tension of the solution was
determined by the pendant drop method and shown as angles
(Burkhardt et al., 2012). In the field research in December
2018 (Pingtung: n = 8, Hualien: n = 16), the droplets of water
were manually applied on the leaf surfaces and the images

were captured by a portable microscope (DigiMicro Profi, dnt
Innovation GmbH, Germany). The contact angles were then
calculated with ImageJ (Schneider et al., 2012).

2.2.4. Photosynthetic Parameters
Photosynthetic light response curve and ACi response curve [the
response of net CO2 assimilation (A) to the CO2 concentration
in the intercellular airspaces of the leaf (Ci)] were measured
by LI-6400 and LI-6800 Portable Photosynthesis System (LI-
COR Biosciences, Lincoln, NE, USA) on fully expanded leaves
at 120 cm height. For the light response curve, measurements
began with the saturating irradiance (1,400 µmol m−2 s−1)
followed by the reductions of 1,400, 550, 200, 100, 50, 20
µmol m−2 s−1, until the irradiance was 0 µmol m−2 s−1.
The other environmental settings remained as leaf temperature
close to environment temperature, leaf vapor pressure deficit
(VPDleaf ) circa 1.5–2 kPa, and chamber CO2 concentration
400 µmol mol−1. Light saturated net photosynthetic rate (Asat)
was then defined as the net CO2 assimilation (A) at irradiance
1,400 µmol m−2 s−1 (Herrick and Thomas, 1999; Oliveira and
Peñuelas, 2005; Sazeides et al., 2021). On the other hand, before
measuring the ACi response curve, leaves were acclimated to
saturating irradiance (1,400 µmol m−2 s−1) for 30 min with leaf
temperature 20◦C, VPDleaf 1.5 kPa, and flow rate 300 µmol s−1.
Without changing the above environmental settings, net CO2

assimilation rate (A) wasmeasured at a sequence of chamber CO2

concentrations: 400, 300, 200, 100, 50, 400, 400, 400, 600, 800,
1,000, 1,200, 1,600, 2,000 µmol mol−1 (Feng and Dietze, 2013).
Afterward, maximum carboxylation rate of Rubisco (Vcmax),
maximum rate of electron transport for the given light intensity
(J), maximum rate of triose phosphate use (TPU), daytime
respiration (Rd), and mesophyll conductance to CO2 transfer
(gm) were fitted with an Excel spreadsheet tool published in
previous research (Sharkey et al., 2007). The measurements of
the greenhouse study were conducted in May 2021 (n = 4); field
research was in November to December 2019 (Pingtung: n = 3,
Hualien: n = 4).

2.2.5. Carbon Dioxide Discrimination
The carbon isotope composition was measured with an isotope
ratio mass spectrometer (IRMS, C-N-S Analyzer, and MS-2020;
SerCon Ltd., Crewe, UK). Three leaves from 120 cm height of
camphor seedlings were taken for each sample. The harvested
leaves were dried in a laboratorial oven at 60◦C for 1 week to
reach the absolute dry weight and were ground to a fine powder.
1±0.1 mg of ground samples were weighed with an electronic
micro-balance (M2P, Sartorius Lab Instruments GmbH & Co.
KG, Goettingen, Germany) and loaded into tin capsules. During
operation in the C-N-S Analyzer, the tin capsule reached 1,800◦C
and fell into the combustion furnace as CO2 was injected. Soon
after oxidation, the sample went through a purification process
(Cr2O3, CuO, Ag-wool layer) with He carrier gas, in order to
assure the complete oxidation and removal of unnecessary S
in the sample. The sample then passed through the reduction
furnace containing Cu at 600◦C, where the excess CO2 and
H2O were removed. The resulting gas stream was carried to a
gas chromatography column and then the separated CO2 was
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brought to the mass spectrometer. During operation in the mass
spectrometer, the inlet gas stream was ionized as an ion beam
and was separated by a permanent magnet while passing through
the passage, and then reached the final isotope detector. From
the ratio of signals which were collected at the detector, the 13C
value was calculated. The carbon isotope composition (δ13C) was
then calculated by comparison to a standard (Condon et al.,
2002; Burkhardt and Pariyar, 2016). The measurements of the
greenhouse study were conducted in March 2021 (n = 3); field
research was in November to December 2019 (Pingtung: n = 3,
Hualien: n = 4).

2.2.6. Minimum Leaf Conductance
The samples of camphor were taken from fresh leaves and then
immediately brought to the lab (n = 4; conducted inMarch 2021).
After sealing the basis of the petiole to prevent the water loss
from the petiole, the samples were labeled and the pictures of
leaf surfaces were taken for calculating the leaf area with a known
scale by ImageJ (Schneider et al., 2012). During dehydration, the
samples were hung on a framework with proper spaces separating
the leaves in a ventilated fume hood. The samples were weighed
on a digital semi-micro balance (EX125M, EXPLORERr SEMI-
MICRO, Ohaus Corporation, Parsippany, NJ, USA) once an
hour, meanwhile both the temperature and humidity of the
drying environment were continuously recorded by a Tinytag
data logger. This process was repeated for about 72 h, with 6–
8 measurements in the linear part of the regression line. The
modified Arden Buck equation (Buck, 1981, 1996) was used to
calculate the saturated vapor pressure (VPsat , kPa). Together with
the leaf drying weight, relative humidity, temperature, and leaf
area, gmin values were finally calculated by the spreadsheet tool
(Sack and Scoffoni, 2011). The mean gmin value of each sample
was calculated by the 6–8 measurements from the linear part of
the regression line in the graph, which was supposed to be close
to the gmin value calculated by the slope in the graph. In order to
compare the differences between different groups, the gmin values
were then statistically analyzed.

2.2.7. Leaf Water Potential
The leaf water potential at turgor loss (πtlp) is strongly related
to plant drought tolerance (Maréchaux et al., 2015). Instead of
the standard pressure–volume (p–v) curve approach, using an
osmometer is one of the most rapid and reliable methods to
predict πtlp (Bartlett et al., 2012a). In the greenhouse study (AA: n
= 4, FA: n = 3; conducted inMarch 2021), branches from a certain
height of the plants were cut and quickly placed into water, and
then cut again underwater at least 2 cm distal to the original
cut. This standard pre-treatment of rehydration was covered by a
black plastic bag and performed overnight (from sunset to shortly
after sunrise) 1 day before measuring. The next morning, the
branches were wrapped slightly in a wet paper towel and placed
in zipper bags while transferring to the lab. The bags were then
stored in the fridge, with only one leaf sample taken out each
time for measurements. One leaf disc was taken from one mature
and fully expanded leaf per branch. The discs were taken in the
middle between the midrib and margin and between the leaf
tip and base, using a 6 mm diameter cork borer and avoiding

secondary veins. The leaf disc was then immediately folded inside
the foil square (3×3 cm2) and frozen in liquid nitrogen for 2 min
in order to fracture the cell walls. Afterward, the leaf disc was
punctured using tweezers 10–12 times and then rapidly sealed
in the vapor pressure osmometer (VAPRO 5600, Wescor, Inc,
Logan, UT, USA). The osmolality (mmol kg−1) was measured
after the values reached equilibrium (8–12minwaiting time). The
osmotic potential (πo) was then calculated by using osmolality
obtained from the vapor pressure osmometer of freeze-thawed
leaf discs, following Van’t Hoff Equation (1) which relates solute
concentration to vapor pressure:

πo = −Co × R× T (1)

where Co is the molar solute concentration (mmol kg−1), R is
the universal gas constant 8.3144598E-0.6 (m3 MPa K−1 mol−1),
T is the temperature (K) (Khare, 2015). Due to the strong
correlation between πo and πtlp (Bartlett et al., 2012a), πtlp was
then calculated from πo by using the adapted regression Equation
(2) from previous research (Bartlett et al., 2012b; Sjöman et al.,
2015; Banks and Hirons, 2019):

πtlp = −0.2554+ 1.1243× πo (2)

where the R2 of this πtlp prediction from πo is proposed as 0.91.
In the field study, the leaf water potential was measured at

predawn and noon time in the Pingtung site and Hualien site (n
= 3 and 4, respectively). A small twig with leaves was cut off from
individual camphor trees with aluminum foil slightly wrapped
in order to prevent water loss; the twig was then immediately
transferred into Scholander Pressure Chamber (Model 3005,
Soil Moisture Equipment Corp., Santa Barbara, CA, USA) for
measuring (Pariyar et al., 2013; Kuo et al., 2017).

2.2.8. Proline Concentration
Fully expanded fresh leaves were harvested from a 120 cm
height of camphor seedlings in both greenhouse AA and FA
(AA: n = 4, FA: n = 3; conducted in April 2021). Five
samples were taken from each seedling, and each sample
contained 1–2 leaves depending on the leaf size. Samples were
placed separately in zipper bags at −20◦C for deep-freezing.
Afterward, samples were freeze-dried for 2 days under vacuum
without thawing (ALPHA 1-4 LDplus/ALPHA 2-4 LDplus,
Martin Christ Gefriertrocknungsanlagen GmbH, Osterode am
Harz, Germany). The samples were then ground into a fine
powder (Mixer Mill MM 301, Retsch GmbH, Haan, Germany)
and weighed 100 mg per sample with an analytical balance
(BP 210 S, Sartorius Lab Instruments GmbH & Co. KG,
Goettingen, Germany).

For the extraction, 3 ml of 3% sulfosalicylic acid was added
to each sample. The samples were then shaken for 20 s and
centrifuged at room temperature for 20 min at 4,200 rpm. For
each sample, 2 ml of supernatant solution, 2 ml of glacial acetic
acid (100%), and 2 ml of ninhydrin acid solution (ninhydrin
mixed with glacial acetic acid and orthophosphoric acid) were
mixed in a clean test tube. After being shaken homogeneously,
the samples were placed in a hot-bath (100◦C) for 1 h to boost
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the chemical reaction and then brought into an ice-bath to stop
the chemical reaction until they reached room temperature. Four
milliliters of toluene was added to each test tube, and the test
tube was closed tightly with a rubber plug before mixed on a
vortex mixer for 30 s. In order to get stratification, the test
tube was left standing for 15 min until the toluene and aqueous
phases were separated distinctly. The toluene phase (red-colored,
upper part) was then carefully transferred into a half micro-
acryl cuvette, and the absorbance of the solution was measured
with a spectrophotometer at wavelength 520 nm (Lambda 35
UV/Vis Spectrophotometer, Perkin Elmer LAS GmbH, Solingen,
Germany). The concentration of proline was calculated from a
proline standard curve following Equation (3) and was expressed
as µeq g−1 dry matter (Dolatabadian et al., 2008; Pariyar and
Noga, 2018).

Proline (µmol g−1 dry matter) =
(A520nm − b)/a× V × DF

Mproline ×Wtsample

(3)
In Equation (3), A520nm is the absorbance of the solution at
wavelength 520 nm, a and b are the coefficients of slope and
intercept from the linear equation (y = ax + b) of the
standard proline concentrations gradient curve, V is the volume
of sulfosalicylic acid (3 ml), DF is the dilution factor (1.5), the
ratio of sulfosalicylic acid and supernatant solution, Mproline is
the molecular weight of proline (115.5 g mol−1), and Wt is the
weight of the initial sample (0.1 g).

2.2.9. Stomatal Conductance to Water Vapor
The gas exchange measurements were conducted in the
greenhouses during cloudy days in winter (February 2021) in
order to reduce the influence of circadian changes (Grantz et al.,
2018). The response curve of stomatal conductance (gsw) to vapor
pressure deficit at leaf temperature (VPD) was determined using
a steady-state gas exchange system (LI-6800). The photosynthetic
photon flux density (PPFD) incident on the leaf (i.e., Qin) was
set as 500 µmol m−2 s−1 to avoid over saturation. Sample cell
CO2 concentration was set as 400 µmol mol−1, flow rate to
the chamber as 300 µmol s−1, chamber fan rotation rate as
14,500 rpm, and leaf temperature as 15◦C (evaluated by the
ambient environment and temperature restriction). Considering
the sensibility of gsw to changing VPD and the instrument
limitation of CO2 supply, the sample was measured at a stepwise
sequence of VPD: 0.50, 0.75, 1.00, 1.25, 1.50 kPa. Before switching
to the next VPD set point, the gas analyzers of the sample and
reference were matched to assure accuracy and stability. With
each VPD, measurements were recorded every minute until the
photosynthetic parameters reached equilibrium, resulting in a
40-min to 2-h acclimation. For data collection, the mean of
the last 10 measurements of each VPD was taken for further
statistical analysis. Not only the response curve of stomatal
conductance to increasing vapor pressure deficit was displayed,
but also the parameter gsw was performed according to the
Ball-Berry model (Equation 4). This model presents gsw as a
function of assimilation (An), relative humidity (Hs), and CO2

concentration at the leaf surface (Cs).

gsw = g1 × An ×
Hs

Cs
+ g0 (4)

The gsw results from the linear approach, where the slope
constant (g1) is the slope of the relationship between gsw and
An

∗ Hs/Cs (i.e., Ball Index), and g0 comes from the intercept
when An is zero. The slope represents a compromise between the
costs and benefits of gsw relative to the photosynthetic activity of
the leaf (Ball et al., 1987; Medlyn et al., 2017; Miner and Bauerle,
2017).

3. RESULTS

3.1. SEM Images
Scanning electron microscopy images in Figure 1 show the
cuticular and stomatal patterns on abaxial surfaces of C.
camphora leaves, with clear differences in the microstructures of
AA leaves (Figures 1A,C) compared to FA leaves (Figures 1B,D).
On the surfaces of AA leaves, there are more particles deposited
visibly, which are shown as non-transparent, brighter, and
randomly distributed granules in the SEM images, compared to
FA. Flat, amorphous areas are only observed on AA leaf surfaces
(Figures 1A,C), and may indicate salt crusts resulting from
hygroscopic aerosols after deliquescence. Around these flat areas,
the wax crystals are faintly covered; additionally, the original wax
structures of stomata and epidermal cells are changed in AA
leaves. In Figure 1C, it is visible that the arrangement of wax
on the stomata and surrounding cells is less neatly distributed
than in Figure 1D. Their appearance supports the hypothesis
of the hygroscopic layer formed by deliquescent aerosols, which
resulted in the overall impression of more disturbed surfaces, less
defined stomatal structures, and a less visible stomata distribution
for AA compared to FA leaves.

3.2. Deposited Aerosol Concentration on
Leaf Surfaces
Table 2 shows the concentration of not dissolvable particulate
matter and the overall amount of dissolvable aerosols deposited
on leaf surfaces in greenhouse AA and FA, each number referring
to the total adaxial and abaxial leaf area. The weight of not
dissolvable particulate matter deposited on AA leaves was higher
than on FA leaves, with the comparable median value of 3.59
µg/cm2 (n = 12) and 1.40 µg/cm2 (n = 9), respectively. The total
amount of dissolvable aerosols in AA was more than 9 times
higher than in FA. The ratio of not dissolvable particulate matter
to total deposited aerosol amount within a square centimeter
in AA is 74%, and in FA is 93%. Figure 2A details the ionic
composition of the dissolvable aerosols, respectively. Nitrate,
sulfate, and chloride are the dominant compounds of aerosol
deposition in AA, while Na, K, Mg, and ammonium are the
subordinate ones. In FA, the concentration of chloride, sulfate,
and K is relatively higher than the other ions. Figure 2B shows
the concentration of dissolvable aerosols deposited on leaf
surfaces from field sites in Taiwan. The dominant compounds
in Pingtung are K and Cl, which are much higher than the
concentration of nitrate, sulfate, and ammonium. Mg and Na
show a value close to zero of the concentration in Pingtung.
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FIGURE 1 | Scanning electron microscopy images showing the stomata patterns on the abaxial surface of Cinnamomum camphora, with magnification 500x and

2,500x. (A,C) are from AA leaves (the greenhouse with ambient air) and (B,D) are from FA leaves (the greenhouse with filtered air). Flat, amorphous areas in (A,C) are

probably caused by deliquescent, hygroscopic aerosols. Such an area is, e.g., in (A) above the left part of the 50 µm scale.

A different distribution pattern is found in Hualien, with Cl
having the highest concentration, followed by Na, sulfate, K,
Mg, nitrate, and ammonium. Although there are differences
between compound species in Pingtung and Hualien, the total
concentration of dissolvable deposited aerosols in Pingtung (1.54
± 0.142 µg/cm2, n = 17) is not significantly higher than in
Hualien (1.26± 0.132 µg/cm2, n = 12).

3.3. Contact Angle
Table 2 shows the difference in contact angles on adaxial and
abaxial leaves from greenhouse AA and FA, as well as of leaves
from the fields. There is no significant difference in adaxial
contact angles between AA (124.56 ± 2.62, n = 12) and FA
(127.00 ± 2.47, n = 9) leaves, neither between Pingtung (65.96
± 7.59, n = 14) and Hualien (53.16 ± 1.87, n = 16). With abaxial
contact angles, AA leaves (140.13 ± 1.37, n = 12) and FA leaves

(143.14 ± 1.18, n = 9) do not differ either. However, Pingtung
leaves (119.33 ± 9.47, n = 8) have higher values than Hualien
leaves (75.68± 5.13, n = 16).

3.4. Photosynthetic Parameters
In Table 2, the key photosynthetic parameters of leaves from AA
and FA are presented (n = 4). There are no significant differences
in Asat , Vcmax, J, TPU, Rd, and gm between the leaves from two
greenhouses, nor between the two field sites.

3.5. Plant Water Relations and Drought
Tolerance Measurements
3.5.1. Carbon Dioxide Discrimination
In Table 2, δ13C values are generally less negative in the
greenhouses than in the fields, but the results between more
polluted and less polluted environments are not consistent. It is
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FIGURE 2 | The concentration of dissolvable aerosols deposited on leaf surfaces from greenhouses and fields, determined by foliar rinsing. (A) Ion concentration on

camphor leaves from the AA (unfiltered, ambient air) and FA (filtered air) greenhouses. (B) Ion concentration on camphor leaves at Pingtung and Hualien field site.
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TABLE 2 | Measurements of Cinnamomum camphora leaves from different growing environments.

Greenhouse Field
Measurement

AA FA Significance Pingtung Hualien Significance

Asat (µmol m−2 s−1) 6.70 ± 0.90 7.29 ± 1.37 p = 0.731 12.30±3.27 15.30 ± 1.12 p = 0.367

Vcmax (µmol m−2 s−1) 102.11 ± 9.05 111.21 ± 8.02 p = 0.480 102.42±17.97 74.53 ± 9.02 p = 0.191

J (µmol m−2 s−1) 135.89 ± 7.08 138.83 ± 8.06 p = 0.793 113.06±12.28 99.52 ± 7.45 p = 0.363

TPU (µmol m−2 s−1) 10.69 ± 0.41 10.73 ± 0.59 p = 0.961 8.32 ± 0.82 7.82 ± 0.71 p = 0.667

Rd (µmol m−2 s−1) 8.73 ± 1.16 8.00 ± 1.82 p = 0.747 0.93 ± 0.15 0.85 ± 0.07 p = 0.583

gm (µmol m−2 s−1 Pa−1) 14.24 ± 4.19 5.03 ± 2.23 p = 0.100 19.73±9.44 22.00 ± 5.31 p = 0.831

Particulate matter (µg/cm2) 3.59 1.40 p < 0.01

Dissolvable aerosols (µg/cm2) 1.42 ± 0.06 0.15 ± 0.03 p < 0.001 1.54 ± 0.14 1.26 ± 0.13 p = 0.177

gmin (mmol m−2 s−1) 0.49 ± 0.03 0.48 ± 0.03 p = 0.967 0.99 ± 0.13 2.46 ± 0.20 p < 0.01

δ13C −28.10±0.20 −27.70 ± 0.55 p = 0.510 -31.58±0.50 -32.99 ± 0.40 p = 0.077

πtlp (MPa) −3.43±0.09 −3.26 ± 0.08 p = 0.210

Water potential, predawn (MPa) −0.09 ± 0.01 −0.10 ± 0.02 p = 0.840

Water potential, noon (MPa) −0.64 ± 0.10 −0.52 ± 0.03 p = 0.210

Contact angle, adaxial (◦) 124.56 ± 2.62 127.00 ± 2.47 p = 0.520 65.96±7.59 53.16 ± 1.87 p = 0.093

Contact angle, abaxial (◦) 140.13 ± 1.37 143.14 ± 1.18 p = 0.128 119.33±9.47 75.68 ± 5.13 p < 0.001

Proline content (µmol g−1) 1.57 ± 0.57 1.22 ± 0.39 p = 0.659

AA is the greenhouse with ambient air and FA is the greenhouse with filtered air; Pingtung is the expectedly more polluted field and Hualien is the expectedly less polluted field. The

results show the key photosynthetic parameters (light saturated net photosynthetic rate (Asat ), maximum carboxylation rate of Rubisco (Vcmax ), maximum rate of electron transport for

the given light intensity (J), maximum rate of triose phosphate use (TPU), daytime respiration (Rd ), and mesophyll conductance to CO2 transfer [gm )], the concentration of not dissolvable

particulate matter, total concentration of dissolvable deposited aerosols, minimum epidermal conductance (gmin), carbon isotope composition (δ13C) values, leaf water potential at

turgor loss (πtlp), predawn, noon, contact angles, and proline concentration. The values are presented as mean±SE (statistically analyzed with Student’s t-test), besides the values of

particulate, which are presented as median (statistically analyzed with Wilcoxon-Mann–Whitney U-test). Sample size and research conducted time for each measurement are indicated

in the text. Statistical significance is shown with the p-value.

noted that there is a tendency toward lower values at Hualien
compared to Pingtung, although the comparison is not useful
(refer to below). Between the different greenhouses, where the
isotope ratio could possibly allow comparison of long-term
stomatal aperture due to equal environmental conditions, there
is no significant difference in δ13C between AA (−28.10 ± 0.20)
and FA (−27.70± 0.55), respectively (n = 3).

3.5.2. Minimum Leaf Conductance
There is no significant difference in gmin of C. camphora leaves
between AA (n = 4) and FA (n = 4). The gmin value of leaves in
AA shows 0.49± 0.03 mmol m−2 s−1, very close to the gmin value
of leaves in FA which is 0.48± 0.03 mmol m−2 s−1. On the other
hand, the gmin of leaves from Pingtung (n = 3) is found much
lower than in Hualien (n = 4), with the value of 0.99± 0.13 mmol
m−2 s−1 and 2.46± 0.20 mmol m−2 s−1, respectively (Table 2).

3.5.3. Leaf Water Potential at Predawn, Noon, and

Turgor Loss
There is no significant difference in leaf water potential at turgor
loss (πtlp) in the greenhouses. Predawn and noon leaf water
potential at the field sites are not significantly different (Table 2),
supporting comparable water status during the measurement
campaign.

3.5.4. Proline Concentration
There is no significant difference in proline concentration of
C. camphora leaves between AA (n = 4) and FA (n = 3).

The accumulated proline content of leaves in AA is 1.57
± 0.57 µmol g−1, and in FA it is 1.22 ± 0.39 µmol g−1

(Table 2).

3.6. Stomatal Conductance to Water Vapor
Stomatal conductance (gsw) shows a decreasing tendency as VPD
increases, both in AA and FA (Figure 3; n = 3, respectively). In
AA, the gsw value decreases more moderately from 0.015± 0.001
mol m−2 s−1 (while VPD 0.50 kPa) to 0.009 ± 0.0005 mol m−2

s−1 (while VPD 1.50 kPa), with small SEs. However, in FA, the gsw
value falls more rapidly from 0.042 ± 0.005 mol m−2 s−1 (while
VPD 0.50 kPa) to 0.017 ± 0.001 mol m−2 s−1 (while VPD 1.50
kPa). With each VPD set point, leaves in AA show a lower gsw
value than in FA (p < 0.01), especially when VPD is low (i.e.,
0.50 kPa). Additionally, it is shown that in both AA and FA, the
gsw of leaves maintain a similar value instead of decreasing while
VPD changes from 1.25 to 1.50 kPa. Subsequently, differences
are also found for the stomatal model parameters g0 and g1,
calculated from the Ball Index on the basis of assimilation (An),
relative humidity (Hs), and CO2 concentration at the leaf surface
(Cs), and then further performed with the Ball-Berry model
(Figure 4). The values of An in AA are generally lower than FA,
causing a lower range of the Ball Index. The regression line of
AA leaves is, therefore, extended to the full range of the x-axis by
using the data points predicted with the linear model; and two
regression lines are compared based on the actual data points.
Both regression lines indicate a positive correlation between gsw
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FIGURE 3 | Stomatal conductance (gsw ) to vapor pressure deficit (VPD) response curve, for leaves from greenhouse AA (ambient air) and greenhouse FA (filtered air).

The points and error bars represent mean ± SE (n = 3). The solid line is AA and the dashed line is FA.

FIGURE 4 | Relationship of stomatal conductance with the Ball Index for leaves from greenhouse AA (ambient air) and greenhouse FA (filtered air). The linear

regressions of the Ball-Berry model represent the means of linear functions fitted to data from individual leaves at all measured vapor pressure deficit (VPD) levels; the

Ball Index is calculated with assimilation (An), relative humidity (Hs), and CO2 concentration at the leaf surface (Cs). The solid line is AA, with a partially dash-dotted line

showing the extension to the full range of the x-axis, based on predicted data points from the linear regression; and the dashed line is FA. A statistical analysis of the

slope and intercept indicates a significant difference in the Ball-Berry model between leaves from AA and FA (P < 0.005).

and Ball Index, representing the fitted data calculated from the
leaf-scale measurements, where both of the R2 values are higher
than 0.90. The slope of the linear regression (g1) for AA is

about half the slope for FA (Figure 4), and the gsw intercept
(g0) of the linear regression for AA is also smaller than g0 for
FA (P < 0.005).
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4. DISCUSSION

4.1. Aerosol Deposition on Leaf Surfaces
The SEM images of C. camphora bring out comparable results
with previous research regarding the relation of deposited
aerosols and leaf morphology, and the formation of amorphous
regions similar to so-called “wax degradation” on the cuticle
or close to stomata (Burkhardt, 2010; Burkhardt and Grantz,
2017; Chen et al., 2017). The pattern of hypothetical aerosol
layer and amorphous wax degradation have been as well found
on the leaf surfaces of Cryptomeria japonica (Sase et al., 1998),
Brassica oleracea (Gongylodes Group) (Burkhardt et al., 2001),
Platanus orientalis L. (Pourkhabbaz et al., 2010), Pinus sylvestris
L. (Burkhardt and Pariyar, 2014), Quercus variabilis (Mo et al.,
2015), and Vigna radiata (L.) R. Wilczek (Shabnam et al., 2021).
Moreover, research has indicated that identified wax degradation
might be actually a mixture of deliquescent aerosols and
disturbed wax crystallization; the development of amorphous
wax appearance can result from deliquescent salts covering
tubular wax fibrils, following the process of (i) the attraction of
water vapor by hygroscopicity; (ii) the dissolution of hygroscopic
aerosols; and (iii) the resulting mobility and distribution across
the leaf surface, leading to the coverage of tubular waxes
by amorphous crusts and consequently showing the typical
appearance of wax degradation (Burkhardt, 2010; Burkhardt and
Pariyar, 2014; Burkhardt et al., 2018). In this study, few larger
deposited aerosols on AA leaf surfaces are observed as crystalline,
but most of them appear to be amorphous crusts caused by
the humidity cycle correlated with the deliquescence of salt and
the transpiration of stomata. This phenomenon consists of the
previous studies aforementioned.

As for the results of not dissolvable particulate matter
and dissolvable aerosol concentration from leaves grown in
the greenhouses, it is significant that AA leaves accumulated
higher aerosol concentration than FA leaves, regardless of the
total aerosol concentration and specific aerosol compounds.
Compounds such as Na and Cl may come from sea salts, even
though the greenhouses locate a bit distant from the coast
(Burkhardt and Eiden, 1990). In general, the dominant aerosol
compounds in AA are similar to previous research which was
done in the same greenhouse environment (Burkhardt and
Pariyar, 2016). Although the epicuticular wax may partially also
contain aerosols (Dzierżanowski et al., 2011; Victório et al., 2021),
it is neglectable in this study since the focus is on researching the
aerosol effects within one species, instead of the quantification
and classification of deposited aerosols. The water dissolvable
ions contributed about 30% to the overall aerosol mass found
on AA leaves, which is in agreement with the reported range of
European aerosol composition (Putaud et al., 2010).

The ionic deposition load on leaves at Pingtung was 1.54
µg/cm2, exceeding the amounts on Hualien leaves (1.26µg/cm2)
by 22%. This difference was less than expected from long term
monitoring data and literature (Lin et al., 2008; Li et al., 2016;
Lee et al., 2020). The ionic composition on Hualien leaves was
dominated by sea salt (Na, Cl), reflecting the small distance
to the sea (50 km in the main wind direction). Nitrate and
sulfate are mainly composed of secondary ammonium sulfate

and ammonium nitrate from industry (Yang et al., 2017; Shen
et al., 2019, 2020). Nitrate, ammonium, and potassium strongly
contributed to the composition of particles on Pingtung leaves,
whereas the sulfate and magnesium concentrations were higher
on Hualien leaves (Figure 2B). The daily monitoring data
were extracted from Taiwan Air Quality Monitoring Network,
Environmental Protection Administration, Taiwan, in order to
inspect the environmental aerosol concentration with an accurate
time range (Figure 5). Continuous torrential rain probably
caused the strong decrease of PM2.5 concentrations shortly before
the experiment at the Pingtung site, and also the removal of
particles from leaves (Wang et al., 2015), particularly from
upper leaf surfaces. However, rainfall itself is also able to
contribute to the ion concentrations besides washing off particles;
consequently, rainfalls might affect aerosol retention and long
term accumulation of ionic aerosols on leaf surfaces, and foliage
traits are the more important factors related to these effects (Xu
et al., 2017; Pariyar andNoga, 2018; Zhang et al., 2019; Zhou et al.,
2020). As an evergreen tree species, C. camphora is likely subject
to a higher wash off rate of fine aerosols at high rainfall intensities,
causing the indistinct aerosol distribution and concentration on
leaf surfaces in the Pingtung site (Xu et al., 2019; Zhou et al.,
2021). Therefore, this inconsistency is challenging the accuracy
of the other field measurements.

4.2. Aerosol Impacts on Plant Water
Relations in the Field
The high gmin values and the low abaxial contact angles of
leaves at the Hualien site likely are connected effects of aerosol
deposition. The gmin values were more than twice as high and
the ratio between adaxial and abaxial contact angles differed
compared to the Pingtung site. Although other, e.g., biotic
factors cannot be excluded, both effects are likely linked to the
relatively high, sea salt dominated deposition at the Hualien
site. Normally, NaCl is a kosmotropic salt that does not easily
extend on hydrophobic cuticles, so coastal plants are usually not
affected too much by sea salt. However, this may considerably
change in the presence of detergents, as shown by a strong gmin

increase in a previous experiment, where pine seedlings were
sprayed with different salt solutions (Burkhardt and Pariyar,
2014). The detergent reduces the contact angle and promotes
stomatal penetration by the salt, i.e., HAS establishment. Several
cases of this process in the environment were reported in Italy
and Australia, where detergents from close-by landfills caused
the coating of sea-spray aerosols leading to the decline of coastal
forests (Bussotti et al., 1995). A similar process might actually
have played a role at the Hualien site because a landfill in the
major source region of NaCl aerosols had been eroded by the sea
for several years (Taiwan News, 2018). The occurrence of such
detergents on the leaves was not measured and the distance of
50 km is considerable, but still, there is a realistic chance that the
high gmin values and low contact angles were connected with this
incidence.

Low contact angles particularly on the lower (abaxial) leaf
sides of Hualien leaves point to enhanced deposition of fine,
sub-micrometer aerosols, which are less affected by gravity but
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FIGURE 5 | Daily monitoring data of PM2.5 in the fields while experiments were conducted (Source: Taiwan Air Quality Monitoring Network, Environmental Protection

Administration, Taiwan). The solid line is the Pingtung site (expectedly more polluted) and the dashed line is the Hualien site (expectedly less polluted). The vertical lines

indicate the periods while experiments were conducted (Hualien site: 28 November to 4 December 2019; Pingtung site: 7 December to 13 December 2019).

more by molecular mechanisms. The gmin parameter describes
the uncontrollable water loss of leaves with closed stomata. A
gmin increase is indicative of reduced drought tolerance and
reflects the cuticular permeance, but also the contribution of
“malfunctioning stomata,” which are linked to aerosols and
HAS (Kerstiens, 1996; Burkhardt, 2010). The higher gmin values
indicate that in the case of extended droughts, aerosol deposition
might possibly become problematic for the trees at the Hualien
site. It is not possible to deduct further impacts of aerosols on
the trees from the field measurements. The δ13C values between
the two field sites cannot be meaningfully compared, as they
are influenced by too many different environmental factors,
particularly soil water availability, temperature, and VPD.

4.3. Aerosol Impacts on Plant Water
Relations in the Greenhouse Study
The greenhouse study with equal environmental conditions
between AA and FA enables the comparison of single
parameters like gmin or δ13C. Differences between the groups
can be attributed to the differences between AA and FA
aerosol concentrations, as long as the AA and FA plants are
physiologically comparable. This requirement was met in the
present case, as seen by the comparison of Asat and the
ACi curves, from which the photosynthetic parameters were
extracted. These parameters were very similar between AA and
FA. The higher daytime respiration Rd was consistent between
AA and FA but was several times higher than at the field sites
and in an earlier field study with camphor trees (Kosugi and
Matsuo, 2006); possibly due to the effects of the incomparable

temperature differences between the greenhouses and the fields,
or the inaccuracy caused by different calculators while fitting ACi

curve data (Sharkey, 2016). It was hypothesized that physiological
responses to aerosols would include higher gmin, less negative
δ13C value, lower leaf water potential at turgor loss (Bartlett et al.,
2012a; Maréchaux et al., 2015), and higher proline concentration
in the AA compared to the FA greenhouse. With a similar
experimental approach, aerosols had caused higher gmin for
Quercus petraea, Abies alba, Pinus sylvestris (Burkhardt and
Pariyar, 2014; Burkhardt et al., 2018), and Vicia faba (L.) (Grantz
et al., 2018), as well as less negative δ13C for second year Abies
alba needles, (Burkhardt et al., 2018), while Helianthus annuus,
Pinus sylvestris, and Fagus sylvatica were found to have more
negative δ13C values (Burkhardt and Pariyar, 2016).

In this study, particularly the results of gmin and δ13C did not
confirm the hypothesis. The gmin results were almost identical
between AA and FA greenhouses, which was about half the
Pingtung values and only about one-fifth of the Hualien value.
A major reason for missing significant differences probably was
the small number of repetitions (n = 4). This is particularly
relevant for the gmin parameter, where due to high variances
and small effects often about 20 repetitions are required to
reach significant results. The high variability probably comes
from the situation that the water loss by incompletely closed,
‘leaky’ stomata is an individual process affecting single stomata,
but often is the dominating pathway of water loss in the gmin

measurement compared to water loss across the cuticle (Heinsoo
and Koppel, 1998; Burkhardt, 2010; Duursma et al., 2019). A
study of Hedera helix indicated that 35% of water loss occurred
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across the incompletely closed stomatal pores and 65% across
the other part of the cuticle which is without stomata, and the
cuticular transpiration of the stomatous leaf surface was about 11
times higher than the astomatous leaf surface (Šantrůček et al.,
2004). Moreover, taking conifer species as research material, it is
concluded that the percentage of water loss from stomatal pores
of detached leaves might depend on species-specific strategies for
conserving water during drought (Brodribb et al., 2014). Because
only few studies have found significant correlations between
gmin and environmental factors, other procedures may be more
useful under certain conditions (Brodribb et al., 2014; Schuster
et al., 2017; Duursma et al., 2019). Under less defined conditions,
another possible reason for questioning the reliability of gmin is
the acclimation of plants to the environment. In general, research
has shown that plants change the chemical composition of the
cuticle while facing water stress, leading to a decreased gmin value
(Bengtson et al., 1978; Premachandra et al., 1992; Macková et al.,
2013; Bi et al., 2017). The observation that older leaves have
higher gmin values (Jordan and Brodribb, 2007), might however
be caused by the damage of cuticle on old leaves or the increasing
contribution of HAS establishment and induced water loss across
the stomatal pore (Burkhardt, 2010).

The discrimination value of carbon isotope composition
(δ13C) provides information on the long term transpiration
efficiency of plants, and a lower δ13C value is often determined
as lower WUE (Farquhar and Richards, 1984; Farquhar et al.,
1989; Hubick and Farquhar, 1989; Condon et al., 1992;
Cabrera-Bosquet et al., 2007), but requires equal environmental
conditions between the compared groups. However, recent
studies have focused on more comprehensive and practical
conditions instead of an ideal growing environment such as
breeding fully fertilized plants in the greenhouse (Conte et al.,
2003; Cabrera-Bosquet et al., 2007; Burkhardt, 2010; Berriel
et al., 2020; Vogado et al., 2020). Thus, the correlation between
δ13C and WUE might be influenced by deposited aerosols and
HAS, but also by soil water, the nutrient conditions, and the
acclimation to stresses (Cabrera-Bosquet et al., 2007; Berriel et al.,
2020; Tarin et al., 2020), which is why the field values cannot
be compared.

The hypothesis of lower leaf water potential at wilting (i.e.,
turgor loss point, πtlp) by aerosols was also not confirmed.
πtlp is considered another important determinant of ecological
and physiological drought tolerance, which is also strongly
correlated with the cell solute potential at full hydration (i.e.,
osmotic potential, πo) (Bartlett et al., 2012a,b; Banks and
Hirons, 2019). Previous research has focused on πtlp of plant
species such as woody species, crops, and herbaceous grassland
species, concluding that this indicator of drought tolerance
varied across species and environmental conditions; πtlp is as
well correlated slightly with several leaf functional traits such
as leaf dry matter, leaf vulnerability to hydraulic failure, leaf
toughness, and leaf thickness (Maréchaux et al., 2015; Griffin-
Nolan et al., 2019). Normally, a more negative πtlp increases the
functional range of foliar water potential, showing a greater leaf-
level drought tolerance (Mart et al., 2016; Banks and Hirons,
2019). Under defined conditions, a more negative πtlp would
thus mean that the plant had experienced drought stress by

aerosols (Navarro et al., 2007; Burkhardt, 2010). This should
be further evaluated using experiments with higher numbers of
biological repetitions, including the evaluation of an eventual
accumulation of proline. Proline is an additional indicator of
osmotic adjustment, responding to environmental stress such as
water deficit, salinity, heat, and pollutants (Bates et al., 1973;
Dolatabadian et al., 2008; Acosta-Motos et al., 2017). In this
study, the proline concentration of leaves did not differ with
aerosol exposure, and concentrations in both AA and FA were
relatively low.

4.4. Aerosols and Water Use Efficiency
Aerosols did not decrease WUE, as it originally had been
expected. Contrariwise, the VPD curve of the FA plants had
higher gsw values than AA, which was highly significant. The
subsequently calculated Ball-Berry g1 parameter for FA was
twice the value compared to AA. Because gmin (which can be
considered the g1 factor of the Ball-Berry equation; Duursma
et al., 2019) was negligible compared to gsw for both AA and
FA, this means double WUE of AA compared to FA (Equation
(4); Miner and Bauerle, 2017). The relationship between g1 and
WUE is originally linked to intrinsic WUE (A/gs) but is also
indicative of actual (“instantaneous”) WUE (A/E; Franks et al.,
2017). According to the original HAS hypothesis (Burkhardt,
2010), AA leaves should have lost more water than FA at the same
degree of stomatal opening; and because this additional water loss
is not accounted for by CO2 uptake, AA leaves should have lower
WUE than FA. But probably this is not the full picture and there
may be several independent responses to aerosols. In an AA/FA
experiment with Vicia faba (L.), aerosol exposure (i.e., AA) had
three effects (Grantz et al., 2018):

(i) reduced stomatal apertures of Vicia faba (L.) at each level
of VPD;

(ii) increased stomatal conductance at comparable levels
of aperture;

(iii) lower heterogeneity between apertures of single pores, i.e.,
reduced patchiness.

In the present study with camphor, the HAS effect of
additional water loss at the equal aperture (effect ii) was likely
overcompensated by the aperture reduction of AA stomata (effect
i). A reduction of stomatal aperture, however, is known to
increase the WUE of seed plants, e.g., in response to drought
stress (Franks et al., 2015; Guerrieri et al., 2019; Xu et al., 2021;
Yang et al., 2021). The measured increase of WUEi by aerosols
thus indicates a reduction of stomatal aperture, in agreement
with the results of the Vicia faba (L.) experiment (Grantz et al.,
2018, 2020). It is also in agreement with these earlier results
that the error bars of the AA data points were smaller than
for FA, indicating lower variation, higher coordination between
stomatal apertures (effect iii), and less patchiness - a general
susceptibility of the C. camphora to the stomatal patchiness
phenomenon has earlier been reported (Takanashi et al., 2006).
The aperture reduction was not directly measured but would
have been independently supported if lower δ13C values of
AA compared to FA leaves were observed. This was not the
case, possibly because the results of the VPD curves and the
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δ13C signals were determined by different micro-climatological
conditions: The VPD curves were measured within ventilated
cuvettes. The δ13C values are a time integrated signal of gas
exchange, produced under the calm greenhouse conditions with a
thick leaf boundary layer surrounding the leaves most of the time;
so stomatal responses are decoupled from the environmental
VPD and its interaction with deposited aerosols.

Generally, the g1 parameter represents a compromise between
the costs and benefits of gsw relative to the photosynthetic activity
of the leaf (Ball et al., 1987; Miner and Bauerle, 2017). The g0 is
normally defined as either (i) a fit parameter extrapolated as the
intercept of the least squares regression between gsw and the Ball
Index (Ball et al., 1987; Ball, 1988; Collatz et al., 1991), or (ii) the
residual conductance whenAn ≤ 0 (Leuning, 1995). The g1 values
here were 1.71 (AA) and 3.41 (FA) and, thus, considerably lower
than the value of 7.4 observed for C. camphora in a field study
(Kosugi and Matsuo, 2006). Both g0 and g1 were at the lower end
but still within the range of previously recorded values (Miner
et al., 2017; Wolz et al., 2017). Drought affected plants, e.g.,
Eucalyptus, Quercus, Zea mays, and Helianthus, often have lower
g1 and g0 values compared with well-watered plants of the same
species (Cavender-Bares et al., 2007; Heroult et al., 2013; Zhou
et al., 2013; Miner and Bauerle, 2017; Miner et al., 2017). The
lower g1 value of AA camphor leaves compared to FA can thus
possibly be interpreted as aerosol induced drought stress. The
reason for the involvement of Hs for plant transpiration in the
original, semi-empirical Ball-Berry model has remained elusive
and its relevance was questioned, compared to VPD which seems
to be physiologically more meaningful (e.g., Monteith, 1995).
The successful Hs use, however, might well be due to the direct
interaction of hygroscopic, deposited aerosols with water vapor
on the leaf surface. This kind of interaction is immediate and
direct and the method to determine water absorption to specific
salts has been used to determine the relative humidity in weather
balloons (Wylie, 1955).

5. CONCLUSION

Fine hygroscopic aerosols are ubiquitous. Their presence on
leaf surfaces often is not obvious, but the comparison of SEM
images from AA and FA greenhouses is a useful method for
identifying aerosol related surface structures. Greenhouse and
field results behaved differently. The controlled conditions in
the greenhouse aerosol exclusion study with camphor seedlings
enabled a detailed perspective of aerosol interaction with the
stomatal part of the water relations. Aerosols surprisingly caused
higher WUE of camphor trees in the greenhouse study, which
was the first detailed observation of this kind and may also
have relevance on larger scales beyond the leaf-level. The sharply
increased WUE of forests over the last century is a globally

observed phenomenon and has mainly, but not sufficiently, been
explained as a consequence of CO2 increase (Keenan et al., 2013;
Knauer et al., 2017; Kannenberg et al., 2021). The atmospheric
aerosol deposition could be a hidden, contributing factor, which
should be investigated.

In the field experiment, the particular challenges came from
the cumulative, long-term nature of aerosol effects and the
uncontrolled environmental conditions. However, contact angles
and gmin of leaves from the adult camphor trees were probably
attributed to the amount and type of aerosols. These parameters
seem to be suitable to determine aerosol effects on those parts
of plant water relations which are not under stomatal control,
i.e., cuticular loss and stomatal leakage by HAS. Marine aerosols,
possibly polluted by organic material, might have decreased the
drought tolerance of camphor trees at the Hualien site, but
additional studies would be needed to confirm this.
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