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There has been substantial research that has achieved significant advancements in plant
disease detection based on deep object detection models. However, with unknown
diseases, it is difficult to find a practical solution for plant disease detection. This study
proposes a simple but effective strawberry disease detection scheme with unknown
diseases that can provide applicable performance in the real field. In the proposed
scheme, the known strawberry diseases are detected with deep metric learning (DML)-
based classifiers along with the unknown diseases that have certain symptoms. The
pipeline of our proposed scheme consists of two stages: the first is object detection
with known disease classes, while the second is a DML-based post-filtering stage. The
second stage has two different types of classifiers: one is softmax classifiers that are
only for known diseases and the K-nearest neighbor (K-NN) classifier for both known
and unknown diseases. In the training of the first stage and the DML-based softmax
classifier, we only use the known samples of the strawberry disease. Then, we include
the known (a priori) and the known unknown training samples to construct the K-NN
classifier. The final decisions regarding known diseases are made from the combined
results of the two classifiers, while unknowns are detected from the K-NN classifier. The
experimental results show that the DML-based post-filter is effective at improving the
performance of known disease detection in terms of mAP. Furthermore, the separate
DML-based K-NN classifier provides high recall and precision for known and unknown
diseases and achieve 97.8% accuracy, meaning it could be exploited as a Region of
Interest (ROI) classifier. For the real field data, the proposed scheme achieves a high
mAP of 93.7% to detect known classes of strawberry disease, and it also achieves
reasonable results for unknowns. This implies that the proposed scheme can be applied
to identify disease-like symptoms caused by real known and unknown diseases or
disorders for any kind of plant.

Keywords: deep metric learning, unknown disease detection, strawberry disease detection, K-nearest neighbor,
open set recognition
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INTRODUCTION

There has been much research into plant disease detection
based on the deep object detection technique, and substantial
advancements have been achieved in this field (Zhao et al.,
2019). The object detection models for plant diseases have been
developed in two directions: One is for better precision (Ren
et al., 2015; Lin et al., 2017b; Tan et al., 2020) while the other
is for faster response (Redmon and Farhadi, 2018; Zhang et al.,
2018; Bochkovskiy et al., 2020). There are now many off-the-
shelf object detection models that can be chosen for plant disease
detection for a specific purpose (Xiao et al., 2021; Dananjayan
et al., 2022).

In constructing a plant disease detector, researchers collect
samples of known diseases and then successfully train a selected
object detection model using these samples. However, there may
be disease-like symptoms in the inference process that are not
actually from the known diseases. One of the confidence levels
for the predefined disease classes might be maximum but with a
low value, which means that it can produce false detection, or just
miss detection according to the detection threshold. To reduce
the false detection rate, the detection threshold can be increased,
but the real disease with obscure symptoms might be missed. This
is an undesirable situation that leads to a large number of either
false or missed detections depending on the detection threshold.

Open-set detection (Bastan et al., 2019; Fehérvári and
Appalaraju, 2019; Mahdavi and Carvalho, 2021) could solve this
problem, as it discerns the unknown diseases as they are in
the inference process, although only known diseases are taken
care of in the training process. Unfortunately, the technology
is not yet mature enough to be practically utilized for fine-
grained plant disease detection. The state-of-the-art performance
is not that good, even for coarse-grained tasks of distinct objects
that look different.

Another alternative method is the post-filtering approach
that effectively reduces the erroneous detections involved in the
detection process. Many post-filtering schemes can be chosen, but
we selected DML-based classifiers (Li and Tian, 2018; Kaya and
Bilge, 2019) to be used for known and known unknown diseases.
DML produces the feature space in which each cluster of the
class becomes compact by reducing the intra-cluster distances
and increasing the inter-cluster distances.

Our proposed scheme is similar to the object detection
of plant disease followed by simple post-filtering, but the
prepared unknown samples are used to classify ambiguous
samples into an unknown category. The post-filtering stage
has two different types of classifiers: softmax classifiers for
only known diseases and the K-NN classifier for known and
unknown diseases. In training the first stage of the object
detection model and the DML-based softmax classifier, we
only used known samples of the strawberry disease. Then, the
known unknown training samples are included to construct
the K-NN classifier. The final decisions for known diseases
are made based on the combined results of the two classifiers,
while unknowns are detected solely from the K-NN classifier.
Table 1 summarizes the data type used to train the building
blocks and their decisions in the inference process of our

proposed scheme. Note that the DML-based post-filter can be
used as a separate ROI classifier if the disease-like symptoms
are manually annotated, as opposed to the automatic detection
in the first stage. Therefore, the technology in our scheme
can be exploited for both the detection and classification
of plant diseases.

In the experiment, we adapt Faster R-CNN with Feature
Pyramidal Network (FPN) for the object detection model
and margin triplet loss for DML. To verify our scheme, we
constructed a strawberry disease dataset and used it for the
experiment. The contributions of this study can be summarized
as follows:

(1) This study proposes a practical solution for detecting
known and partly known unknown plant diseases
that provide good detection performance. It achieves
approximately 93.7% of mAP to known classes of
strawberry disease, and it also achieves reasonable results
for unknowns of real field data.

(2) The proposed scheme consists of two stages: the object
detection stage and the DML-based post-filter stage. The
object detection model can be freely chosen according to
the design requirement because it can be separated from
the following DML-based post-filter. In addition, the DML-
based post-filter can be separated from the first stage, and it
can also be exploited for the ROI-based classifier of known
and unknown diseases. The separate DML-based K-NN
classifier provides high recall and precision for both known
and known unknown diseases.

RELATED WORKS

The proposed scheme consists of two consecutive stages of
an object detection model, followed by add-on post-filtering.
This section reviews the related works to our scheme, which
include object detection for monitoring plant disease, DML
to separate clusters of classes, and K-NN classifier for known
unknown detection.

Object Detection Models for Plant
Disease Monitoring
As mentioned previously, various object detection models are
available for plant disease monitoring. They have been developed
to achieve two objectives: better accuracy and higher speed. Faster
R-CNN (Ren et al., 2015; Lin et al., 2017b) is a 2-stage model
that is relatively slow but accurate. On the other hand, the YOLO
family and SSD (Zhang et al., 2018) start from a single stage with
detection performance that is fast but less accurate. However,
there have been continuous developments aiming for better
accuracy while sacrificing speed. For example, the recent version
of the YOLO family (Redmon et al., 2016; Redmon and Farhadi,
2017, 2018; Bochkovskiy et al., 2020) provides many design
options according to different requirements. Moreover, a recent
transformer model (Carion et al., 2020) for object detection
has been announced, and it is ready to be further developed
to compete with Convolutional Neural Network (CNN)-based
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models. In addition, diverse models have been developed to meet
the needs of various applications, even if there are few application
examples for plant disease detection (Lin et al., 2017a; Tan et al.,
2020).

For plant disease detection, a model with better speed could
be required, such as light YOLO v.5. A mobile robot can capture
plant images in a greenhouse, and the board embedded in the
robot can help automatically identify disease symptoms in the
field. On the other hand, the captured images can be transmitted
to a remote cloud site of a high-performance computing facility to
be precisely scrutinized using an accurate but slow model. In this
situation, Faster R-CNN or its variants, such as cascaded Faster
R-CNN, would be a better choice. Note that the classification
approach for monitoring diseases is hard to automatize (Kim
et al., 2021); this is because the image-containing symptoms of
the disease should be manually located to take pictures and then
fed into the classification-based monitoring system. However, it is
still an important way to identify known and unknown diseases
or disorders. Kim et al. (2021) and Liu and Wang (2021) provide
excellent reviews of deep learning-based disease detection and
classification models.

Post-filtering and Deep Metric Learning
The post-filtering approach is a practical way to improve
detection accuracy, and it can be added to plant disease detection.
Because the additional post-filter can reduce false detections,
the confidence threshold of the detection stage can typically be
lowered to increase the recall, even if that increases the number
of false detections. Fuentes et al. (2020) adapted the idea to
their one-versus-all post-filtering approach in tomato disease
detection, while Kim et al. (2021) shared a similar idea in their
cascaded Faster R-CNN for strawberry disease detection.

In this study, we propose the use of DML to build a
low-dimensional feature space of known disease classes, where
the clusters are well separated, by increasing the inter-cluster
distances while reducing the intra-cluster distance (Kaya and
Bilge, 2019). Furthermore, Ji et al. (2021) proposed a framework
in which the features are learned by a deep learning feature
extractor and WDM-tSNE is applied to accurately cluster the
feature space of plant disease. In general, metric learning is done
to obtain a proper metric for classifying objects, which captures
a mapping function from visual objects to a low-dimensional
embedded feature space with respect to a predefined distance
metric, such as Euclidian or L1 distance. There are two different

metric learning structures with different losses: one is the Siamese
structure that uses contrastive loss (Chopra et al., 2005) and
the other is the triplet structure with triplet loss (Schroff et al.,
2015). Janarthan et al. (2020) have adapted the former structure
to citrus disease classification. In our scheme, we choose the
latter triplet structure. The essence of the DML in our scheme
is to obtain a mapping that will separate clusters of known
classes well in the feature space to make sufficient room for the
known unknown diseases. Better classification performance for
known diseases can be obtained by applying the softmax classifier
to the embedded features from the metric learning. However,
for the unknowns, we used the K-NN classifier based on the
DML-embedded features that could be lost or falsely detected
when only the object detection is applied. Although the object
classifier after the object detection produces better performance,
it is difficult to include the known unknowns, because there could
be a huge set of unknown unknowns that are only experienced in
the inference process. In other words, previous methods could
not well expect the unknown unknowns in the training process.

Open World Setting for Unknown
Disease Recognition
Significant progress has been made with machine intelligence,
which is another technique for continual and life-long learning
for open-world recognition, even if it is premature for practical
applications, especially fine-grained tasks (Schlachter et al.,
2019a,b, 2020; Geng et al., 2020). In the most general problem
settings of the open world, no type of unknown can be
contained in the training dataset, that is, it only appears in the
test environment. Joseph et al. (2021) identify the open-world
detection problem in 3-dimensional space, where one axis is
the direction of increasing problem difficulty, one axis is the
direction of open-set learning, and the last axis is incremental
learning. In terms of the first axis of problem difficulty, open-set
identification is more difficult than classification alone. However,
if there is no prior assumption of unknowns, as is the case in
the traditional open-set recognition problem setting, then the
resulting state-of-the-art classification performance is not that
good. For example, the state-of-the-art performance for easy
MNIST, SVHN, and CIFAR-10 dataset exceeds 90%, but for
difficult CUB and ImageNet dataset does not reach 90% in terms
of AUROC (Vaze et al., 2021). In open object detection, which
is a much harder problem than classification, the technology is
far from being practically applicable for difficult plant disease

TABLE 1 | Proposed data type scheme for known and unknown disease detection.

Type of disease data First object detection stage Second stage DML-based post-filter

Softmax K-NN Combined**

Training Known Used Used Used Not used

Unknown Not used Not used Used Not used

Inference Known Detected Classified Classified Classified

Unknown Possibly detected* Not classified Classified Not classified

*Disease-like symptom can be detected in the first object detection model, but it is determined by the K-NN classifier.**This stands for the final decision of the combined
softmax and K-NN classifiers for known disease.
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detection. Because incremental learning (Parisi et al., 2019) for
continual and life-long learning (Parisi et al., 2019) is beyond the
scope of our work, it is not reviewed in this article, although it is
related to open-set recognition.

In this article, we release the constraints on the rigorous open-
set problem setting. For example, we do not know the name of the
disease for samples, but they certainly exhibit similar disease-like
symptoms that may have originated from diseases or disorders.
Compared to the samples of major diseases, such samples look
diverse and the frequency of similar objects is rare. One point
that we want to emphasize is that the classifier performance
of the closed set data is positively correlated with that of the
open-set data (Parisi et al., 2019). In our scheme, DML tries
to make a better classifier for the closed disease dataset while
simultaneously leaving large empty room to locate unknowns.

METHODS

Figure 1 shows a schema of the proposed scheme. Our scheme
is divided into two stages: the object detection module and the
deep metric learning module. In the training, the object detection
module can be trained with known disease samples to find as
many potential known disease positions with the object classifier
as possible. Then, the feature embedding of the post-filter is
trained by DML to separate the clusters of known classes well.
In the deep metric learning module, we cannot consider the
unknown disease-like samples, so the training of the post-filter
is identical to that of the conventional method of object detection
and its refinement. Note that we enlarged the bounding boxes of
the object detection results and sent for post-filter training; this
is done to allow for dislocation of the object detection results
and to include more context information around disease. Then,
the embedded features of bounding boxes of known diseases are
extracted from the DML-learned network to build the softmax
classifier. Once the DML-learned network and softmax classifier
training is finished, the weight is frozen and DML-embedded
features from known and known unknown samples are used to
build the K-NN classifier.

In the inference process, known and unknown disease samples
are fed into the trained object detector. Then, the extended
bounding box around the symptom is given to extract DML-
trained features to be categorized by the softmax and K-NN
classifiers. In this study, the softmax classifier is only concerned
with known diseases, while the K-NN classifier deals with
both known diseases and unknowns. The overall classification
category of known diseases can be made by the combined
decision of softmax and K-NN classifiers.

Object Detection Model
As described in the previous section, there have been diverse
object detection technologies for plant disease monitoring. In
our scheme, we choose FPN-Based Faster R-CNN for accurate
detection. According to the open-set object detection, it provides
the best accuracy based on standard protocol (Dhamija et al.,
2020). Note that our scheme cannot detect unknown unknowns,
because these are inevitably ignored in the training of the building

blocks of our scheme. The object classifier in the object detection
module distinguishes the known diseases from the background
and produces the classification probability for knowns. Figure 2
shows the conventional FPN-Based Faster R-CNN, which can
detect various sizes of objects due to the exploitation of the
pyramidal feature structure (Lin et al., 2017b). In this study,
we want to emphasize that a low detection threshold would be
better so as not to ignore the disease-like symptoms that are
from unknown diseases or disorders. The size of the input image
was 224 × 224 pixels to fit the CNN backbone. The number
of diseases in the object detection stage was eight, including an
angular leafspot, anthracnose (fruit rot, runner), blossom blight,
gray mold (fruit), leaf spot, and powdery mildew (fruit, leaf).
Note that some diseases show symptoms at different parts, and
these are treated as different categories, because the part images
are quite different.

Deep Metric Learning for Embedded
Features
Our scheme chooses the ResNet50 network with margin triplet
and cross-entropy losses for DML. The embedded features are
used to refine the softmax classifier. In general, there are many
false detections of normal leaf, fruit, flower, and runner as one
of the diseases in the first stage of object detection. In our post-
filter, each one is also treated as a separate class for training DML.
The false detection of normal parts as diseases can be corrected
in the DML-based classifiers. Therefore, we have considered 12
known classes in the DML-learning (eight known diseases and
four normal parts).

There are two losses involved in the DML of margin triplet
loss for embedded features and cross-entropy loss for the softmax
classifier. The margin triplet loss is defined as Schroff et al. (2015):

Ltuplet = max {d(f (xa), f (xp)) −

d(f (xa), f (xn)) + margin}, 0) (1)

where,
d(xi, xj) =

xi · xj
max(||xi||2 ·

∣∣∣∣ xj∣∣∣∣2 , ε)
(2)

In Eq. (1), f (xa), f (xp), and f (xn), respectively, represent the
features of anchor, positive, and negative image samples after
mapping f (), from the network in Figure 3. Here, d() is the
Euclidian distance. The value of the margin was set to 0.01,
and εwas 1e−8, which is a very small value to avoid dividing by
zero. The cross-entropy loss is

Lce =
1
N

N∑
n = 1

log

(
exp

(
f (xn)

)∑C
c= 1 exp(f (xc))

)
(3)

where N spans the size of the batch and C is the
number of classes.

Figure 3 presents the training of the DML with the softmax
classifier in our scheme. The size of the input image is 256 × 256
to meet the requirements of the first CNN layer of the shared
network to obtain a proper mapping in Figure 3. Note that
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FIGURE 1 | Structure of overall scheme for inference.

FIGURE 2 | Feature pyramidal network (FPN)-based Faster R-Convolutional Neural Network (CNN) for potential disease detection.

FIGURE 3 | Triplet network and loss with softmax classifier.

the extended bounding boxes from the object detection step
are normalized to a uniform size. During the training, the
feature extractor tries to minimize the margin triplet loss,

which minimizes the Euclidian distance between a pair of
the anchor and positive image, and maximizes the Euclidean
distance between a pair of anchor and negative image, after
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FIGURE 4 | K-nearest neighbor (K-NN) classifier to categorize the disease classes with unknowns.

trainable mapping in ResNet50. In actuality, the same triplet
networks sharing the weight parameters are simultaneously
learned. Finally, the dimension of the embedded features that are
used for the softmax classifier, and later the K-NN classifier is
256. We followed the method in Schroff et al. (2015) to sample
semi-hard triplets to train the network. The semi-hard samples
are the subset of all triplet samples, in which the distance between
negative and anchor is further from the positive and anchor,
||f (xai ) − f (xpi )||

2
2 < ||f (xai ) − f (xni )||

2
2. This is a crucial step

to speed up training and ensure the network convergence.

K-Nearest Neighbor (K-NN) Classifier for
Categorizing the Diseases With Known
Unknown Samples
In the second stage of our scheme, the K-NN classifier (Schroff
et al., 2015) is built as a lazy learner. Here, the reference data
includes known and known unknown samples with normal
parts for the K-NN classifier. As a result, the number of
classes in the K-NN classifier is 13, consisting of eight known
diseases, four normal parts, and the class for known unknowns.
In the experiment, we set K = 13 and chose a class randomly when
the tie happens on multiple majority classes. Figure 4 shows how
the images are mapped into 256-dimensional embedded features
and how to decide one of the class labels including unknowns in
the K-NN classifier.

Note that there are duplicate classifiers in our scheme; one is
from the softmax classifier and the other is the K-NN classifier.
They both exploit DML-embedded 256-dimensional feature, but
the softmax classifier does not take care of unknowns. As a result,
there are 12 categories for the softmax classifier and one more
unknown category for the K-NN classifier. There is no specific
reason to make a different number of categories except for the fact
that the softmax classifier is solely focused on known diseases to
measure its performance in terms of average precision (AP) and
mean AP (mAP), while the K-NN classifier considers both the
known and unknown diseases.

The final classification of the known diseases and normal
parts can be obtained by combining the two different decisions:
one from the softmax classifier and the other from the
K-NN classifier. There are typically no probabilities from the

TABLE 2 | Number of bounding boxes for the training and testing of
disease objects.

Name First stage Second stage

Bounding boxes Extended bounding boxes

Training Test Training (Aug) Test

Angular leafspot 818 265 6,162 265

Anthracnose (fruit rot) 188 57 1,424 57

Anthracnose (runner) 237 166 30,897 166

Blossom blight 1,906 265 18,182 265

Gray mold (fruit) 1,468 224 13,069 224

Leaf spot 2,353 497 14,627 497

Powdery mildew (fruit) 405 161 2,626 161

Powdery mildew (leaf) 1,764 371 14,313 371

Normal (flower) – 967 92

Normal (fruit) – 1,842 104

Normal (leaf) – 10,984 1,066

Normal (runner) – 31,191 452

Unknowns – 3,830* 862

Total 9,139 2,006 150,114 4,582

*Second stage unknown training data prepared for lazy classifier K-NN to find the
unknown, which is unseen while training the feature extractor (ResNet).

K-NN classifier, but we define the probability of the j-th
class as:

pK−NNj =
the number of nearest neighbors in class j

K
(4)

for j ∈ {1, 2, . . . ,C} (5)

In the experiment, C = 12 without the unknown class. The
probability can be combined with that from the softmax output to
make the final decision. We simply multiply the two probabilities
and take the class that has the maximum value, as in Eq. (5):

class label = arg max
{
pK−NNj × psoftmax

j

}
(6)

where psoftmax
j denotes the output probability of the softmax

classifier. Therefore, the final decision rules for known diseases
and unknowns can be summarized as follows:
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FIGURE 5 | Sample images for training disease detection.

FIGURE 6 | Sample images of normal leaf, fruit, flower, and runner, with unknowns.

Rules

1) If the K-NN classifier decides the image sample is
unknown, it is an unknown disease.
2) Otherwise, refer to Eq. (5) to decide the proper class
and probability among known. classes.

EXPERIMENTAL RESULTS

Dataset for Experiment
For the experiments, an image dataset of strawberry diseases is
constructed from the images taken by cellular phones in many
greenhouses. The total number of images in the dataset is 7,230,

and angular leafspot, anthracnose (fruit rot, runner), blossom
blight, gray mold (fruit), leaf spot, and powdery mildew (fruit,
leaf) disease images are included with normal images of flower,
fruit, leaf, and runner. The disease images were taken by a
cellular phone without any additional treatment to provide a
more realistic appearance.

Training Feature Pyramidal Network
(FPN)-Based Faster R-Convolutional
Neural Network (CNN) Object Detector
for Disease Monitoring
For the training, the diseases and their bounding boxes enclosing
the symptoms were annotated. The number of bounding
boxes for each disease used for training and testing are,
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TABLE 3 | Final results of known disease detection for the test data.

Name AP

Faster
R-CNN

+ Softmax
classifier

+ Comb.
w. K-NN
classifier

Angular leafspot 0.853 0.923 0.922

Anthracnose (fruit rot) 0.977 0.992 0.991

Anthracnose (runner) 0.865 0.885 0.883

Blossom blight 0.985 0.983 0.986

Gray mold (fruit) 0.881 0.905 0.904

Leaf spot 0.932 0.940 0.944

Powdery mildew (fruit) 0.924 0.958 0.956

Powdery mildew (leaf) 0.830 0.822 0.844

mAP 0.906 0.926 0.928

respectively, listed in columns 1 and 2 of Table 2. Note that
we strictly split the set of images into training and testing
sets with a ratio of 4:1 (5423:1807). Table 2 only counts
the number of bounding boxes. There may be more than
one bounding box in an image. During the training, the
online augmentation technique is applied to avoid overfitting
by taking geometric transforms of horizontal/vertical flips and
resizing, color jittering, blurring, and mosaicking. The total
number of disease categories in this disease detection step
was eight, and the results of classification were given one of
the disease classes with proper bounding boxes. The training
started from the weight parameters pretrained on the PlantNet
in LifeCLEF 2017 dataset (Heredia, 2017), with the learning
rate set to 0.002 and training for 180,000 iterations. To avoid

local optimization, the learning rate was reduced by 10% at
30,000/50,000/130,000 iterations. The momentum was set to
0.9, and the stochastic gradient descent optimizer was used
to minimize the difference from the ground truth. For better
understanding, Figure 5 shows several example samples used to
train disease object detection.

Training Deep Metric Learning (DML)
With Softmax and K-Nearest Neighbor
(K-NN) Classifier
For the DML with the softmax classifier, we used the same
training/test dataset that we used for the first object detection
stage. To increase the training data, the same augmentation
techniques were taken as in the first stage. The increased number
of images of the extended bounding box can be seen in column
3 of Table 2, which include additional normal (flower, fruit, leaf,
and runner) objects so that the embedded features can be learned
differently from disease symptoms. In addition, the training of
the CNN backbone started from the weight pretrained by the
ImageNet dataset. We trained the network in 300 epochs with a
batch size of 128. The learning rate was set to 1e−5 and 1e−4 for
the backbone network and the classifier head, respectively. We
used the Adam optimizer and the semi-hard margin sampling
threshold set to 0.01.

After training the DML, we took the 256-dimensional features
for reference images, which include eight known strawberry
diseases with normal leaf, fruit, runner, and flower, and unknown
diseases, and selected samples are shown in Figure 6. The
unknowns are not included in the training by the DML
with the softmax classifier for the second stage, but the

FIGURE 7 | Disease detection results from object detection and post-filter. Objects are annotated by different box colors and prediction labels. Blue bounding boxes
are the ground truth annotation. Detected bounding boxes are labeled by “A| B” with two categories; “A” is the prediction result in the first stage, after which the
detected area is cropped into patches and sent to the DML and given prediction label B. Green boxes mean prediction labels A and B are the same, otherwise they
are red.
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FIGURE 8 | (A) Confusion matrix of DML-based K-NN classifier. (B) TSNE visualization result for test data.

TABLE 4 | Reduced confusion matrix.

Category Diseases Normal Unknowns Recall (%)

Diseases 1,999 3 4 99.7

Normal 3 1,692 19 98.7

Unknowns 20 52 790 91.7

Precision (%) 98.9 96.9 97.2 97.8(Accuracy)

embedded features for unknowns are taken to build the K-NN
classifier after training.

Results of Disease Detection
Table 3 presents the final results that explain the effect of
post-filter. The results of the first stage of FPN-based Faster
R-CNN and the second stage of classifiers are measured by
average precision (AP) for each disease, and overall performance
is obtained in mAP. The detection performance is found to
be better for anthracnose (fruit rot) and blossom blight but
comparatively worse for angular leafspot, anthracnose (runner),
and powdery mildew (leaf). This is why the appearance of
symptoms can be confused with other diseases (e.g., leafspot) or
illumination reflecting on the leaves. In addition, the disease on
the thin and long runner does not have sufficient resolution for
it to be discriminated well, as is the case in the example of the
anthracnose (runner).

When the DML with the softmax classifier was added to the
object detection stage, the mAP increased approximately 2%, as
can be seen in the third column of Table 3, but two diseases
showed a slight degree of performance decrease: blossom blight
and powdery mildew (leaf). In our conjecture, this is caused by
the dislocation of bounding boxes enclosing the disease symptom
in the first object detection stage, even though the enlarged
bounding box is fed into the post-filter. In this case, there could
be an erroneous decision in the second stage because the input
image has never been experienced in the training phase.

However, when the two decisions from the softmax and K-NN
classifiers are combined by Eq. (5), the AP performance for each
disease was increased. As listed in the last column of Table 3,

TABLE 5 | Strawberry images for field testing.

Location Disease # of images

Chugbuk chongju Blossom blight 24

Chungnam non-san Angular leafspot 36

Jeonbuk wanju Blossom blight 167

Gray mold (flower) 54

Anthracnose (runner) 47

Powdery mildew (fruit) 63

Powdery mildew (leaf) 42

Powdery mildew (runner) 24*

Total 457

*Trained system has never experienced disease.

the effect of the combined decision was not significant, but
there was a consistent performance increase for all diseases.
Figure 7 shows the disease detection results from the Fast R-CNN
object detection followed by post-filter. A red box means a
different prediction result in object detection and DML post-
filter, and a green box means the two decisions are the same.
The object detector finds potential objects well if the detected
object is distinct from the background. However, the detector
may give a false prediction label if the background is complex.
For example, for the “powdery mildew leaf” in Figure 7, the
network misdetected a normal leaf as a powdery mildew leaf,
and the difference between these two categories is that the
disease-infected leaves are covered in snow-white fungus, but the
reflection of light on leaves shares similar features. The DML
post-filter focused on the local context and successfully corrected
the false detected object.

For separated DML followed by the K-NN classifier, the
performance has been visualized by a confusion matrix, which
is shown in Figure 8A. Note that the separate stage can be used
for the classifier of ROI of the symptoms. For example, a picture
of disease-like symptoms can be taken and a manual ROI can
be denoted without using an automatic disease detection model
such as Faster R-CNN, after which its class can be obtained
from this separate K-NN-based classifier. The overall accuracy
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TABLE 6 | Field test results of known disease detection.

Disease BBox Performance (AP)

Faster R-CNN Faster R-CNN + softmax classifier Faster R-CNN + K-NN combined decision

Angular leafspot 75 0.934 0.943 0.939

Blossom blight (f)(flower) 195 0.994 0.993 0.996

Anthracnose runner 161 0.853 0.866 0.913

Gray mold (fruit) 63 0.949 0.958 0.951

Powdery mildew fruit 48 0.881 0.915 0.931

Powdery mildew leaf 78 0.848 0.902 0.893

Total 620 0.909 0.930 0.937

FIGURE 9 | Detected unknown diseases.

of the separate K-NN classifier was 97.7% for the test data in
the last column of Table 4, the summarized confusion matrix. In
Table 4, the average recall and average precision were 96.7 and
97.7%, respectively. Again, a few instances of angular leafspot,
gray mold (flower), and powdery mildew (leaf) were misclassified
as unknowns. In addition, several normal (runners) were
misclassified as anthracnose disease. Some unknown symptoms
were confused with disease classes including angular leafspot,
leafspot, gray mold (fruit), powdery mildew (leaf), and normal
parts. Note that it is difficult to discern leafspot and angular
leafspot from disorders on a leaf. For the same reason as in the
object detection, there were several instances of confusion of
disease classes of gray mold (flower), powdery mildew (leaf), and
anthracnose (runner).

Figure 8B shows the t-SNE of the embedded features after
DML. It is evident that almost all the classes of known diseases
and normal parts are well separated, but the classes that confuse
(Figure 8B and Table 4) are slightly overlapping, as shown in
Figure 8B.

Final Field Test With Unseen Data
To validate the proposed scheme, strawberry images were
captured from three greenhouses at different locations, and
we used these images to construct the dataset as in Table 5.
Note that only six known diseases are included, because at
that time, leafspot and anthracnose (fruit rot) were hard to

find. In the table, powdery mildew (runner) can be treated
as unknown, because it was not considered in the training
of any building block of our scheme. Table 6 presents the
mAP results of known diseases. It can be seen that the overall
performances are increasing from the first object detection to the
final combined decision of the softmax and K-NN classifiers. For
unknown powdery mildew (runner), 19 images were detected
with the proper bounding box out of 24 images. As shown in
the left part of Figure 9 (left), all the diseases were detected
as anthracnose (runner) in the first object detection stage but
corrected to unknowns in the K-NN classifier. Moreover, as
shown in the right part of Figure 9, the disorders on the
leaf are corrected to unknowns in the K-NN classifier after
having been wrongly detected in the first stage as one of
the leaf diseases.

CONCLUSION

This study has proposed a simple but effective strawberry
disease detection scheme with unknown diseases that can
produce reasonable performance. In the proposed scheme, the
known strawberry diseases are better detected with DML-
based classifiers, as are the unknown diseases that have certain
symptoms. We have assumed that, in the training process, the
unknowns are partly known. The pipeline of our proposed
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scheme consists of two stages: the first is an object detection
stage with known disease classes, while the second is the DML-
based post-filtering stage. The second stage has two different
types of classifiers: softmax classifiers for only known diseases
and the K-NN classifier for known and unknown diseases. In
training the first stage and DML-based softmax classifier, we
have only used the known samples of strawberry diseases. Then,
we included the known unknown training samples to construct
the K-nearest neighbor classifier. The final decision for known
diseases has been made based on the combined results of the
two classifiers, while unknowns have been detected from the
K-NN classifier.

The experimental results showed that the DML-based post-
filter was effective at improving the performance of known
disease detection in terms of mAP. Furthermore, the separate
DML-based K-NN classifier provided high recall and precision
with respective average values of 96.7 and 97.7%, showing it
could be exploited as an ROI classifier. For the real field data, the
proposed scheme achieved a high mAP of 93.7% to detect seven
classes (six known diseases and one unknown) of strawberry
disease, and it also achieved reasonable detection results for
unknowns. These results imply that the proposed scheme can
be applied to find disease-like symptoms due to real known

and unknown diseases or disorders for any kind of plant,
including strawberry.
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