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Background: Vicia bungei is an economically important forage crop in South Korea and
China. Although detailed genetic and genomic data can improve population genetic
studies, conservation efforts, and improved breeding of crops, few such data are
available for Vicia species in general and none at all for V. bungei. Therefore, the
main objectives of this study were to sequence, assemble, and annotate V. bungei
chloroplast genome and to identify simple sequence repeats (SSRs) as polymorphic
genetic markers.

Results: The whole-genome sequence of V. bungei was generated using an Illumina
MiSeq platform. De novo assembly of complete chloroplast genome sequences was
performed for the low-coverage sequence using CLC Genome Assembler with a
200–600-bp overlap size. Vicia bungei chloroplast genome was 130,796-bp long.
The genome lacked an inverted repeat unit and thus resembled those of species
in the inverted repeat-lacking clade within Fabaceae. Genome annotation using Dual
OrganellarGenoMe Annotator (DOGMA) identified 107 genes, comprising 75 protein-
coding, 28 transfer RNA, and 4 ribosomal RNA genes. In total, 432 SSRs were detected
in V. bungei chloroplast genome, including 64 mononucleotides, 14 dinucleotides, 5
trinucleotides, 4 tetranucleotides, 233 pentanucleotides, 90 hexanucleotides, and 14
complex repeated motifs. These were used to develop 232 novel chloroplast SSR
markers, 39 of which were chosen at random to test amplification and genetic diversity
in Vicia species (20 accessions from seven species). The unweighted pair group method
with arithmetic mean cluster analysis identified seven clusters at the interspecies level
and intraspecific differences within clusters.
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Conclusion: The complete chloroplast genome sequence of V. bungei was determined.
This reference genome should facilitate chloroplast resequencing and future searches
for additional genetic markers using population samples. The novel chloroplast genome
resources and SSR markers will greatly contribute to the conservation of the genus Vicia
and facilitate genetic and evolutionary studies of this genus and of other higher plants.

Keywords: chloroplast genome, inverted repeat-lacking clade, phylogeny, SSR marker, Vicia bungei

INTRODUCTION

Vicia L. is a genus in the Fabaceae family containing
approximately 180–210 species. These species are widely
distributed across temperate regions of the northern hemisphere
and extend to temperate regions of South America and tropical
Africa (Hanelt and Mettin, 1989). Vicia species are used as
green manure, cover, forage, and honey crops, making it an
economically important genus and a valuable genetic resource
(Montemurro et al., 2013). Despite their high economic value,
very few genetic and genomic data are available for species
of Vicia, other than Vicia villosa (hairy vetch) and Vicia faba
(broad bean). Vicia bungei, native to South Korea and China,
is phenotypically and ecologically similar to Vicia americana
(Endo et al., 2000). Although several chloroplast genomes
of different Vicia species have been obtained through next-
generation sequencing (NGS) (Cooper et al., 2017; Li et al.,
2018; Xin and Yang, 2020), to date, no genetic or genomic
studies have been conducted on V. bungei, despite the potentially
valuable genetic resources present in wild varieties of this
species. In addition, more effective molecular markers are
required to support the phylogenetic and population genetic
studies underlying the identification, conservation, utilization,
and breeding of Vicia species.

The chloroplast genome has long been a focus of research
into plant molecular evolution and systematics because of its
small size, high copy number, and conservation among species.
It has been extensively characterized at the molecular level (Kim
et al., 2005). Recent technical advances in NGS technologies
mean that the number of completely sequenced chloroplast
genomes has increased rapidly, and such sequences play a
progressively important role in the identification of molecular
markers and in molecular phylogenetic analyses (Kim et al.,
2016). Chloroplast genetic markers are potentially more effective
indicators of population subdivision and differentiation than
are nuclear markers (Schaal et al., 1998; Petit et al., 2005).
Chloroplast simple sequence repeats (cpSSRs), generally defined
as microsatellites with tandem repeats of 1–6 bp, are valuable
resources for assessing genetic and genome diversity, as well
as in phylogenetic and systematic evolutionary analyses; cpSSRs
have several advantageous characteristics, including haploidy,
non-recombination, uniparental inheritance, and low nucleotide
substitution rate (Powell et al., 1995). The chloroplast genome
can provide unique insight into evolutionary processes as it
retains ancient genetic patterns (Provan et al., 2001). Moreover,
as the genetic information in angiosperm chloroplasts is inherited
maternally, chloroplast markers serve as useful indicators of
maternal ancestry (Raveendar et al., 2015).

A new complete chloroplast genome sequence for V. bungei
has been generated and compared with sequences of related
genera in the Fabaceae family. This comparison enabled the
development of cpSSR markers for future population genetics
studies, explaining the structure. Our findings help explaining
the structure of the complete V. bungei chloroplast genome and
reveal evolutionary relationships within the genus Vicia.

MATERIALS AND METHODS

Plant Material and DNA Extraction
Leaves from 1-year-old V. bungei plants were collected from
the Industrial Plant Science and Technology greenhouse at
Chungbuk National University (Cheongju, South Korea; 36◦
37′ 44.3′′ N, 127◦ 27′ 02.5′′ E), immediately snap frozen in
liquid nitrogen, and stored at −80◦C until analysis. DNA was
extracted using automated QIACube system (Qiagen, Hilden,
Germany) with a DNeasy Plant Mini Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s protocol. Qualitative
and quantitative assessment of the DNA samples was performed
by spectrophotometry (NanoDrop; Thermofisher, Waltham, MA,
United States) before their use in the DNA Sequencing.

Sequencing, Assembly, Phylogenetic
Relationships, and Comparison of
Chloroplast Genome
DNA Sequencing was conducted using the Illumina MiSeq
sequencing platform (Illumina, San Diego, CA, United States),
and 2.0 Gb of sequence data was generated. Quality trimming
and assembly of the reads were achieved using the dnaLCW
method (Kim et al., 2015) and CLC Assembly Cell version
4.21 (CLC Inc., Qiagen, Aarhus, Denmark). Phylogenetic
relationships were analyzed with the maximum-likelihood
method using 61 conserved chloroplast protein sequences
from 20 Fabaceae species (downloaded from GenBank; see
Supplementary Figure 1) and V. bungei. The analysis was
conducted in MEGA7 (Kumar et al., 2016) with 1,000 bootstrap
replicates. The complete chloroplast genome of V. bungei was
compared with five published chloroplast genomes (Vicia sativa,
V. faba, Vicia sepium, Vicia ramuliflora, and Vicia costata) using
the mVISTA program (Mayor et al., 2000).

Chloroplast Simple Sequence Repeat
Detection and Primer Design
Simple sequence repeat mining was performed using the
MIcroSAtellite identification tool (Thiel et al., 2003). The
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following search parameters were set for identification: mono-,
di-, tri-, tetra-, penta-, and hexa-nucleotide motifs with a
minimum of ten, five, four, three, two, and two repeats,
respectively. The primers for SSR markers were designed using
Primer 3.0 software.1 The parameters for designing the primers
were set as follows: a primer length of 18–22 bp, with 20 bp
set as the optimum value; an optimum annealing temperature
of 58◦C; and a polymerase chain reaction (PCR) product size
of 100–300 bp.

Chloroplast Simple Sequence Repeat
Marker Validation and Data Analysis
A total of 39 developed CpSSR markers were randomly selected
to assess the genetic diversity of Vicia species (20 accessions
from seven species; Supplementary Table 1). The PCR mixture
(total volume 40 µl) contained 20 ng genomic DNA, 10 pmol
each primer, 2.5 mM MgCl2, 0.25 mM dNTPs, and 0.5 U
Taq polymerase (Inclone, Deajeon, South Korea). Polymerase
chain reaction amplification was performed under the following
conditions: 94◦C for 1 min; 30 cycles of 94◦C for 30 s, 55◦C
for 30 s, and 72◦C for 30 s; and a final extension at 72◦C

1http://frodo.wi.mit.edu/

for 5 min. The size of PCR products was analyzed using the
Fragment Analyzer (Advanced Analytical Technologies Inc.,
Ankeny, IA, United States), and allele sizes were scored using the
PROSize 2.0 (Advanced Analytical Technologies). The number
of alleles, the major allele frequency, the expected heterozygosity
and polymorphic information content were calculated using the
PowerMarker v3.25.2

The expected heterozygosity formula is as follows:

D̂l =

1−
k∑

u=1

p̃2
lu

 .

A closely related diversity measure is the polymorphism
information content (PIC):

P̂ICl = 1−
k∑

u=1

p̃2
lu −

k−1∑
u−1

k∑
v=u+1

2̃p2
lũp2

lv.

Phylogenetic analysis of Vicia species (20 accessions from seven
species) was performed using UPGMA cluster analysis, and

2https://brcwebportal.cos.ncsu.edu/powermarker/

FIGURE 1 | Schematic map of the chloroplast genome of Vicia bungei.
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unrooted tree construction was based on the CS chord 1967
distance method in PowerMarker v3.25 software.

RESULTS

Genomic Characteristics and
Phylogenetic Relationships With
Fabaceae
The complete chloroplast genome of V. bungei was 130,796-
bp long and lacked an inverted repeat unit (Figure 1). The
overall GC content was 34.73%. A total of 107 genes were
identified, including 75 protein-coding, 28 transfer RNA, and 4
ribosomal RNA genes (DNA-directed RNA polymerase genes)
(Supplementary Table 2). Furthermore, 18 ribosomal subunit
genes (ten small subunits and eight large subunits) were detected.
Eleven genes, including petB, petD, atpF, ndhA, ndhB, rpl16,
rpl2, rps12, rpoC1, clpP, and ycf3, contained one or two introns.
Additionally, rps12 was identified as a trans-splicing gene.

A total of 45 chloroplast genes were detected and involved in
photosynthesis, and encoded subunits of NADH oxidoreductase
(11 genes), subunits of photosystem I (seven genes), subunits
of photosystem II (14 genes), subunits of the cytochrome b6/f
complex (seven genes), different subunits of ATP synthase (seven
genes), and the large chain of ribulose bisphosphate carboxylase
(one gene). In addition, five genes were involved in different
functions, which two of them remained unknown (Table 1).
Vicia bungei chloroplast genome resembled to other Vicia species
plastomes in the inverted repeat-lacking clade (IRLC), as it lacked
rpl22, rps16, and one intron of clpP (Kim et al., 2016; Li et al.,
2018; Xin and Yang, 2020). The complete chloroplast genome
sequence, with gene annotations, was submitted to GenBank
(accession number MT362055).

Phylogenetic analysis for 21 Fabaceae species, based on 61
conserved plastid protein sequences, showed that V. bungei
clustered with two species from the same genus, V. sepium and
V. sativa, supported by high bootstrap values in the maximum-
likelihood tree (Supplementary Figure 1).

Development of Chloroplast Simple
Sequence Repeat Markers
A total of 432 simple sequence repeats (SSRs) were detected,
which included 64 mononucleotides, 14 dinucleotides, 5
trinucleotides, 4 tetranucleotides, 233 pentanucleotides, 98
hexanucleotides, and 14 complex repeated motifs, in the
chloroplast genome of V. bungei (Supplementary Figure 2).
The majority of the identified SSRs were pentanucleotide repeats
(53.9%), followed by hexanucleotides repeats (22.7%). A total of
432 potential SSR motifs were identified, 313 (73.45%) of which
occurred within the intergenic regions (Supplementary Table 3).

A total of 232 pairs of SSR primers were designed from
432 potential SSR motifs (Supplementary Table 4) that showed
potential for marker development; these included mono-, di-,
tetra-, penta-, and hexanucleotides, and complex repeated motifs.
Pentanucleotides (54.31%) were the most abundant group within
the selected SSR markers, followed by hexa- (25%), mono-

TABLE 1 | Genes present in the Vicia bungei chloroplast genome.

Role Gene

Photosystem I psaA, psaB, psaC, psaI, psaJ, ycf3b, ycf4

Photosystem II psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ,
psbK, psbL, psbM, psbN, psbT, psbZ

Cytochrome b6/f petA, petBa, petDa, petG, petL, petN

ATP synthase atpA, atpB, atpE, atpFa, atpH, atpI

Rubisco rbcL

NADH oxidoreductase ndhAa, ndhBa, ndhC, ndhD, ndhE, ndhF, ndhG,
ndhH, ndhI, ndhJ, ndhK

Large subunit ribosomal
proteins

rpl14, rpl16a, rpl2a, rpl20, rpl23, rpl32, rpl33, rpl36

Small subunit ribosomal
proteins

rps11, rps12a,c, rps15, rps18, rps19, rps2, rps3,
rps4, rps7, rps8

RNA polymerase rpoA, rpoB, rpoC1a, rpoC2

Unknown function
protein-coding gene

ycf1, ycf2

Other gene accD, ccsA, cemA, clpPa, matK

Ribosomal RNAs rrn16, rrn23, rrn4.5, rrn5

Transfer RNAs trnA-UGCa, trnC-GCA, trnD-GUC, trnE-UUC,
trnF-GAA, trnG-GCC, trnH-GUG, trnI-GAUa,
trnK-UUUa, trnL-CAA, trnL-UAAa, trnL-UAG,
trnM-CAU, trnN-GUU, trnP-UGG, trnQ-UUG,
trnR-ACG, trnR-UCU, trnS-GCU,trnS-GGA,
trnS-UGA, trnT-CGUa, trnT-GGU, trnT-UGU,
trnV-UACa, trnW-CCA, trnY-GUA, trnfM-CAU

aGene containing a single intron.
bGene containing two introns.
cTrans-splicing gene.

(14.65%), di- (6%), and tetranucleotides (4%) and complex
repeated nucleotide (4%) markers (Supplementary Table 4).
The most common motif from the pentanucleotide markers
was the GAATT/GAAAT (4.76%), followed by CAAAA/CATAA
(3.97%), AAAGA/AATGA (3.97%), and TATAT/TATTT (3.17%)
(Supplementary Table 4).

Genetic Diversity in Vicia Species
Of the 232 cpSSR markers described above, 39 were selected
randomly, in order to evaluate their amplification potential and
to assess genetic diversity in the genus Vicia (20 accessions from
seven species). Amplification of all the selected cpSSR markers
produced clear fragments; 35 fragments showed polymorphisms,
and four were monomorphic. The major allele frequencies within
the 39 SSR markers across 20 accessions (Vicia spp.) ranged
from 0.20 (VBCP38 and VBCP42) to 1.0 (VBCP41, VBC54,
VBC65, and VBC164), with a mean value of 0.62. The number
of alleles per marker varied between 1 (VBCP41, VBC54, VBC65,
and VBC164) and 16 (VBCP42), with a mean value of 3.92.
The expected heterozygosity ranged from 0 (VBCP41, VBC54,
VBC65, and VBC164) to 0.92 (VBCP39), with a mean value
of 0.48. The polymorphic information content ranged from 0
(VBCP41, VBC54, VBC65, and VBC164) to 0.91 (VBCP39), with
a mean value of 0.569 (Table 2). The most polymorphic loci
(i.e., those exhibiting the highest diversity) were VBCP39 and
VBCP42, based on their relatively large allele number (15 and
16, respectively).
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TABLE 2 | Summary of the 39 polymorphic chloroplast simple sequence repeat markers and their genetic diversity statistics across 20 Vicia spp. accessions.

Marker Location Repeat motif Left sequence Right sequence MAF NA HE PIC

VBCP35 rpoB (AT)n TATCAACGGGTCTTCCATCTTG CGAGCTATACTTGGGATTCAGG 0.50 4.00 0.67 0.62

VBCP37 rpoC2 (TA)n ATAACACAATCGGCAGATCCAA TTCTGTAAACACCCGAAATGGA 0.70 4.00 0.48 0.44

VBCP38 trnK-UUU∼matK (TA)n CACGGCTTTCCCTATGTATACA TGCAGAGGTTCCATAGAAATCG 0.20 11.00 0.89 0.87

VBCP39 psbB∼petL (TA)n TCAGTGAATACAGACAATGGATAC ATCATCTGTGACATCTACGCAG 0.16 15.00 0.92 0.91

VBCP40 ycf1 (TC)n ATAGAATGCTCTCCCAAGCTTC TTTCGAGATACTGGGCGACTA 0.43 4.00 0.66 0.59

VBCP41 psbB (AACC)n AAAGGAACATCCGCTCTAACAA ACATCGGTAATAATCCGGCAAA 1.00 1.00 0.00 0.00

VBCP42 rpl32∼ndhF (ATTA)n TCCTCATCCTCGCTCTATAGAT TCTTTGCACAATGGTCCCAATA 0.20 16.00 0.90 0.90

VBCP43 ndhD (TATT)n ATCAATGGCTTCTCTTGCATTG CGAAATAAATAATTCTCTGGGCCC 0.80 2.00 0.32 0.27

VBCP44 psaB (TTTC)n CGGTGTTTATCAGTGGTGGTAT CAAGCTAAGGAACTGACTCCAA 0.80 2.00 0.32 0.27

VBCP53 rpoB∼trnC-GCA (AACAA)n TCATTCTTCATCGAATCACATGA ACCCGAAGTCTAGGTGAAATTT 0.75 3.00 0.41 0.37

VBCP54 psbD (AACCC)n TTCATATGATGGGAGTTGCTGG GAGCACTCATCCATAAACCAGT 1.00 1.00 0.00 0.00

VBCP56 atpB (AACTT)n CCCAGGGAAATATGTTGGTCTA CTTTCACTTCTGAATCCCAAACA 0.85 2.00 0.26 0.22

VBCP63 trnE-UUC∼trnT-GGU (AATGA)n AAGAATTGAGTTGAGGGACAGG ACATAGCAACTCATTAACGAACA 0.45 5.00 0.68 0.63

VBCP65 rpoC2 (AATGG)n TGAACTGTTATAACTTGACCCGA TGGCAACTTGACAAATTAACTGA 1.00 1.00 0.00 0.00

VBCP69 psbM∼trnD-GUC (ACCAA)n GGATCTCGATGATATCAAATCGGA AGATCATTTCGAACAGGTATCCC 0.60 3.00 0.56 0.49

VBCP75 rpoC1 (ATAAA)n CCCTACTGTTTCTCCATTAGGT TTTGGCTCTGGAACTGAATCAT 0.80 2.00 0.32 0.27

VBCP79 trnE-UUC∼trnT-GGU (ATGAT)n GAGATGTCCTAAACCGCTAGAC AGATTGGTGATTGGAATGAACAA 0.85 3.00 0.27 0.25

VBCP81 atpH∼atpI (ATTCA)n TTTCGTTTCTACCCTTGTAGTTT ACGGTATGGAACAAACACATGT 0.40 4.00 0.71 0.65

VBCP85 rbcL∼atpB (ATTTG)n CAAGAACAAGGTCTACTCGACA TCACTGTCAAGGTCAAGAGTCT 0.45 4.00 0.63 0.55

VBCP88 rpoC2 (ATTTT)n TTGGTGGAATAATGACGTTATGT TGGGAGAAGCTGTAGGGATTAT 0.75 2.00 0.38 0.30

VBCP90 rpoC2 (CAAAA)n TTGACAACTTTGAGTTCCAGATT ACATAGTGCCATCTTGATACCG 0.70 4.00 0.48 0.44

VBCP98 trnK-UUU∼matK (CATAA)n CACGGCTTTCCCTATGTATACA TGCAGAGGTTCCATAGAAATCG 0.25 6.00 0.82 0.79

VBCP99 matK∼trnK-UUU (CATAA)n CCTCGCTTCTTCCTTCTCATTT CGATTAGTGCTTGCTGTGGAAA 0.73 4.00 0.43 0.39

VBCP100 petN∼psbM (CATTG)n CTGCTGGTTGTAGTCTGATCAT TCGCATTTATAGCTACTGCACT 0.60 2.00 0.48 0.36

VBCP106 psbC (CTTAT)n ACATGTATGGTTGGGTTCCATT AGTAAATGCTTGAGCTTGAGAAG 0.85 2.00 0.26 0.22

VBCP108 atpI∼rps2 (CTTTT)n TGACCTACTTCCACAGCAGATA TTTAGATTTGGTTGGGCGGG 0.80 3.00 0.34 0.30

VBCP109 rpoC2 (CTTTT)n CGTTCTTGAATCGATTGGAATGG ACTTCGCAAGGATCAAGATCAA 0.45 4.00 0.63 0.55

VBCP112 trnT-GGU∼psbD (GAAAT)n TCCTTTCATTGTCAGATACTCCT AGATTCTTGCAGAGTGAGAACC 0.56 3.00 0.59 0.52

VBCP116 rpoC1∼rpoC1 (GAATG)n AATTGACCATAGACCCATTCCC CCTAGTTATATCGCGAGCCTTT 0.85 2.00 0.26 0.22

VBCP122 atpF (GCACT)n TTAGTAAGAAGTCATTCGCCGG CTATCCATAAGAGGAGATGCGC 0.55 2.00 0.50 0.37

VBCP123 matK (GGATA)n CCAATTACAAAGAAACAGCCGT TCTTCCTTAGAGGAGGCAGAAA 0.90 2.00 0.18 0.16

VBCP127 trnD-GUC∼trnY-GUA (GTATA)n GACTCGAACCCGCAACTTCC CGAGTCATCCGTGTCGATAAAG 0.50 5.00 0.69 0.65

VBCP131 trnY-GUA∼trnE-UUC (TACCC)n ATTGCCAACGAATTTACAGTCC CATAGTAGAATGGAAGTCGGGC 0.80 2.00 0.32 0.27

VBCP144 rpoC1∼rpoC1 (TCTAA)n TCCTCTCATCCGGCTAAAGTAT TTTCTGTCGTAATTTCGAATTGCA 0.55 3.00 0.57 0.48

VBCP149 rpoC2 (TGATT)n GGGACATTAGTTCGTTCTTTCG ACCATGGATTCACTTTCTAATGGA 0.35 5.00 0.77 0.73

VBCP155 petN∼psbM (TTATT)n GGGAAGAAGTGGACTCTAAAGG GGCAACAATTTCAATATTTGTGTG 0.25 5.00 0.77 0.73

VBCP156 trnE-UUC∼trnT-GGU (TTCAA)n AAGAATTGAGTTGAGGGACAGG ACATAGCAACTCATTAACGAACA 0.30 7.00 0.79 0.76

VBCP162 trnE-UUC∼trnT-GGU (TTGAG)n TTGTATTTCACACTAAGTCGGAAA ACCGATTTGAATTGAAGTCATCT 0.65 2.00 0.46 0.35

VBCP164 atpE∼trnT-CGU (TTTAG)n TAGGACACGAGTAGAGGCTATC GTTCACATGTTTCGTAAAGGGC 1.00 1.00 0.00 0.00

Mean 0.62 3.92 0.48 0.43

These 39 cpSSR markers were used to further analyze the
genetic diversity of the 20 Vicia spp. accessions. The unweighted
pair group method with arithmetic mean (UPGMA) cluster
phylogenetic analysis clearly distinguished the accessions by
genotype and grouped them into seven major clusters that
corresponded with the different species (Figure 2). Targeted
analysis of cpSSR regions in V. bungei identified a unique
chloroplast type for each of the seven species examined
(group A: Vicia dasycarpa; group B: Vicia hirsuta; group C:
Vicia narbonensis; group D: Vicia angustifolia var. segetilis;
group E: V. bungei; group F: Vicia linearifolia; group G:
Vicia chosenensis). The UPGMA cluster analysis also revealed
intraspecific variation between the 20 Vicia spp. accessions.

DISCUSSION

Most chloroplast genomes have a circular structure that contains
a large single-copy region, an inverted repeat A region, a small
single-copy region, and an inverted repeat B region (Raveendar
et al., 2015; Zhu et al., 2016). The chloroplast genomes of
some legumes, including V. sepium, have lost one of the two
inverted repeats, and these species form the IRLC (Li et al.,
2018). The chloroplast genome of V. bungei indicates that
this economically important crop is also a member of the
IRLC, suggesting that it may be part of the same evolutionary
clade as V. sepium and V. sativa, which may share a similar
evolutionary history.
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FIGURE 2 | Phylogenetic relationships between 20 Vicia spp. accessions. The phylogenetic tree was constructed with data from 39 chloroplast simple sequence
repeat markers using the unweighted pair group method with arithmetic mean method. Letters A–E on the right-hand side represent each plastome group based on
the plastome haplotypes.

A chloroplast gene is rarely lost arbitrarily. Instead, the gene
is either transferred to the nuclear genome, or its function is
replaced by a nuclear gene (Wang et al., 2018). Recent sequencing
and analyses of some IRLC plastomes (Kim et al., 2005; Li
et al., 2018; Moghaddam et al., 2022) have revealed important
evolutionary patterns in this clade, including loss of the genes
rpl22 and rps16, the deletion of one intron of clpP (Jansen et al.,
2008; Li et al., 2020), multiple sequence inversions (Schwarz
et al., 2015; Williams et al., 2015), and gene transfers to the
nucleus (Moghaddam and Kazempour-Osaloo, 2020; Wu et al.,
2021). Vicia bungei plastome lacked one intron of clpP, which
was consistent with the finding of Jansen et al. (2008) and
confirmed the parallel loss of this clpP intron in V. bungei and
in members of the papilionoid IRLC. Recently, Williams et al.
(2015) demonstrated that the rates of synonymous and non-
synonymous mutations are accelerated in the clpP sequence of
Acacia, suggesting there may be a functional nuclear-encoded

copy of this gene in at least some mimosoid legumes. The
mechanism by which rpl22, rps16, and one intron of clpP gene
have been lost from V. bungei requires further in-depth research.

Although the structure of plastid genomes is largely conserved
across land plants (Wicke et al., 2011), other exceptions to
this pattern, beyond these IRLC legumes, include Geraniaceae
(Guisinger et al., 2011) and Campanulaceae (Haberle et al., 2008).
Some Fabaceae plastomes have been highly rearranged owing
to multiple rounds of translocations and/or inversions. As a
result, the plastomes of the IRLC have undergone considerable
diversification in both gene order and gene/intron content
(Wang et al., 2018; Li et al., 2020; Xin and Yang, 2020;
Moghaddam et al., 2022).

The plastome of V. bungei most closely resembled those of
V. sepium and V. sativa. This finding is consistent with previous
research that indicated similar evolutionary evaluation analysis
of V. sepium and V. sativa (Li et al., 2020). Plastome differences
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between some major clades provide valuable information for
resolving phylogenetic relationships based on DNA sequence
analyses. The study of genomic variation and phylogeny
of Fabaceae species provides an increased understanding of
general chloroplast genome evolution. In our results of multiple
alignments among six Vicia species cp genomes, we observed 11
major variant regions of V. bungei in cp genome (Supplementary
Figure 3). However, our research focus on the development of
cpSSR markers for Vicia species identification. Thus, these variant
regions would be very useful for further evolutionary studies as
well as cpSSR marker design.

In other flowering plant chloroplast genomes, the most
common SSR motifs are mono-, di-, and trinucleotide repeats
(George et al., 2015). Nevertheless, data mining, under the
recursive criteria adopted here, revealed that the majority of SSRs
present in the V. bungei chloroplast genome sequences contained
relatively long penta- (53.9%) or hexanucleotide (22.7%) motifs.
In this study, a total of 432 potential SSR were found in the
chloroplast genome of V. bungei. The number of repeat motifs
was richer in V. bungei chloroplast genome compared with the
V. sepium chloroplast genome (Li et al., 2020). These results
provide a firm foundation for further investigations of chloroplast
genome evolution in Vicia L. and other IRLC legumes such as
Medicago and Pisum and species.

Raveendar et al. (2015) used SSR markers to detect genetic
diversity in V. sativa and 22 other Vicia species. Li et al.
(2018) used chloroplast genome sequences to determine the
genetic diversity in V. sepium and 21 closely related Fabaceae
species. Han et al. (2021) used barcoding loci (ITS2, matK,
and rbcL) as DNA markers to differentiate 19 Vicia taxa.
Previous studies of phylogenetic relationships among species of
the subgenus Vicia did not detect any intraspecific variation
when cDNA SSR, cpSSR, or DNA barcoding markers were
applied to representative plants of each species. By contrast,
our UPGMA cluster analysis classified seven clusters at the
interspecies level and revealed intraspecific differences within
clusters. These results suggest that the 39 cpSSR markers
developed in V. bungei differentiated efficiently between Vicia
species genotypes and also provide estimates of their genetic
diversity. These cpSSR markers will thus be useful, not only for
authenticating Vicia species but also for providing the baseline
data essential for advancing systematic breeding in the field and

the development of conservation strategies, as well as for guiding
the collection of germplasm.

CONCLUSION

Complete chloroplast genomes have helped to reveal intraspecies
relationships, but also allow to measure divergence within
interspecies. Growing genomic resources for Vicia spp. provide
tools to extend our knowledge on this critically important forage
crop species. To develop cpSSR markers that can be utilized
to classify Vicia species and analyze the genetic diversity of
related species, potential cpSSR motifs were mined from the
chloroplast genome of V. bungei, and finally, 39 cpSSR markers
were developed. The UPGMA cluster analysis detected intra-
and interspecific variation between 20 accessions with 39 cpSSR
markers to distinguish Vicia species. The chloroplast genome
and cpSSR markers found in this study would provide useful
information for genetic diversity analyses in Vicia species.
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