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Plant aerial development relies on meristem activity which ensures main body plant axis 
development during plant life. While the shoot apical meristem (SAM) formed in the embryo 
only contributes to the main stem, the branched structure observed in many plants relies 
on axillary meristems (AMs) formed post-embryonically. These AMs initiate from a few 
cells of the leaf axil that retain meristematic characteristics, increase in number, and finally 
organize into a structure similar to the SAM. In this review, we will discuss recent findings 
on de novo establishment of a stem cell population and its regulatory niche, a key step 
essential for the indeterminate fate of AMs. We stress that de novo stem cell formation 
is a progressive process, which starts with a transient regulatory network promoting stem 
cell formation and that is different from the one acting in functional meristems. This transient 
stage can be called premeristems and we discuss whether this concept can be extended 
to the formation of meristems other than AMs.
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INTRODUCTION

Plants are characterized by continuous organogenesis and growth throughout their life 
by the action of meristems. These structures are formed by a few hundreds or thousands 
of cells, depending on the species, that are maintained undifferentiated and proliferating 
by the combined action of meristematic genes such as the KNOTTED1-LIKE Homeobox 
encoding gene SHOOT MERISTEMLESS (STM) and an hormonal balance of high cytokinin 
(CK) to low gibberellin (Shani et  al., 2006; Hay and Tsiantis, 2010; Maugarny-Calès and 
Laufs, 2018; Shi and Vernoux, 2022). Within this population of STM-expressing meristematic 
cells lies a specific subpopulation of semi-permanent stem cells that can be  recognized 
by the expression of the CLV3 gene (Fletcher et  al., 1999). These stem cells divide 
infrequently to replenish themselves while producing cells contributing to the meristem 
organogenetic activity. These stem cells are maintained by the activity of a stem cell 
niche that provides a cellular environment regulating stem cell division and preventing 
their differentiation (Bäurle and Laux, 2003; Dinneny and Benfey, 2008). While meristem 
multicellularity and complexity of the regulatory interactions between its different functional 
domains may be  an advantage for the robustness of established meristems, they become, 
however, challenges to overcome when it comes to producing new meristems. Such new 
meristems are nevertheless repetitively produced during the plant life, turning for instance 
into axillary meristems (AMs) that increase the branching pattern of the plant. Here, 
we  will discuss current knowledge and hypothesis of how an organized meristem emerges 

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.891228&domain=pdf&date_stamp=2022-04-26
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.891228
https://creativecommons.org/licenses/by/4.0/
mailto:patrick.laufs@inrae.fr
https://doi.org/10.3389/fpls.2022.891228
https://www.frontiersin.org/articles/10.3389/fpls.2022.891228/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.891228/full


Frontiers in Plant Science | www.frontiersin.org 2 April 2022 | Volume 13 | Article 891228

Nicolas and Laufs De novo Stem Cell Formation

from a small group of meristematic cells, concentrating 
mostly on the formation of the stem cell population and 
its regulatory niche.

How Are Stem Cells Regulated in an 
Arabidopsis Meristem?
In the apical part of the shoot apical meristem (SAM) lies a 
group of semi-permanent stem cells maintained in their 
undifferentiated and pluripotent state by an underlying 
organizing center (OC) that contributes to the stem cell niche 
function (Laux et  al., 1996). The WUSCHEL (WUS) gene is 
a meristematic stem cell fate regulator expressed in the OC 
and encoding a HOMEOBOX-like transcription factor that 
moves through plasmodesmata to promote CLAVATA3 (CLV) 
expression in the stem cell pool (Laux et  al., 1996; Mayer 
et  al., 1998; Yadav et  al., 2011; Daum et  al., 2014). To ensure 
its function in establishing the stem cell niche, WUS proteins 
form homodimers but also act through monomers or 
heterodimers with STM (Perales et  al., 2016; Rodriguez et  al., 
2016; Sloan et  al., 2020; Su et  al., 2020). In turn, the small 
secreted peptide CLV3 inhibits WUS expression upon binding 
to receptor kinases such as CLV1, CLV2, CORYNE (CRN), or 
BARELY ANY MERISTEM 1–3 (BAM1-3; Clark, 2001; Brand 
et  al., 2002; DeYoung et  al., 2006; DeYoung and Clark, 2008; 
Müller et  al., 2008; Ogawa et  al., 2008; Schlegel et  al., 2021). 
This core regulatory network contributes to the maintenance 
of the stem cell population while additional interacting regulators 
such as the HAIRY MERISTEM (HAM) transcription factors 
contribute to the positioning of the stem cells. WUS can bind 
and form heterodimers with HAM proteins to define the 
expression domain of CLV3 (Zhou et  al., 2015, 2018). HAM1 
and HAM2 are expressed in domains partially overlapping 
WUS domains. Specifically, both genes are expressed in the 
medullar and peripheral zones of the apical meristem but not 
in the L1 or L2 layers of the central zone (Schulze et  al., 
2010; Zhou et  al., 2018; Han et  al., 2020a). Expression and 
modeling data suggest that an apical-basal gradient of HAM1/2 
genes is established in the apical meristem to define CLV3 
expression pattern in the SAM. The establishment of the HAM 
gradient is in part mediated by miR171 that target the HAM 
genes and the transcription factor ARABIDOPSIS THALIANA 
MERISTEM LAYER 1 (ATML1) that promotes miR171 
expression in the epidermis (Wang et  al., 2010; Takanashi 
et  al., 2018; Han et  al., 2020b). Furthermore, an epidermal 
signal of CK is associated with the CLV-WUS genetic network. 
Indeed, modeling suggests that a combination of long and 
short range epidermal signals that could be  CK production 
and response, respectively, act as positional cues for patterning 
the WUS domain (Leibfried et  al., 2005; Chickarmane et  al., 
2012; Gruel et  al., 2016). Finally, auxin signaling is locally 
controlled to maintain a low level of auxin response in the 
stem cell niche because the presence of a high level of auxin 
signaling could induce organ emergence from the center of 
the meristem and severely disturb meristem integrity (Shi 
et  al., 2018; Ma et  al., 2019; Galvan-Ampudia et  al., 2020). 
Altogether, this network contributes to maintenance of stem 

cell homeostasis via a balance between their loss and renewal 
and proper spatial positioning of the stem cell and stem cell 
niche to allow meristem activity to respond to environmental 
signals (Yoshida et  al., 2011; Pfeiffer et  al., 2016; Landrein 
et  al., 2018).

How Is an Arabidopsis Axillary Meristem 
Initiated?
The initiation of an AM  during the vegetative phase in the 
axils of the rosette leaves of Arabidopsis has been extensively 
studied and several stages have been defined based on cellular 
and morphological features (Long and Barton, 2000; Xin et al., 
2017; Figure 1). Thus, axils of leaf primordia 1–6 (P1-6, counted 
from the SAM) show no morphological or cellular evidence 
of AM  initiation (stage S0). At S1, P7–8 leaf axils show cell 
divisions which intensify at S2  in P9 axils. Then, at S3, a 
bulge forms in P10-12 axils and becomes a dome-shaped 
structure at S4  in P13 axils, and primordia start to emerge 
from the S5 AM  at ≥ P14.

Thus, AM  initiation can be  divided into two phase, a 
maintenance phase during which some meristematic cells 
remain latent in the leaf axils (stage S0) and an activation 
phase in which the division of these cells leads to the 
formation of an AM  (S1 to S4; Grbić and Bleecker, 2000; 
Long and Barton, 2000). Live imaging showed that there 
are only a very limited number of cell divisions in the latent 
axillary meristem, which contributes to limiting the risk of 
somatic mutations that could be  propagated in the axillary 
branches (Burian et al., 2016). During the maintenance phase, 
STM remains expressed at a low level in the leaf axil and 
keeps cells in an undifferentiated state in contrast to their 
neighboring cells which undergo differentiation. Such 
maintenance of STM expression requires depletion of auxin 
from the axillary region and involves at the molecular level 
a self-activation loop facilitated by a permissive epigenetic 
environment (Wang et  al., 2014a,b; Cao et  al., 2020). During 
the activation phase, STM expression increases to induce 
division of these cells and the bulging out of the initiating 
AM  (Shi et  al., 2016; Xin et  al., 2017). The importance of 
STM in AM  formation is illustrated by the absence of 
AM  formation in a high proportion of leaf axils in the weak 
allele of STM, stm-bumpershoot1 (Shi et  al., 2016). A local 
pulse of CK response is required to stimulate STM expression 
and promote AM  formation, possibly through a mutual 
positive feedback loop between STM and CK (Wang et  al., 
2014b). Multiple factors, such as CUP-SHAPED COTYLEDON 
1–3 (CUC1-3), LATERAL SUPPRESSOR (LAS), REVOLUTA 
(REV), DORNRÖSCHEN (DRN) and DORNRÖSCHEN LIKE 
(DRNL), REGULATOR OF AXILLARY MERISTEMS 1–3 
(RAX1-3), REGULATOR OF AXILLARY MERISTEM 
FORMATION (ROX), and ARGONAUTE 10 (AGO10), provide 
spatial and temporal cues for the local activation of STM 
expression, and thus control the pattern of AM  formation 
(Greb et  al., 2003; Hibara et  al., 2006; Keller et  al., 2006; 
Müller et  al., 2006; Raman et  al., 2008; Yang et  al., 2012; 
Shi et  al., 2016; Zhang et  al., 2018, 2020).
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How Is a New Stem Cell Niche Formed in 
an Arabidopsis Axillary Meristem?
The observation that AMs result from the division of a few 
cells maintaining STM expression in the axils is in agreement 
with the so-called “detached meristem” concept for AM formation 
(Steeves and Sussex, 1989). In this “detached meristem” model, 
meristematic cells “detached” from the SAM are maintained 
in the axil of the leaf before being amplified to generate the 
new AM  (Long and Barton, 2000). This model is opposed to 
the “de novo origin of AM” model, in which differentiated 
cells regain a meristematic fate to form a new AM (McConnell 
and Barton, 1998). However, while cells of the “detached 
meristem” express meristem markers such as STM, they express 
neither the stem cell marker CLV3 nor WUS, clearly indicating 
that they are not yet organized in a properly structured meristem 
(Figure  2A). In fact, WUS becomes activated only at S1 after 
the increase in STM expression and WUS activates CLV3 
expression at S2 (Wang et al., 2017; Xin et al., 2017). A similar 
temporal succession of WUS and CLV3 activation is also 
observed during AM  establishment in cauline leaf axils of 
Arabidopsis (Nicolas et  al., 2022). Interestingly, in both rosette 
and cauline AM, WUS and CLV3 are initially expressed in 
overlapping domains and not in mostly separated domains as 
in the SAM. More precisely, in cauline AMs, WUS and CLV3 
are initially expressed in overlapping apical domains while later 
WUS expression shifts down from the apical to a central domain 
(Nicolas et  al., 2022; Figure  2B). The opposite dynamic is 
observed in rosette AMs, as WUS and CLV3 are co-expressed 
in the center of S4 rosette AM while later on, CLV3 expression 
domain shifts upwards and relocates to an apical position 
(Figure  2A; Xin et  al., 2017). This spatial rearrangement of 
CLV3 expression in rosette AMs is mainly ensured by the 
establishment of an apico-basal gradient of HAM gene expression. 
The role of the HAM genes during AM formation is demonstrated 
by the phenotype of the triple mutant ham1 ham2 ham3 in 
which CLV3 expression does not shift from a central to an 
apical domain and AM  formation is compromised. 
Complementation of the triple ham1 ham2 ham3 mutant with 
each of the HAM genes showed that HAM1 and 2 play the 

most prominent role for CLV3 expression pattern dynamics 
during AM  formation. Interestingly, the apico-basal gradient 
of HAM gene expression is established progressively during 
AM  formation. Indeed, the HAM genes are first expressed 
uniformly at S2 and S3 and it is only from S4 and S5 onwards 
that a gradient of expression is formed. Such a gradient is in 
part a consequence of the epidermis-specific expression of their 
negative regulators miR171 (Zhou et  al., 2018; Han et  al., 
2020a,b).

What drives the formation of a new stem cell population 
and its niche is not fully understood yet. WUS is a central 
actor in the process as the wus mutant has a very strong 
AM  initiation defect in contrast to the clv3-2 mutant which 
has only very weak AM  initiation defects (Wang et  al., 2017; 
Xin et al., 2017). De novo WUS expression in AMs is promoted 
by CK, through binding of the type-B Arabidopsis response 
regulator proteins (ARRs), which mediate the transcriptional 
response to CK, to the WUS promoter (Wang et  al., 2017). 
Thus, CK signaling could be a link between the AM activation 
phase where it forms a positive feedback loop with STM 
and the AM  establishment phase where it promotes WUS 
expression. Another link between the early phases of meristem 
initiation and its establishment is provided by the CUC genes. 
As described before, CUC genes are required for AM initiation 
(Hibara et  al., 2006; Raman et  al., 2008), likely by preventing 
cell differentiation and maintaining cells in a meristematic 
fate. However, recent results show that expression of those 
boundary genes has to be  downregulated from the initiating 
meristem to proceed to the establishment phase and allow 
stem cell formation (Nicolas et  al., 2022). CUC ectopic 
expression in the developing AM  perturbs its growth and 
prevents stem cell establishment as shown by delayed expression 
of WUS and CLV3. Repression of the CUC genes from the 
initiating meristem results from the redundant action of two 
NGATHA-LIKE (NGAL) transcription factors, DPA4 and 
SOD7. Thus, the boundary identity needs to be  repressed in 
order to allow de novo establishment of stem cells in newly 
formed AM  and permit proper expression of WUS and CLV3 
(Nicolas et  al., 2022).

FIGURE 1 | Steps of axillary meristem formation in the axils of Arabidopsis thaliana rosette leaves. Developmental stages (S0 to S4) are shown relative to leaf age 
(defined in plastochrones, P1 to P13).
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Altogether, Arabidopsis AM  establishment appears as 
being a gradual process. Although AMs derive from boundary 
cells that maintain a meristematic fate, a prerequisite for 
AM  establishment is the repression of boundary fate from 
the developing AM. CK initiates de novo stem cell niche 

establishment by activating WUS expression. In parallel, 
an apico-basal gradient of HAM activity is established which 
contributes to the dynamic (re)positioning of the stem cells 
and stem cell niche and the formation of an active  
meristem.

A

B

C

D

FIGURE 2 | Regulatory dynamics driving de novo stem cell formation during meristem formation. (A) Stem cell formation in Arabidopsis thaliana rosette AMs. 
Neither WUS nor CLV3 are expressed in the axils of young rosette leaf primordia from which the AM will initiate (first panel). WUS expression becomes expressed in 
the inner part of the axil (second panel) and later activates CLV3 in an inner, overlapping domain (third panel). These stages can be defined as premeristem. Finally, 
WUS and CLV3 expressions resolve in two separate domains, in the inner and apical part of the rosette AM, respectively (last panel). (B) Stem cell formation in 
Arabidopsis thaliana cauline AMs. Neither WUS nor CLV3 are expressed in the axils of young cauline leaf primordia from which the AM will initiate (first panel). WUS 
expression becomes expressed in the apical part of the axil (second panel) and later activates CLV3 in an apical, overlapping domain (third panel). These stages can 
be defined as premeristem. Finally, WUS and CLV3 expressions resolve in two separate domains, in the inner and apical part of the cauline AM, respectively (last 
panel). (C) Stem cell formation in Arabidopsis thaliana embryo meristems. CLV3 expression is activated by the WOX1, 2, 3, and 5 genes at the premeristem stage, 
while in established and active meristems WUS activates CLV3 expression. (D) Stem cell formation in rice AMs. FON2 (the CLV3 ortholog) expression is activated by 
TAB1 (the WUS ortholog) at the premeristem stage, while in established and active meristems WOX4 activates FON2 expression. TAB1 or WOX4 promotes OSH1 
(the STM ortholog) expression in premeristems and meristems, respectively. In (C) and (D), black arrows mean expression activation while red lines mean 
repression. Genes and interactions indicated in light gray are not present at the described stage.
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How Is a New Stem Cell Niche Formed in a 
Rice Axillary Meristem?
Development of the rice AMs during the vegetative phase 
leading to rice tillering provides another example of a dynamic 
reorganization of the regulatory network leading to de novo 
stem cell niche establishment. In rice, the axillary bud is formed 
on the side of the main stem (also called culm in rice) and 
is composed by a protective, modified leaf, the prophyll, enclosing 
a few leaf primordia and the AM. The first sign of AM initiation 
is a small group of small, dense cells that readably forms a 
bulge growing out from the stem in P3 axils, a transient state 
called “premeristem” by Tanaka et  al. (2015). Cells of the 
premeristem are expressing OSH1, a marker for meristematic 
cells and orthologue of Arabidopsis STM (Oikawa and Kyozuka, 
2009; Tanaka et  al., 2015). In P4, the developing AM  grows 
through cell division forming a cone-like structure initiating 
first the prophyll and later true leaf primordia. LAX PANICLE1 
(LAX1, orthologous to the bHLH transcription factor ROX of 
Arabidopsis thaliana), LAX PANICLE2 (a nuclear protein 
interacting with LAX1), and MONOCULM1 (orthologous to 
the GRAS transcription factor LATERAL SUPPRESSOR of 
Arabidopsis thaliana) synergistically promote OSH1 expression 
and are required for AM  formation (Oikawa and Kyozuka, 
2009; Tabuchi et  al., 2011).

Apparition of the stem cells in rice AM  can be  followed 
by the expression of FLORAL ORGAN NUMBER2 (FON2), 
that like its Arabidopsis orthologue CLV3 marks the stem cells 
in meristems (Suzaki et  al., 2006). This revealed an early 
specification of the stem cells in rice developing AMs as FON2 
expression is detected in a central, apical subset of the 
premeristem (Tanaka and Hirano, 2020). fon2 mutants show 
larger developing AMs with enlarged FON2 expressing domains, 
while conversely in FON2 overexpressors AM  have a reduced 
size, are often flat, and show reduced OSH1 expression that 
is not maintained, suggesting that FON2 is required for 
AM  maintenance (Tanaka and Hirano, 2020).

TAB1 (TILLERS ABSENT 1, also called MONOCULM3), 
the rice orthologue of the WUS gene is required for 
AM  formation in rice (Lu et  al., 2015; Tanaka et  al., 2015; 
Shao et al., 2019). TAB1 is expressed early on in the developing 
AM, in a central, apical domain of the premeristem that overlaps 
with the FON2 expression domain (Tanaka et al., 2015; Tanaka 
and Hirano, 2020). Like in Arabidopsis, TAB1 expression is 
induced by CKs and mutation of TAB1 leads to the absence 
of a functional AM, with only the development of the prophyll 
in some cases (Lu et al., 2015; Tanaka et al., 2015). Accordingly, 
expression of OSH1 is strongly reduced in tab1 mutants, 
suggesting TAB1 promotes AM  formation through promoting 
OSH1 expression to prevent cell differentiation (Figure  2D). 
In contrast, expression of LAX1 and MOC1 is not modified 
in tab1 mutants, suggesting that these genes act upstream or 
in parallel to TAB1. However, in contrast to what occurs in 
Arabidopsis, TAB1 expression is not maintained in rice AM once 
the prophyll is initiated (Tanaka et  al., 2015). Instead, WOX4, 
the closest TAB1 paralog becomes expressed in the 
AM. AM  defects of the tab1 mutant can be  partially rescued 
by expressing WOX4 under the control of the TAB1 promoter, 

showing a strong functional conservation between WOX4 and 
TAB1 proteins (Tanaka and Hirano, 2020). Furthermore, tab1 
AM  defects are also partially rescued in the tab1 fon2 double 
mutant, in which a precocious expression of WOX4 is observed 
(Tanaka and Hirano, 2020). Hence, while TAB1 is required 
for the formation of the premeristem, WOX4 is required for 
the later function of the established AM, which is in agreement 
with WOX4 being required for SAM maintenance during rice 
vegetative development and TAB1 being not required (Ohmori 
et  al., 2013; Tanaka et  al., 2015).

Altogether these observations indicate that AM  formation 
in rice involves a transient phase, called premeristem, and 
that the stem cell promoting role of WUS during the premeristem 
stage is later taken over by WOX4 in functional meristems 
(Figure  2D).

Can the Concept of Premeristem 
Be Extended to All Axillary Meristems?
The concept of premeristem was coined by Tanaka et  al. (2015) 
to describe a transient stage when rice AMs are formed by a 
group of cells with meristematic features but are not yet alike 
functional meristems. In rice, a difference between axillary 
premeristem and established AM is the involvement of the WUS 
ortholog TAB1 instead of WOX4. In contrast, in the case of 
Arabidopsis, expression and genetic data indicate that the same 
gene, WUS, is acting in establishing and active AMs. However, 
the expression patterns of WUS or CLV3 are reorganized during 
Arabidopsis AM  formation, possibly as a result of HAM gene 
dynamics. We  therefore suggest to extend the concept of 
premeristems to all developing AM  that are formed by a group 
of meristematic cells and in which the regulatory networks are 
not yet similar to the ones acting in established meristems either 
because the actors are different as in rice or because the actors 
are expressed in different domains, as in Arabidopsis. Whether 
this concept may apply to developing AMs in other species awaits 
precise molecular and genetic deciphering of the processes at play.

Can the Concept of Premeristem 
Be Extended to All Newly Formed 
Meristems?
Beside AMs, plants form new meristems in other contexts. 
Depending on the species, floral meristems (FM) have different 
origins and they initiate a new stem cell population, which 
is not permanently maintained in relation with the determinate 
fate of flowers. In the case of Arabidopsis, FMs arise at the 
flank of the inflorescence SAM. In fact, Arabidopsis FMs are 
thought as modified AMs, with the subtending leaf being 
reduced to a cryptic bract which growth can be  derepressed 
in some mutant backgrounds (Long and Barton, 2000;  
Ohno et  al., 2004). WUS expression starts in FM at late stage 
1 and becomes stronger at stage 2 (Mayer et  al., 1998; 
Grégoire et  al., 2018; Nicolas et  al., 2022) when it induces 
CLV3 expression, which thus begins to be  expressed at stage 
2 (Seeliger et  al., 2016; Prunet et  al., 2017; Nicolas et  al., 
2022). Like in the AMs, increased CK signaling is observed 
in young FMs (Yoshida et  al., 2011) and could contribute to 
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WUS activation. More recently, it has been shown that the 
meristem patterning gene REVOLUTA together with the main 
floral determinant LEAFY, in part through its target RAX1, 
contribute to WUS activation in a partially redundant manner 
(Denay et  al., 2018). Finally, as in AMs, DPA4 and SOD7 are 
required for efficient de novo stem cell formation in FMs 
(Nicolas et al., 2022). Despite these findings, our understanding 
of the mechanisms at play during stem cell formation in FM 
lacks the detail required to unambiguously recognize or exclude 
a transient stage as defined for the premeristem.

The first meristem formed is the embryonic meristem. In 
embryos, WUS is expressed early from the 16-cell stage onwards 
(Mayer et al., 1998). However, it is not required for the induction 
of CLV3, which starts to be  expressed from the transition 
stage and at the heart stage in the subepidermal layer of the 
meristem, then extends into the epidermis leading to the 
formation of the apical meristem (Zhang et al., 2017b). Instead 
of WUS, other genes from the same family, the WUSCHEL-
LIKE HOMEBOX 1 (WOX1), WOX2, WOX3, and WOX5 genes, 
are required for stem cell establishment via activation and 
spatial rearrangement of CLV3 expression (Zhang et al., 2017b). 
Therefore, formation of the embryonic meristem involves a 
transient stage during which both the actors (WOX1,2,3,5 
instead of WUS) and the expression pattern of the actors (CLV3 
starting with an expression in the inner layers) are different 
from what is observed in the established SAM (Figure  2C). 
This transient phase during which WOX genes activate CLV3 
expression could be  seen as a premeristem stage.

Finally, new meristems can also be  formed during in vitro 
culture through different ways (Ikeuchi et al., 2019). In the most 
widely used protocol, tissue explants are first cultured on an 
auxin-rich callus-inducing medium and then switched to a shoot-
inducing medium characterized by a high CK level that promotes 
the formation of shoot meristems. CK-mediated activation of 
WUS expression by ARR proteins is a key step of shoot meristem 
formation, as it can be  by-passed by forced WUS expression 
(Meng et al., 2017; Zhang et al., 2017a). Indeed, WUS activation 
results from two successive steps: first, cell divisions erase repressive 
epigenetic marks on the WUS locus, and, second, ARR proteins 
interact with the class III homeodomain-leucine zipper (HD-ZIP 
III) transcription factors on the WUS locus to promote its 
expression. This interaction between ARRs and HD-ZIP III allows 
limiting the expression pattern of WUS, as CK-mediated ARR 
activity is widely present in the regenerating callus while HD-ZIP 
III gene expression is more localized (Zhang et  al., 2017a). 
However, initial expression pattern of WUS is reorganized during 
regeneration to reach the pattern typical of the OC in regenerated 
meristems (Meng et al., 2017; Zhang et al., 2017a). Shoot meristems 
can also be formed by direct conversion of lateral root meristems 
without the formation of an intermediate callus (Rosspopoff 
et  al., 2017). Here again, formation of shoot meristems goes 

along with the induction of WUS expression as a response to 
CK treatments. Interestingly, during their activation phase, WUS 
and CLV3 show largely overlapping expression domains that 
only later resolve into patterns characteristic of bona fide meristem 
(Rosspopoff et  al., 2017).

CONCLUSION AND PERSPECTIVES

Formation of new meristems occurs repeatedly during plant 
development, starting from the embryonic meristem to AMs 
and FMs. Such structures are formed by meristematic cells 
that contain at their center a group of stem cells and stem 
cell niche. To form them, one could envisage two scenarios: 
the formation of a group of meristematic cells in a first step 
and in a second step, the definition of a functional stem cells 
and niche or, alternatively, a progressive increase of the pool 
of meristematic cells with the successive definition of stem 
cells niche and stem cells in a dynamic way. The observations 
discussed above all plead for the second scenario and reveal 
a transient, dynamic phase which can be  called premeristem 
leading to the formation of functional meristem. Notably, the 
formation of this premeristem is marked by a transient regulatory 
network that leads to the regulatory network active in established 
AM  but differs from it, either by identity or by the patterns 
of the actors involved. Furthermore, some factors such as the 
CUC or RAX1 genes or CK may contribute to the coordination 
between the increase of the meristematic cells and the formation 
of a stem cell niche. In addition, the role of other factors 
such as the oxidative status or mechanical signals that have 
been recently shown to regulate the stem cell or its niche 
could be  investigated for their role during meristem formation 
(Weits et  al., 2019; Bhattacharya et  al., 2022).
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