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Timely and accurate estimation of plant nitrogen (N) status is crucial to the successful

implementation of precision N management. It has been a great challenge to non-

destructively estimate plant N status across different agro-ecological zones (AZs). The

objective of this study was to use random forest regression (RFR) models together

with multi-source data to improve the estimation of winter wheat (Triticum aestivum

L.) N status across two AZs. Fifteen site-year plot and farmers’ field experiments

involving different N rates and 19 cultivars were conducted in two AZs from 2015

to 2020. The results indicated that RFR models integrating climatic and management

factors with vegetation index (R2 = 0.72–0.86) outperformed the models by only using

the vegetation index (R2 = 0.36–0.68) and performed well across AZs. The Pearson

correlation coefficient-based variables selection strategy worked well to select 6–7 key

variables for developing RFR models that could achieve similar performance as models

using full variables. The contributions of climatic and management factors to N status

estimation varied with AZs and N status indicators. In higher-latitude areas, climatic

factors were more important to N status estimation, especially water-related factors. The

addition of climatic factors significantly improved the performance of the RFR models

for N nutrition index estimation. Climatic factors were important for the estimation of the

aboveground biomass, while management variables were more important to N status

estimation in lower-latitude areas. It is concluded that integrating multi-source data using

RFR models can significantly improve the estimation of winter wheat N status indicators

across AZs compared to models only using one vegetation index. However, more studies

are needed to develop unmanned aerial vehicles and satellite remote sensing-based

machine learning models incorporating multi-source data for more efficient monitoring

of crop N status under more diverse soil, climatic, and management conditions across

large regions.
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INTRODUCTION

Winter wheat (Triticum aestivum L.), a major staple food crop, is
vital to global food security and sustainable agriculture. A great
challenge in winter wheat production is to optimize nitrogen (N)
management to achieve high crop yield and high N use efficiency
(NUE) under different soil landscapes and weather conditions
across large regions. Precision N management (PNM) has the
potential to overcome this challenge by matching N application
and crop demand (Cao et al., 2015; Cammarano et al., 2021).
Timely and accurate estimation of plant N status is crucial to
the successful implementation of PNM (Li et al., 2022). The
N nutrition index (NNI) is considered as a reliable N status
indicator, which can be calculated as the ratio of the actual N
concentration to the critical N concentration (Nc) (Lemaire et al.,
2008).

Instead of destructive sampling and laborious analysis, active
canopy sensors have been used for the estimation of crop N
status based on spectral reflection and absorption properties of
the crop canopy. These active canopy sensors have their own light
sources and are not affected by environmental light conditions
(Cao et al., 2017a). Vegetation indices (VIs) derived from these
sensors and simple linear regression (SLR) have been commonly
used for crop estimation (Cao et al., 2015; Bonfil, 2017). However,
SLR models generally do not work well when applied in other
areas or years (Munoz-Huerta et al., 2013). It is hypothesized
that adding climatic and management factors can provide
complementary information and improve the estimation of crop
N status compared to approaches that only use VIs. Though
prior studies have investigated the contributions of climatic and
remote sensing data on wheat yield prediction at regional scales
(Cai et al., 2019), there were limited studies that explored their
contributions to the estimation of N status. Besides, diverse
external factors, such as climatic and management factors, show
different patterns owing to latitude and longitude.

Stepwise multiple linear regression has been commonly used
for plant N status estimation using crop sensing data alone
or together with other ancillary data (Miao et al., 2009; Dong
et al., 2021). Recently, machine learning (ML) algorithms have
been increasingly employed to combine multiple VIs or VIs
with genetics, environmental, and management information to
predict crop N status due to their capabilities to deal with
both linear and nonlinear relationships (Zha et al., 2020; Li
et al., 2022). Random forest, developed by Breiman (2001), is
a representative ML algorithm with a good performance by
averaging an ensemble of trees without overfitting problems
(Rhee and Im, 2017; Zhang et al., 2019). It has been widely used
for regression and classification applications (Wang et al., 2016),
including crop N status prediction (Han et al., 2019; Lu et al.,
2019; Zha et al., 2020; Li et al., 2022).

Studies developing models using crop sensing and multi-
source ancillary data with ML algorithms for winter wheat N
status prediction across different agro-ecological zones (AZs)
are still limited. Therefore, the objective of this study was to
evaluate the performance of random forest regression (RFR)
models for winter wheat N status prediction across two AZs
using active crop sensor data together with climatic and
management information.

MATERIALS AND METHODS

Study Area and Experiment Design
Fifteen site-year winter wheat field experiments were conducted
in agro-ecological zone 1 (AZ1, 37◦43’N and 117◦13’E, in Laoling
County of Shandong Province) and agro-ecological zone 2 (AZ2,
33◦05’N and 119◦53’E, in Xinghua City of Jiangsu Province)
(Figure 1A), with different patterns of precipitation distribution
and monthly average temperature (Figure 1B). The soil types of
AZ1 and AZ2 were sandy loam soil and loam soil, respectively.

The design includes seven plot experiments (Exp. 1–7) and
eight farmers’ field experiments (Exp. 8–15) involving different N
rates, sowing dates (SD), and seeding rates (SR). The N fertilizers
of Exp. 1–3 were applied with 40% as basal N before sowing,
except for farmer’s management (FM), which applied 50% as
basal N. The remaining N was applied at the stem elongation
(SE) stage. The N fertilizers of Exp. 4–5 were applied at the
rate of 50% of total N rates before sowing and 50% at the SE
stage, respectively. The differences between Exp. 6–7 and Exp.
4–5 are listed in Table 1. With a randomized complete block
design, the treatments of plot experiments were carried out
with three repetitions. In addition to plot experiments, eight
farmers’ field experiments (Exp. 8-15) were conducted across
the Nanxia village in Shandong Province to compare different N
management strategies. In each farmers’ field experiment, there
were three treatments: FM, regional optimum N management
(RONM), and PNM. RONM, integrating high-yielding and high-
NUE, was managed with 81 kg N ha−1 as basal N and 138 kg
N ha−1 as topdressing N (Zhou et al., 2017). For PNM, the
basal N rate was the same as RONM, and topdressing N was
applied according to an active canopy sensors-based algorithm
(Cao et al., 2017b). Othermanagements were the same as RONM.
Irrigation was done two times at the sowing and SE stages in AZ1
and once after sowing in AZ2. All N source was urea. For all plots,
wheat was not limited by phosphate and potash fertilizers and
was kept free of pests and diseases during the growing seasons.

Data Acquisition and Calculation
VIs Datasets
The portable active sensor RapidSCANCS-45 (Holland Scientific
Inc., Lincoln, Nebraska, USA) was used to collect canopy
reflectance and VIs data, including the default normalized
difference vegetation index (NDVI) and the normalized
difference red edge (NDRE). It was carried by hand at a constant
speed to collect sensor readings at a sensor-to-canopy distance
of approximately 0.7–0.9m. The average values from three rows
in each plot were then calculated to represent the plot. The
NDRE was selected to monitor the N status to avoid the potential
saturation effect of NDVI under the high aboveground biomass
(AGB) and plant N uptake (PNU) conditions (Li et al., 2010).
The NDRE was calculated as follows:

NDRE = (NIR780 − RE730) / (NIR780 + RE730) (1)

where NIR780 and RE730 refer to near-infrared (780nm) and
red-edge (730nm) waveband reflectance, respectively.
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FIGURE 1 | Locations of the study region (A), mean precipitation (mm) and temperature (◦C) of agro-ecological zone1 (AZ1, from 2015 to 2018) and agro-ecological

zone 2 (AZ2, from 2017 to 2020) from sowing to sensing date (B).

TABLE 1 | Basic information of the field experimental design.

Sites Experiments

and years

Cultivars N rates P rates K rates Seeding

rates

Sowing dates Sensing dates

(kg ha−1)

AZ1 Exp.1 (2015) JM22, LY502 0, 120, 180, 240, 300 120 75 187.4 Oct.30th Apr.17th

Exp.2 (2016) JM22, LX77 0, 120, 180, 240, 300, FM Oct.19th Apr.2nd

Exp.3 (2017) JM22, SN29 Oct.20th Apr.12th

AZ2 Exp.4 (2017);

Exp.5 (2018)

ZM12, YM23, NM13 0, 90, 180, 270, 360 105 135 133.8 Nov.8th; Nov.1st Apr.1st; Mar.16th

AZ2 Exp.6 (2018);

Exp.7 (2019)

YM23 0, 180, 240, 300 105 135 103.5,

155.3,

207.0;

112.3,

168.4,

224.6

Nov.4th, Nov.24th,

Dec.1st; Nov.1st,

Nov.15th, Dec.24th

Mar.18th, 23th,

Apr.4th; Mar.14th,

14th, Apr.1st

AZ1 JM22 FM: 280.5; 120; 36; 300; Oct.dd#; Mar.26th

RONM: 219.0; 112 27 165 Oct.dd#;

Exp.8 (2016);

Exp.9 (2016);

Exp.10 (2016);

Exp.11 (2016);

Exp.12 (2016);

Exp.13 (2016);

Exp.14 (2016);

Exp.15 (2016)

PNM1: 199.9;

PNM2: 188.4;

PNM3: 208.2;

PNM4: 205.0;

PNM5: 213.2;

PNM6: 209.4;

PNM7: 200.2;

PNM8: 182.5

Oct.5th;

Oct.2nd;

Oct.13th;

Oct.11th;

Oct.12th;

Oct.13th;

Oct.11th;

Oct.12th

FM, RONM, and PNM1-8 refer to farmers’ management, regional optimum N management, and precision N management, according to Cao et al. (2017b), respectively. JM22, LY502,

LX77, SN29, ZM12, YM23, and NM13 refer to Jimai22, Luyuan502, Liangxing77, Shannong29, Zhenmai12, Yangmai23 and Ningmai13, respectively.

AZ1 and AZ2 mean agro-ecological zone 1 and agro-ecological zone 2.

dd# means sowing date of FM and RONM varied according to the eight farmers while being the same with PNM, respectively.

Agronomic Datasets
The plants were sampled right after sensing data was collected
at the SE stage (Table 1), which is the start of rapid crop growth
and N uptake and the stage important for making in-season N
recommendations (Meng et al., 2013).

In AZ1, plant samples were collected from randomly selected
1m by 0.3m areas in each plot and rinsed with water, and the

roots were removed. The plant samples were placed in an oven
at 105◦C for 30 min and dried at 80◦C to constant weight for
the determination of AGB, which was converted to the unit
of t ha−1 based on the row spacing. The sub-samples were
ground to pass through a 1mm sieve in a Wiley mill, and
the plant N concentration was determined using the Kjeldahl
method (Nelson and Sommers, 1973). The PNU was calculated
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by multiplying AGB by plant N concentration (Lu et al., 2017).
According to the definition of NNI, Nc was calculated from the
critical N dilution curves developed by Yue et al. (2012) in AZ1.

Nc = 4.15 × AGB−0.38 (2)

where AGB refers to the aboveground biomass (t ha−1).
Compared to AZ1, twenty plants in each plot were sampled

randomly and averaged as the mean value of the plot in AZ2
experiments. The critical N dilution curve developed by Zhao
et al. (2012) was used to calculate the Nc.

Nc = 4.33 × AGB−0.45 (3)

where AGB refers to the aboveground biomass (t ha−1).

Climatic Datasets
The primary climatic variables of AZ1 and AZ2 were obtained
from the China Meteorological Data Service Center (http://
data.cma.cn) and the Xinghua weather station, respectively.
The climatic variables from the date of sowing to sensing
included seasonal total precipitation (PPT), seasonal maximum,
minimum, and mean temperature (Tmax, Tmin, Tmean), growing
degree days (GDD) (Wang et al., 2014), abundant and well-
distributed rainfall (AWDR) (Bean et al., 2018), shannon
diversity index (SDI), relative humidity (HU), and solar radiation
(RAD) calculated using the Hybrid-Maize model (Yang et al.,
2004). Tmax and Tmin were determined as the maximum value of
the daily maximum temperature (Dmax) and the minimum value
of the daily minimum temperature (Dmin), respectively. GDD,
SDI, and AWDR were calculated as follows:

GDD =
∑

((Dmax + Dmin) / 2 − Tbase) (4)

SDI =
∑

((−pi × ln(pi)) / ln(d)) (5)

AWDR = PPT × SDI (6)

where Dmax= daily maximum temperature (up to 30 ◦C), Dmin

= daily minimum temperature, and Tbase = base temperature (0
◦C). pi is the ratio of daily precipitation to PPT, and d is the days
from sowing to sensing.

Management Datasets
Management practices included SD, SR, and basal N (BN) (shown
in Table 1).

Data Analysis
The data were analyzed using the following steps: (1) establishing
the SLR models only using NDRE; (2) identifying optimal
variables based on variable selection strategies; (3) training and
validating the RFR models using selected variables by updating
hyperparameters and cross-validation; (4) comparing and
evaluating the robustness of different models; (5) determining
the variable contributions in different AZs, and (6) exploring
the effective combinations of multi-source data for N status
estimation (Figure 2).

Strategies of Variable Selection
Two proposed variable selection strategies were evaluated in this
study. The first strategy was the Pearson correlation coefficient
(PCC), a common method to identify the variables with the
highest statistical significance. In the previous studies, it was
commonly adopted to quantify the degrees of correlation
between variables (Li et al., 2019; Hamrani et al., 2020). Taking
AGB, PNU, and NNI as dependent variables, climatic and
management data as candidate independent variables, andNDRE
as a fixed independent variable, the PCC was used to select
the optimal variables from the candidate independent variables
within the same group to remove the compound effects. It should
be emphasized that the climatic data were divided into two
sub-groups: temperature-related variables (GDD, RAD, Tmean,
Tmin, and Tmax), and water-related variables (PPT, SDI, AWDR,
and HU). Then, two candidate independent variables would be
selected from the temperature-related, water-related group, and
management groups, respectively. The selection process included
the following steps: (1) selecting the variables with the maximum
absolute correlation with dependent variables in each group as
the first group of candidate independent variables; (2) selecting
the second candidate independent variables that had smaller
correlation coefficients (<0.5 threshold in this study) with the
first group of candidate independent variables and the maximum
correlation with the dependent variables (Wang et al., 2020).

For the second strategy, the variable importance ranked by
the RFR (VIRRFR) was also adopted to select the variables
(Zhu et al., 2021). It was performed specifically by (1) ranking
the variable importance by the RFR; (2) adding the variables
iteratively into the RFR from highest to lowest according to
the importance score order until all independent variables were
included; (3) determining optimal variables corresponding to
the models’ coefficients of determination (R2), root mean square
error (RMSE), and relative error (RE) based on the cross-
validation. The above processes were implemented to explore
optimal variables for estimating AGB, PNU, andNNI across AZ1,
AZ2, and the two AZs (AZ1+2), respectively.

RMSE = ((
∑

n
n=1(Ei − Oi)

2) / n)1/2 (7)

RE (%) = (((
∑

n
n=1(Ei − Oi)

2) / n)1/2) / O′
i, (8)

Where Ei and Oi are the estimated and the observed values of
AGB, PNU, or NNI, respectively. O’i is the mean of the observed
values of the AGB, PNU, or NNI. n is the number of samples.

To compare these two strategies, relative R2 (RR2), relative
RMSE (RRMSE), relative RE (RRE), and the relative number
of variables (RN) were calculated by normalizing them using
the maximum values of R2, RMSE, RE and the number of
variables, respectively.

Identifying Appropriate Combinations of Multi-Source

Data for N Status Estimation
To determine the effects of different sources of data on N
status estimation, distinct combinations of multi-source data
were explored, which consisted of (1) only NDRE; (2) bothNDRE
and climatic data (NDRE+C); (3) both NDRE and management
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FIGURE 2 | Workflow of this study.

data (NDRE+M), and (4) full sources of data (NDRE+C+M).
The models with NDRE only serve as a reference for further
assessment of the benefit of adding climatic and/or management

data. The decrease of RMSE (dRMSE) was defined as the
ratio of the RMSE difference obtained from the multi-source
data (RMSEmulti−source) and NDRE only (RMSENDRE) to the
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RMSENDRE. This was calculated as follows:

dRMSE (%) = (RMSEmulti-source − RMSENDRE)

/ RMSENDRE (9)

where RMSENDRE and RMSEmulti−source are RMSE of NDRE only
and combinations of multi-source data, respectively.

Modeling Process
Microsoft Excel (Microsoft Corporation, Redmond,Washington,
USA) was used to establish and select SLR models with the
highest R2. The Scikit-learn library (in Python 3.9.5) was
utilized to establish the RFR models (Abraham et al., 2014).
Three hyper-parameters, namely, the number of decision trees
(n_estimators, from 10 to 300 at intervals of 50), the maximum
depth (max_depth, from 2 to 20 at intervals of 2), and the
minimum number of samples to spilt (min_samples_split, from
2 to 12 at intervals of 2) were tuned using 5-fold cross-validated
grid search (Abraham et al., 2014).

Evaluating Strategies and Performance Metrics
The total data of AZ1, AZ2, and AZ1+2 were split randomly into
70% for training and 30% for the test. Meanwhile, 5-fold cross-
validation was implemented due to its simplicity, universality,
and efficiency in reducing the over-fitting problem (Arlot and
Celisse, 2010), and its mean values were used to represent the
predictive performance. The accuracy of trained models was
evaluated using the test dataset with R2, RMSE, and RE.

RESULTS

Variability of Winter Wheat N Status
Indicators
A total of 396 observations were obtained, with 277 for training
and 119 for the test (Table 2). PNU showed the highest variation
on training dataset (CV = 60.53, 51.04 and 52.29% in AZ1,
AZ2 and AZ1+2, respectively), followed by AGB (CV = 50.2,
38.53, and 41.56% in AZ1, AZ2 and AZ1+2, respectively) and
NNI (33.67, 34.75, and 32.35% in AZ1, AZ2, and AZ1+2,
respectively). Similar results were presented in the test dataset. In
general, experimental data is suitable to evaluate the predictive
performance for N status estimation.

Estimating N Status Indicators Using
Simple Linear Regression Models
The performance of SLR models for estimating N status
indicators varied slightly across the different AZs (Figure 3).
Comparatively, NDRE explained 59% of AGB variation, 62% of
PNU, and 57% of NNI in AZ1, which performed better than
AZ2 with 36, 52, and 47%, respectively. The performance of
models in AZ1+2 was similar to that in AZ2 (44% for AGB, 54%
for PNU, and 46% for NNI). The validation results confirmed
that models for AZ1 (Figures 4A,D,G) had lower or similar
RMSE and RE than models for AZ2 (Figures 4B,E,H) or AZ1+2
(Figures 4C,F,I), respectively.

Selection of Important Variables
For the PCC, the correlation and corresponding p-values
were analyzed between candidate independent variables and
dependent variables. Notably, there were both positive and
negative correlations in each group (Figure 5). For the
temperature-related variables, GDD was selected first due to its
highest correlation with AGB in AZ1, and RAD was selected
for its high correlation with AGB but lower correlation with
GDD (<0.5). Similarly, PPT and SDI were selected from the
water-related variables, while BN and SR from the management
variables (Figure 5A). The above steps were repeated for AGB,
PNU, and NNI in AZ2 (Figure 5B) and AZ1+2 (Figure 5C),
respectively. Overall, six variables were selected in both AZ1 and
AZ2 and five variables in AZ1+2.

For the VIRRFR, cross-validation accuracy improved
significantly within the top two or three variables and then
fluctuated slightly (Figure 6). Variables were determined by
taking the highest R2, lowest RMSE, and RE into account. For
example, when the AGB model achieved the largest R2 (0.71),
the lowest RMSE (0.71 t ha−1) and RE (25.3%) in AZ1, the 10
variables in the models were selected as the optimal variables
(Figure 6A). In the same way, the number of selected variables
for AGB (13 in AZ2 and 11 in AZ1+2, Figures 6B,C), PNU (5 in
AZ1, AZ2, and 12 in AZ1+2, Figures 6D–F), and NNI (9 in AZ1,
11 in AZ2, and 12 in AZ1+2, Figures 6G–I) were determined.

Estimating N Status Indicators by Random
Forest Regression Models
Models Construction
The RFR models were trained using full variables and selected
variables based on the above-mentioned strategies and then were
evaluated to determine the optimal models based on cross-
validation (Figure 7). Slight differences in R2, RMSE, and RE
were observed between the models with variable selection and
full variables, while PCC showed the superiority due to the least
variables with the same accuracy except for the PNU estimation
models in AZ1 and AZ2. Thus, the variables selected by the
PCC were considered optimal and analyzed in the next part. It
should also be pointed out that similar performance of models
was shown in AZ1+2 compared to AZ1 and AZ2, indicating the
consistency of constructed models.

The performance of RFR models for N status estimation
was consistently better than SLR models. All the R2 values of
RFR models were significantly higher than the corresponding
R2 values of SLR models, and the most obvious improvement
appeared in AZ2, followed by AZ1 (Figure 3). Consistently, the
AZ1+2 matched the above result. In terms of N status indicators,
the NNI estimation models performed the best (R2 = 0.78–0.83),
followed by PNU (R2 = 0.69–0.83) and AGB (R2 =0.67–0.70).

Models Evaluation
In general, the observed N status indicators were more related
to the estimated ones obtained from RFR (Figure 8) than
SLR models (Figure 4). Moreover, the improvement of RFR
models over SLR models was larger in AZ2 than in AZ1
(Figures 8A,B,D,E,G,H). On the other hand, the validation
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TABLE 2 | Descriptive statistics of winter wheat aboveground biomass (AGB), plant N uptake (PNU), and N nutrition index (NNI) for training and test dataset in different

agro-ecological zones.

Agro-ecological zone 1 Agro-ecological zone 2 Agro-ecological zone 1+2

Min Max Mean SD CV(%) Min Max Mean SD CV(%) Min Max Mean SD CV(%)

Training dataset (n = 88) (n = 189) (n = 277)

AGB (t ha−1 ) 0.83 6.04 2.79 1.40 50.20 0.81 5.77 2.66 1.03 38.53 0.56 5.68 2.63 1.09 41.56

PNU (kg ha−1) 15.82 233.63 86.33 52.25 60.53 17.87 190.35 79.34 40.45 51.04 12.50 233.63 79.68 41.66 52.29

NNI 0.42 1.92 1.05 0.35 33.67 0.28 1.87 1.03 0.36 34.75 0.42 1.92 1.04 0.34 32.35

Test dataset (n = 38) (n = 81) (n = 119)

AGB (t ha−1 ) 0.56 5.40 2.77 1.19 42.88 0.58 5.85 2.47 1.13 45.74 0.81 6.04 2.74 1.29 47.46

PNU (kg ha−1) 12.50 190.39 87.67 46.75 53.33 15.40 224.69 71.70 41.52 57.91 17.87 224.69 81.18 50.16 61.78

NNI 0.43 1.64 1.08 0.36 33.60 0.36 1.96 0.97 0.32 33.04 0.28 1.96 1.01 0.38 38.24

FIGURE 3 | Coefficient of determination (R2) of simple linear regression (SLR) and random forest regression (RFR) for estimating aboveground biomass (AGB), plant N

uptake (PNU) and N nutrition index (NNI) in agro-ecological zone 1 (AZ1), agro-ecological zone 2 (AZ2) and across two agro-ecological zones (AZ1+2) on the training

dataset, respectively.

results indicated the estimation accuracy varied with N status
indicators, with NNI having the best result (Figures 8G–I).

Importance of Different Variables
The importance of variables selected by the PCC for estimating N
status indicators was explored by the RFRmodels (Figure 9). The
results showed that NDRE was consistently viewed as the most

important variable except for the estimation of NNI in AZ1, and
BNwas considered important for all N status indicators. It should
be noted that the important variables differed with the AZs and
N status indicators. In AZ1, SDI and RAD were ranked as the
top two variables for AGB, PPT and BN for PNU, and PPT and
BN for NNI (except for NDRE). The water-related variables were
consistently identified to be the vital variables (Figures 9A–C).
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FIGURE 4 | Relationships between estimated and observed aboveground biomass (AGB), plant N uptake (PNU), and N nutrition index (NNI) using simple linear

regression on the test dataset in agro-ecological zone 1 (A,D,G), agro-ecological zone 2 (B,E,H) and two agro-ecological zones (C,F,I). The black dotted line is the

1:1 line.

Compared to AZ1, temperature-related variables were also of
great importance to AZ2 (Figure 9D). Generally, water and
temperature-related variables were listed as the most critical
variables across AZs (Figures 9G–I). With respect to N status
indicators, temperature-related variables were more important
for AGB (Figures 9D,G), while water-related variables weremore
important for PNU and NNI (Figures 9B,C,E,F).

Multi-Source Data Performance
Different combinations of variables were further investigated
and evaluated for the estimation of N status indicators based
on dRMSE. The results indicated that the more the sources,
the better the model’s performance (Figure 10). Specifically, the
dRMSE of two-source data (NDRE+C or NDRE+M) was more
significant than that of single-source data (NDRE), and full
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FIGURE 5 | Pearson correlation coefficient (PCC) analysis in agro-ecological zone 1 (A), agro-ecological zone 2 (B) and across two agro-ecological zones (C). “***”,

“**”, and “*” note the significant correlation at 0.001, 0.01, and 0.05, respectively. GDD, RAD, Tmax, Tmin, Tmean, PPT, SDI, AWDR, HU, SD, SR, BN, AGB, PNU, and

NNI refer to growing degree days, solar radiation, seasonal maximum, minimum, and mean temperature, seasonal total precipitation, shannon diversity index,

abundant and well-distributed rainfall, relative humidity, sowing dates, seeding rates, basal N, aboveground biomass, plant N uptake, and N nutrition index,

respectively.

FIGURE 6 | The accuracy of aboveground biomass (AGB), plant N uptake (PNU), and N nutrition index (NNI) with variables selected by the random forest regression

in agro-ecological zone 1 (A,D,G), agro-ecological zone 2 (B,E,H) and across two agro-ecological zones (C,F,I).
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FIGURE 7 | The accuracy of random forest regression (RFR) on aboveground biomass (A), plant N uptake (B), and N nutrition index (C) using two variable selection

strategies and full variables. F-AZ1 represents full variables in agro-ecological zone 1, P-AZ1 represents selected variables by Pearson correlation coefficient strategy

in agro-ecological zone 1, V-AZ1 represents selected variables by the variable importance ranked by the RFR strategy in agro-ecological zone 1; similarly, F-AZ2,

P-AZ2, V-AZ2, F-AZ1+2, P-AZ1+2, V-AZ1+2 represents full variables, selected variables by Pearson correlation coefficient strategy and the variable importance

ranked by the RFR strategy in agro-ecological zone 2 and across two agro-ecological zones, respectively. RR2, RRMSE, RRE, and RN represent the relative

coefficient of determination, relative root mean square error, relative error, and the relative number of variables, respectively.

sources of data achieved the best results, with 33.72–40.95% for
AGB, 38.56–46.99% for PNU, and 48.54–52.50% for NNI. The
combination of NDRE+C produced better results than those of
NDRE+M (23.55, 27.21, and 42.83% vs. 13.62, 3.42, and −2.1%
for AGB, PNU, and NNI, respectively), indicating that climatic
data make more important contributions to the estimation of N
status indicators in AZ1. On the contrary, the combination of
NDRE+M performed better than NDRE+C in AZ2. Adding the
climatic variables produced the greater dRMSE for AGB in AZ2
than that in AZ1, while the opposite was true for NNI. For PNU,
the performances of adding the climatic variables were similar in
AZ1 and AZ2. In AZ1+2, the contributions of the climatic data
to NNI were greater than PNU.

DISCUSSION

Comparison of Different Regression
Models
The SLR models are commonly used to estimate plant N
status and guide variable N applications (Li et al., 2019; Wang
et al., 2019). However, models using NDRE could only explain
48–68% of N status indicators variabilities for AZ1, 36–38%
for AZ2, and 52–59% for AZ1+2 based on the test dataset
(Figure 4). Those results agreed with the findings of wheat
N status estimation only using VIs across farmer’s fields in a
village (Chen et al., 2019). The performance difference of these
models between AZ1 and AZ2 may be attributed to the different
experimental treatments (Table 1) and climatic and management
factors (Figure 1B). Consequently, it is necessary to combine
climatic and management factors with NDRE in RFR models to
improve the estimation accuracy. In agreement with Cummings
et al. (2021) and Wang et al. (2021), the multi-variable RFR

models performed better than SLR models (Figure 3), because
the RFR models included multi-source data and could analyze
nonlinear and complex relationships (Wang et al., 2021).

Comparison of Variable Selection
Strategies
Generally, variable selection prior to model construction
could reduce the data dimension and measurement while
differentiating meaningful variables from the noise and
improving calibration efficiency (Heremans et al., 2015;
Feng et al., 2020). Two variable selection strategies, the PCC
and VIRRFR, were adopted in this study. In Figure 7, the
performance of full variables models was not better than those of
using fewer variables with variable selection, demonstrating the
effectiveness of variable selection. Similar results were observed
in the previous studies (Cai et al., 2019; Zhang et al., 2019; Wang
et al., 2020). The PCC showed more potential than VIRRFR to
estimate N status, except for the estimation of PNU in AZ1 and
AZ2. The variables were selected based on the PCC strategy from
a statistical analysis point of view, resulting in more informative
and diverse variables. Many variables were correlated with each
other at the p < 0.001 significance level but still selected in the
VIRRFR strategy (data not shown), such as Tmax and Tmean of
AZ1 (Figure 5).

Comparison of Uncertainties for Two
Agro-Ecological Zones
Consistent with prior studies, NDRE, a useful proxy reflecting
plant growth and development, has been deemed the most
important variable for crop N status estimation (Osco et al.,
2020; Colaço et al., 2021). Nonetheless, it is climatic and
management factors that affect winter wheat growth and
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FIGURE 8 | The performance of random forest regression using the variables selected from the Pearson correlation coefficient strategy to predict the aboveground

biomass (AGB), plant N uptake (PNU) and N nutrition index (NNI) in agro-ecological zones 1 (A,D,G), agro-ecological zone 2 (B,E,H) and two agro-ecological zones

(C,F,I). The black dotted line is the 1:1 line.

development. Accordingly, this study focused on the values of
climatic and management factors for wheat N status estimation
in different AZs. It is not surprising that these factors had
different contributions in different AZs and for different N status
indicators. Water-related variables played a more important
role in AZ1, while both water-related and temperature-related
variables were important in AZ2 (Figures 9D–F). Indeed, unlike
AZ1, with a dry climate and sufficient sunshine, AZ2 belongs

to a subtropical monsoon climate and is characterized by
abundant precipitation and relatively less sunshine. In addition,
the contributions of temperature-related variables to improve the
estimation accuracy of AGB were greater than those of water-
related variables, which were more correlated to PNU and NNI.
A possible reason is that temperature has a greater effect on crop
yield that is determined by the accumulation and redistribution
of dry matter (Lee and Tollenaar, 2007) than rainfall (Schlenker
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FIGURE 9 | The importance of variables of NDRE, climatic, and management factors for estimating the aboveground biomass, plant N uptake, and N nutrition index

in agro-ecological zone 1 (A–C), agro-ecological zone 2 (D–F), and across two agro-ecological zones (G–I). GDD, RAD, Tmax, Tmin, Tmean, PPT, SDI, HU, SD, SR, BN,

AGB, PNU, and NNI refer to growing degree days, solar radiation, seasonal maximum, minimum, and mean temperature, seasonal total precipitation, shannon

diversity index, relative humidity, sowing dates, seeding rates, basal N, aboveground biomass, plant N uptake, and N nutrition index, respectively.

FIGURE 10 | The performance of the decrease of RMSE (dRMSE, %) of multi-source data for the aboveground biomass (A), plant N uptake (B), and N nutrition index

(C) by combining climatic (C) factors and management (M) factors compared to normalized difference red edge (NDRE) only in agro-ecological zone 1 (AZ1),

agro-ecological zone 2 (AZ2) and across two agro-ecological zones (AZ1+2).
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and Lobell, 2010), because the dry matter of plants is formed by
intercepting solar radiation and physiological and biochemical
processes (Xue et al., 2002). Another possible reason is that the
crop root system influenced by the water directly or indirectly is
critical to absorbing nutrients from the soil, like N (Walsh et al.,
2012; Sharma et al., 2018).

Overall, the results substantiated the viewpoint that
integrating more sources of data will lead to better estimation
performance (Chen et al., 2021; Gua et al., 2021; Liu et al.,
2021; Li et al., 2022). Regarding their combinations, the results
varied with sites and N status indicators. As for AGB, adding
climatic factors improved the model performance more in AZ2
than in AZ1. Metabolic imbalances induced by lower average
temperature during the vegetative stages could retard crop
germination and plant growth (Ye et al., 2020). The difference
of phenological information (SE stage, Table 1) would change
AGB accumulation because it could, directly and indirectly,
influence photosynthesis and respiration (Gua et al., 2021). On
the contrary, adding the climatic factors improved the estimation
of NNI in AZ1 more than AZ2, which could be caused by the
influence of the length of the growth period or the responses of
winter wheat cultivars to climate variability (Tao et al., 2014). In
AZ1+2, the contributions of the management factors to PNU
were greater than climatic factors because PNU showed a positive
correlation to N rates (Egan et al., 2019; Sandaña et al., 2021). The
sowing date in AZ2 was later than that in AZ1, leading to lower
AGB accumulation, the number of tillers and plant height due to
low temperature in the vegetative stages and higher temperature
in the reproductive stages (Fazily, 2021). In contrast, a suitable
sowing date can make full use of natural resources, such as light,
heat, and water, enhancing plant population and facilitating the
accumulation and uptake of N before winter. Different variables
could interact with each other to influence crop growth and
N status. For example, higher seeding rates could make up for
stagnant tiller development, which would benefit cultivars with
fewer tillers (Staggenborg et al., 2003).

Applications and Future Work
In this study, the estimation models across two AZs
showed similar results to that of a single AZ. Remarkably,
it demonstrated the robustness and application of the established
RFR approach.

While the results of this study were encouraging, there is still
room for improvement. A total of 13 variables were considered
in this study, which may be insufficient for constructing a reliable
model for wider applications due to limitations in data amount
and quality, model representativeness, and the number of key
variables (Chlingaryan et al., 2018). Although the active canopy
sensors are promising for evaluating N status, as indicated in
this study, unmanned aerial vehicles and satellite remote sensing
are more efficient for larger regions or farms (Huang et al.,
2017; Chen et al., 2019). In this regard, follow-up research is
needed to expand the scale of the study regions, supplement
more climatic and management factors that directly or indirectly
influence winter wheat growth, and develop more applicable N
estimation models using unmanned aerial vehicles or satellite
remote sensing images.

CONCLUSION

The present work explored the adaptation and feasibility of
RFR integrating NDRE, climatic, and management factors
for N status estimation compared with SLR using only
NDRE. The results indicated that RFR yielded better stability
and higher accuracy. Variable selection was essential to
construct effective models using fewer variables to achieve
similar results compared to models using full variables, and
PCC was confirmed to be an effective approach. Besides,
dominant variables varied with AZs and N status indicators.
At higher latitudes, climatic factors were more important to N
status estimation, especially water-related factors. In addition,
climatic factors significantly improved the performance of
NNI estimation. Although climatic factors were crucial to
AGB estimation, management factors were more important
for N status estimation at lower latitudes. More studies are
needed to develop unmanned aerial vehicles and satellite
remote sensing-based ML models incorporating multi-source
data for more efficient monitoring of crop N status under
more diverse soil, climatic, and management conditions across
large regions.
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APPENDIX

TABLE A1 | Symbols and acronyms used in the article.

AGB aboveground biomass

AWDR abundant and well-distributed rainfall

AZ1 agro-ecological zone 1

AZ1+2 two agro-ecological zones

AZ2 agro-ecological zone 2

BN basal N

Dmax daily maximum temperature

Dmin daily minimum temperature

dRMSE the decrease of RMSE

FM farmer’s management

GDD growing degree days

HU relative humidity

N Nitrogen

Nc critical N concentration

NDRE normalized difference red edge

NDRE+C both NDRE and climatic data

NDRE+C+M full sources of data

NDRE+M both NDRE and management data

NNI N nutrition index

PCC Pearson correlation coefficient

PNM precision N management

PNU plant N uptake

PPT seasonal total precipitation

RAD solar radiation

RFR random forest regression

RN the relative number of variables

RONM regional optimum N management

RR2 relative R2

RRE relative RE

RRMSE relative RMSE

SDI shannon diversity index

SE stem elongation

SLR simple linear regression

Tbase base temperatures

Tmax seasonal maximum temperature

Tmean seasonal mean temperature

Tmin seasonal minimum temperature

VIRRFR the variable importance ranked by the RFR

VIs vegetation indices

Frontiers in Plant Science | www.frontiersin.org 16 June 2022 | Volume 13 | Article 890892

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

	Improving Estimation of Winter Wheat Nitrogen Status Using Random Forest by Integrating Multi-Source Data Across Different Agro-Ecological Zones
	Introduction
	Materials and Methods
	Study Area and Experiment Design
	Data Acquisition and Calculation
	VIs Datasets
	Agronomic Datasets
	Climatic Datasets
	Management Datasets

	Data Analysis
	Strategies of Variable Selection
	Identifying Appropriate Combinations of Multi-Source Data for N Status Estimation
	Modeling Process
	Evaluating Strategies and Performance Metrics


	Results
	Variability of Winter Wheat N Status Indicators
	Estimating N Status Indicators Using Simple Linear Regression Models
	Selection of Important Variables
	Estimating N Status Indicators by Random Forest Regression Models
	Models Construction
	Models Evaluation

	Importance of Different Variables
	Multi-Source Data Performance

	Discussion
	Comparison of Different Regression Models
	Comparison of Variable Selection Strategies
	Comparison of Uncertainties for Two Agro-Ecological Zones
	Applications and Future Work

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References
	Appendix


