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INTRODUCTION

Non-coding RNA (ncRNA) is a key regulatory RNA with limited abilities of coding potential (Liu
et al., 2015). To date, a variety of ncRNAs have been identified in plants, which can be classified
into three groups according to their sequence length: small RNAs <50 nucleotides (nt), such as
microRNAs (miRNAs); long non-coding RNAs (lncRNAs) with arbitrarily longer than 200 nt;
and intermediate-size ncRNA between small RNAs and lncRNA in length (Wang et al., 2014). In
addition, the process of back splicing also produces a class of covalently closed RNA molecules
called exonic circular RNAs (circRNAs).

Different types of ncRNAs show diverse mechanisms of action. miRNAs typically degrade
their target genes by binding to their transcripts at the post-transcriptional level (Chipman
and Pasquinelli, 2019). However, lncRNAs function at transcriptional, post-transcriptional and
epigenetic levels by interacting with macromolecules (Wu et al., 2020). Whiles circRNAs can
act as miRNA/protein sponges, or regulate alternative splicing or transcription (Lai et al., 2018).
These ncRNAs with different mechanisms of action form a complex regulatory network to jointly
regulate plant growth, development and stress response. For instance, Vvi-miPEP171d1 regulates
adventitious root formation in grapevine (Chen et al., 2020). And miRNA frameworks have been
proved to be important for the flower induction in apple (Fan et al., 2018). In addition to regulation
of self-life activities, ncRNAs also play a role in plant-to-plant communication. Exogenous
miR399 and miR156 can trigger RNA interference to repress the expression of PHOSPHATE
OVERACCUMULATOR 2 (PHO2) and SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE
9 (SPL9) in plants (Betti et al., 2021). Moreover, ncRNAs can even act as a bridge between plants
and other species. For example, two plant viruses, barley yellow dwarf virus and red clover necrotic
mosaic virus, can express small subgenomic (sg) RNAs to attenuate host translation by binding
translation initiation factor eIF4G (Miller et al., 2016). Expressing double-strand (ds) RNA in
maize can effectively reduce feeding damage of western corn rootworm by triggering its RNA
interference (Baum et al., 2007). In summary, ncRNAs play important roles in plant activities, and
their regulatory functions are the basis for plant growth, development and survival.

The regulatory roles of ncRNAs make them important tools for adjusting gene expression
and studying gene functions. For example, the artificial miRNA pAmiRNA156h-PDSh can
effectively decline the expression of phytoene desaturase (MdPDS) in apple (Charrier et al.,
2019). Overexpression of amiRNA-319a-HaEcR in tomato can effectively silence the ECDYSONE
RECEPTOR (HaEcR) gene to reduce the survival of Helicoverpa armigera (Yogindran and Rajam,
2021). From this point of view, exploring new ncRNAs and elucidating the regulatory mechanism
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of ncRNAs will have profound impacts on plant research.
Here, our emphasis is put on recognition technologies
of ncRNAs in plants, including bioinformatic tools and
experimental technologies.

BIOINFORMATICS TOOLS

With the release of more and more genomic information of
diverse plants, it provides a key basis for the discovery of
novel ncRNAs. In addition, knowledge about the function,
structure and conservation of ncRNAs is accumulating, which
can help us distinguish different types of ncRNAs. Since
ncRNAs were reported, at least 39 bioinformatics websites and
softwares have been established, of which 40.5% (13 websites
and 4 softwares) were released in the past 5 years (Table 1).
Furthermore, 41 deep learning models were developed in
the past 3 years (Table 1). These tools can be divided into
three classes.

ncRNA Databases
The ncRNA databases collected ncRNA-related information,
such as sequences, interactions between ncRNAs and target
genes, as well as expression profiles. In addition, some tools
contain information that has been supported by experimental
evidences. For example, miRbase (Kozomara et al., 2019)
integrates published mature sequences of miRNAs and their
relevant hairpin precursors of miRNA. miRTarBase (Huang
et al., 2020) and NPInter (Teng et al., 2020) not only
focus on the interaction information between ncRNAs and
other biomolecules, but also provide the relevant experimental
evidences. To date, miRNAs, lncRNAs, and circular RNAs
(circRNAs) in ncRNAs were collected by different online
databases (Chu et al., 2017; Jin et al., 2021). Details of these
tools including the application system, input format, and
included species are listed in Supplementary Table S1. The
development of high-throughput sequencing technologies and
the increasing amount of published genomic data have given
us the opportunity to collect diverse information from different
species, which facilities the analysis of ncRNA evolutional
and the construction of conserved models for predicting
and exploring novel ncRNAs. However, the application of
these databases in cross-species research still faces enormous
challenges. On the one hand, there is a lack of identifying
species-conserved or species-specific ncRNAs; and on the other
hand, it is difficult to determine functional ncRNAs in a
predictive manner.

ncRNA Prediction Tools
Prediction of ncRNA, including recognition of ncRNA and
prediction of ncRNA function. At present, there are many
prediction tools for ncRNA recognition, but relatively few
tools for their function prediction. We classify the existing
prediction tools according to their categories (Table 1,
Supplementary Table S1). How to accurately predict novel
ncRNAs and their target genes has always been the focus of
researchers. The current development of prediction tools mainly
focuses on three aspects: predicting the sequences of miRNAs

and their precursors (Wu et al., 2012; Lei and Sun, 2014; Fei et al.,
2021), predicting the binding sites of ncRNAs to targets (Bonnet
et al., 2010; Brousse et al., 2014), predicting or visualizing the
secondary or three-dimensional structure of ncRNAs (Steffen
et al., 2006; Byun and Han, 2009; Biesiada et al., 2016). Sequence
alignment is the basis for this prediction, and the divergence of
ncRNA sequences is an important factor affecting the accuracy
of prediction. In general, ancient ncRNAs (especially those
related to plant development) remain highly conserved across
species (Willmann and Poethig, 2007). However, recently
evolved ncRNAs appear to be highly species-specific (Cuperus
et al., 2011). Furthermore, there appears to be variability
among different classes of ncRNAs in conservation among
different species (Wu et al., 2020). Therefore, how to improve
the accuracy of ncRNA prediction is an important problem
to be solved. With the accumulation of ncRNA data, building
conserved models for each ncRNA family may be a solution for
this question.

Application of Deep Learning in ncRNA
Study
Deep learning developed in recent years has shown a powerful
potential capability in addressing bioinformatics problems in
ncRNA study. For example, RPITER model can be used
to predict interactions between ncRNAs and proteins based
on sequence and structure information (Peng et al., 2019).
Compared with traditional approaches, more information
can be introduced into the computational process of deep
learning to ensure the accuracy of the predicted results
(Zhang S. W. et al., 2020). So far, at least 41 deep learning
models have been built to predict ncRNA classification (Amin
et al., 2019), ncRNA-protein interaction (Peng et al., 2019),
ncRNA interaction, as well as ncRNA identification and
functions (Khan et al., 2020; Zhang P. et al., 2020) (Table 1,
Supplementary Table S1).

The basic processes of applying deep learning are showed
in Figure 1A. After choosing an appropriate framework,
researchers need to input data to generate relevant models.
The resulting model can be used for the next prediction step.
Compared with other prediction methods, the advantage of deep
learning can effectively reduce the prediction bias caused by
imperfect design parameters. Its limitation is that the accuracy of
predictions heavily depends on the accuracy of the models, which
usually require large enough data to build and train. Therefore,
the dataset used to build deep learning models seriously affect
the accuracy of prediction and analysis. How to obtain a large
amount of ncRNA data from different species for building more
accurate models is a serious problem that needs to be solved.
In addition, most of them are distributed in Linux system, and
the proficient computational skills of users are an important
precondition to utilize these models. Developing softwares with
a user-friendly interface (Xu et al., 2021) is crucial for the
application of these models. However, the cross-operating system
adaptability of these models and the differences in fit to different
data types are the main obstacles facing the use of new models to
build user-friendly softwares.
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TABLE 1 | Bioinformatics tools in ncRNAs analysis.

(1) Websites and softwaresa

Tools Websites Main function

(1.1) Database

PLncDB http://www.tobaccodb.org/plncdb/ Long non-coding RNA Database

Rfam http://rfam.xfam.org/search RNA sequence-family database

PlantcircBase http://ibi.zju.edu.cn/plantcircbase/index.php Predict circRNAs

RNAcentral https://rnacentral.org/ ncRNA database

PmiRExAt http://pmirexat.nabi.res.in/ miRNA-expression database

NONCODE http://www.noncode.org/index.php ncRNA database

PNRD http://structuralbiology.cau.edu.cn/PNRD/index.php miRNA database

scaRNAbase http://gene.fudan.edu.cn/snoRNAbase.nsf sno/scaRNA database

(1.2) Prediction tools

miRDeep-P2 https://sourceforge.net/projects/mirdp2/ Analyze miRNA transcriptome

miRBase https://www.mirbase.org/search.shtml Contain miRNAs and precursors

psRNATarget https://www.zhaolab.org/psRNATarget/analysis Predict target genes of small RNA

TarBase http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=

tarbasev8%2Findex

miRNA-target interactions

PeTMbase http://tools.ibg.deu.edu.tr/petmbase/ miRNA-target mimics

RNAComposer http://rnacomposer.ibch.poznan.pl/ Predict 3D structure of ncRNA

COME https://github.com/lulab/COME Annotate lncRNAs

comPARE https://mpss.danforthcenter.org/tools/mirna_apps/comPARE.php Predict miRNAs and their targets

comTAR http://rnabiology.ibr-conicet.gov.ar/comtar/ Evolutionary analysis of miRNA and

target

plantDARIO http://plantdario.bioinf.uni-leipzig.de/index.py Predict ncRNA from RNA-seq data

miRNEST http://rhesus.amu.edu.pl/mirnest/copy/ miRNAs and targets

PhasiRNAnalyzer https://cbi.njau.edu.cn/PPSA/ Identify phasiRNAs and their target

genes

miRTarBase https://mirtarbase.cuhk.edu.cn/miRTarBase/miRTarBase_2019/php/index.

php

Interaction between miRNAs and their

target genes

NPInter http://bigdata.ibp.ac.cn/npinter4/ Interaction between ncRNAs and

biomolecules

RNAshapes https://bibiserv.cebitec.uni-bielefeld.de/rnashapes Predict ncRNA structure

RNAcon http://crdd.osdd.net/raghava/rnacon/ Predict and classify the ncRNAs

miR-PREFeR https://github.com/hangelwen/miR-PREFeR Predict miRNAs and precursors

CNCI https://github.com/www-bioinfo-org/CNCI Classify lncRNAs

CPAT http://rna-cpat.sourceforge.net/ Annotate lncRNAs

Infernal http://eddylab.org/infernal/ Predict ncRNA-secondary sequences

PsRobot http://omicslab.genetics.ac.cn/psRobot/index.php Predict stem-loop structure and

target of ncRNA

NUPACK http://www.nupack.org/partition/new Analyze and design ncRNA structures

MiSolRNAdb http://www.misolrna.org/ Map position of miRNA and targets

TAPIR http://bioinformatics.psb.ugent.be/webtools/tapir/ Predict binding sites of miRNA and

target

RNAz https://www.tbi.univie.ac.at/software/RNAz/ Predict ncRNA secondary structures

CentroidAlign http://www.ncrna.org/software/centroidalign/ Multiple alignments of ncRNAs

CleaveLand4 https://github.com/MikeAxtell/CleaveLand4/

blob/master/CleaveLand4.pl

Predict the binding sites of miRNAs in

target

RNAfold http://rna.tbi.univie.ac.at//cgi-bin/RNAWebSuite/RNAfold.cgi Provide information of ncRNA

secondary structures

fRNAdb https://dbarchive.biosciencedbc.jp/en/frnadb/download.html NcRNA sequences, prediction tools

(Continued)
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TABLE 1 | Continued

Randfold https://github.com/erbon7/randfold Predict secondary structures of

ncRNAs

Mfold http://www.unafold.org/mfold/applications/rna-folding-form.php Predict the nucleic acid folding and

hybridization

(2) Deep learning models

Models Main function References

(2.1) Finding novel ncRNAs or classification

ncRDense ncRNA classification Chantsalnyam et al., 2021

linc2function lncRNA identification Ramakrishnaiah et al., 2021

ncDLRES ncRNA identification Wang et al., 2021b

ncRDeep ncRNA classification Chantsalnyam et al., 2020

2L-piRNADNN piRNA identification Khan et al., 2020

ncPro-ML ncRNA promoter identification Tang et al., 2020

circDeep circular RNA classification Chaabane et al., 2020

PredLnc-GFStack ncRNA identification Liu et al., 2019

LncADeep lncRNA identification Yang et al., 2018

nRC ncRNA classification Fiannaca et al., 2017

DARIO ncRNA identification Fasold et al., 2011

(2.2) ncRNA-biomolecular interaction

NPI-RGCNAE ncRNA–protein interaction Yu et al., 2021

DeepLPI ncRNA–protein interaction Shaw et al., 2021

PRPI-SC lncRNA–protein interaction Zhou et al., 2021

LGFC-CNN lncRNA–protein interaction Huang et al., 2021

Capsule-LPI lncRNA–protein interaction Li et al., 2021

EDLMFC ncRNA–protein interaction Wang et al., 2021a

NPI-GNN ncRNA–protein interaction Shen Z. A. et al., 2021

PmliPEMG miRNA–lncRNA interaction Kang et al., 2021

lncIBTP lncRNA-biomolecule interaction Zhang et al., 2021

RPI-SE ncRNA–protein interaction Yi et al., 2020

DRPLPI lncRNA–protein interaction Wekesa et al., 2020c

HFC-RPI ncRNA–protein interaction Dai et al., 2020

GPLPI ncRNA–protein interaction Wekesa et al., 2020b

LPI-DL lncRNA–protein interaction Wekesa et al., 2020a

LPI-CNNCP lncRNA–protein interaction Zhang S. W. et al., 2020

(Continued)
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TABLE 1 | Continued

CIRNN miRNA–lncRNA interaction Zhang P. et al., 2020

LncMirNet miRNA–lncRNA interaction Yang et al., 2020

PmliPred miRNA–lncRNA interaction Kang et al., 2020

LMI-DForest miRNA–lncRNA interaction Wang et al., 2020

MD-MLI miRNA–lncRNA interaction Song et al., 2020

RPITER ncRNA–protein interaction Peng et al., 2019

BGFE ncRNA–protein interaction Zhan et al., 2019

DM-RPIs ncRNA–protein interaction Cheng et al., 2019

PLRPI lncRNA–protein interaction Zhou et al., 2019

CFRP ncRNA–protein interaction Dai et al., 2019

McBel-Plnc lncRNA–protein interaction Navamajiti et al., 2019

LPI-BLS lncRNA–protein interaction Fan and Zhang, 2019

LightGBM ncRNA–protein interaction Zhan et al., 2018

IPMiner ncRNA–protein interaction Pan et al., 2016

FlaiMapper small ncRNA identification Hoogstrate et al., 2015

aDetails of the websites and softwares are listed in Supplementary Table S1.

EXPERIMENTAL TECHNOLOGIES

Although the results of bioinformatics predictions are becoming
more and more accurate with the accumulation of ncRNA
knowledge, experimental technologies are still needed to further
validate the prediction results. According to the characteristics
of ncRNAs, at least three aspects need to be verified: firstly, a
functional ncRNA should have transcriptional activity (Bazzini
et al., 2009); secondly, there should be an expression correlation
between ncRNA and target genes (Bai et al., 2018); thirdly, if
the ncRNA functions by degrading its target genes, the cleavage
site of the ncRNA on the target genes should be verified (Gao
et al., 2018). Moreover, experimental strategies should be varied
for different types of ncRNAs. Figure 1B summarized the main
sequencing and experimental techniques in ncRNA studies. In
detail, the combination of sRNA-Seq and RNA-Seq is commonly
used for global identification of novel small ncRNAs (Huang
et al., 2019). After removed low-quality reads, high-quality reads
are subsequently annotated by several databases (such asmiRbase
and Rfam) (Deforges et al., 2019; Huang et al., 2019). The
length of small RNAs is far shorter than protein-coding genes
and lncRNAs. Therefore, the extraction of small RNAs unlike
other RNA, can be performed using special RNA-extraction kits
(Gao et al., 2019) or TRIzol reagent (Tan et al., 2018). For
miRNAs, it is necessary to identify the binding sites between

miRNAs and their target genes (ShenW. et al., 2021). Degradome
sequencing and crosslinking and immunoprecipitation with
sequencing (CLIP-Seq) can be used to analyze binding sites
betweenmiRNAs and the target genes (Han et al., 2016; Chipman
and Pasquinelli, 2019). Furthermore, 5′-RNA ligase mediated
amplification of cDNA ends (5′RLM-RACE) assays are directly
used for verifying the predicted binding sites (Cui et al., 2020).
The detection of novel lncRNAs can be completed by multiple
RNA-Seq strategies, such as isoform-sequencing, strand-specific
RNA-Seq (ssRNA-Seq), cap analysis gene expression with polyA-
Seq technologies (CAGE-Seq) (Zheng et al., 2021). Although
lncRNAs are considered as a part of ncRNAs, some of them still
remain a weak ability of translating small peptides. Therefore,
ribosome profiling become has become one of the strategies
to detect lncRNAs (Wu et al., 2019). Meanwhile, the recently
developed high-precision single-base CRISPR/Cas9 technology
can effectively create ncRNA-related mutants to explore the
relationships between ncRNAs and target genes (Jacobs et al.,
2015). Currently, in addition to the research on the function of
small RNAs, more and more attention is focused on circRNAs in
recent years. However, most studies focus more on the discovery
of novel circRNAs by sequencing technologies. One of challenges
of circRNA sequencing is to improve the accuracy of detection
and quantification of circRNAs due to their lack of poly (A) tails
and insufficient expression levels (Wang et al., 2019; Zhao et al.,
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FIGURE 1 | Deep learning processes (A) and experimental techniques (B) for studying ncRNAs. sRNA-Seq, small RNA sequencing; CLIP-Seq, crosslinking and

immunoprecipitation with sequencing; 5′RLM-RACE, 5′ RNA ligase mediated amplification of cDNA ends; ssRNA-Seq, strand-specific RNA sequencing; CAGE-Seq,

cap analysis gene expression sequencing.

2019). Treatment of total RNA with ribonuclease R or increasing
sequencing depth may resolve these issues (Chen et al., 2017).
Meanwhile, it is also necessary to develop functional research
techniques to further clarify the biological functions of circRNAs.

CONCLUSION

In conclusion, although many tools and technologies have been
developed to study ncRNAs in plants, there are still opportunities
and challenges in this field. In bioinformatics, since there
are significant differences in ncRNAs between species, it is
beneficial for our research on ncRNAs to collect as much data
as possible based on different species. Meanwhile, ncRNAs in
a same family exhibit high conservation, it is possible for us
to build models to discover novel ncRNAs. Moreover, most
prediction tools and deep-learning models are developed based
on Linux system, and the development of user-friendly Windows
versions will help more researchers to analyze different kinds

of ncRNA. As ncRNAs play a regulatory role in plants, how
to manipulate ncRNAs through genetic engineering to regulate
specific biological processes remains to be resolved.
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