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As in other eukaryotes, the plant genome is functionally organized in two 

mutually exclusive chromatin fractions, a gene-rich and transcriptionally 

active euchromatin, and a gene-poor, repeat-rich, and transcriptionally silent 

heterochromatin. In Drosophila and humans, the molecular mechanisms by 

which euchromatin is preserved from heterochromatin spreading have been 

extensively studied, leading to the identification of insulator DNA elements 

and associated chromatin factors (insulator proteins), which form boundaries 

between chromatin domains with antagonistic features. In contrast, the 

identity of factors assuring such a barrier function remains largely elusive 

in plants. Nevertheless, several genomic elements and associated protein 

factors have recently been shown to regulate the spreading of chromatin 

marks across their natural boundaries in plants. In this minireview, we focus 

on recent findings that describe the spreading of chromatin and propose 

avenues to improve the understanding of how plant chromatin architecture 

and transitions between different chromatin domains are defined.
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Introduction

It has been almost a century since the crucial role of chromatin functional 
compartmentation in gene expression was revealed by the study of the white mutation 
in Drosophila that causes white rather than red eye pigmentation. By using X-ray 
mutagenesis, Muller identified partial suppressors of white in which some facets of 
the eye remained white while others developed the red pigmentation, suggesting that 
the white allele itself was not mutated (Muller, 1930). It was much later shown that 
X-rays induced chromosomal rearrangements that resulted in a change of position 
of white from its original euchromatic position to the centromeric heterochromatin 
(Zhimulev et al., 1986, 1988; Umbetova et al., 1991). Heterochromatin is characterized 
by its high compactness and repressive epigenetic marks, which include DNA 
methylation and specific post-translation modifications of histones (or histone 
marks). DNA sequences in heterochromatin include many transposable elements 
(TEs) whose replication and reactivation are therefore prevented. Since Muller’s 
pioneering work, a series of studies have revealed that, besides the particular context 
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of X-ray-induced chromosomal rearrangements, 
heterochromatin can spread stochastically into the adjacent 
euchromatin and effectively repress the expression of 
underlying genes. Some DNA sequences and associated 
protein modules that normally prevent heterochromatin 
spreading and maintain transitions between distinct 
chromatin domains have been identified and named “barrier 
insulators.” Insulator functions, however, encompass a wider 
range of mechanisms than the simple delimitation of 
antagonistic chromatin domains. Indeed, the term “insulator” 
is likewise attributed to factors that regulate the accessibility 
of enhancers and silencers to promoters or to factors 
participating in the structuration of DNA loops such as 
Topologically-Associated Domains (TAD; Ali et al., 2016). In 
this minireview, we focus on barrier insulators. We briefly 
introduce the establishment and maintenance of 
heterochromatin in plants (for a more complete review, see 
Law and Jacobsen, 2010), and subsequently present several 
loci within which a barrier activity is carried out in plants. 
Finally, we discuss several strategies aimed at increasing our 
knowledge of this understudied function in plants.

What can we  learn from animal 
and yeast models about 
chromatin barrier formation in 
plants?

In animals and yeasts, the barrier function preventing the 
spreading of chromatin features beyond their natural 
boundaries relies on the presence of DNA sequences and their 
related DNA binding proteins such as the Transcription 
Factors for polymerase III B and C (TFIIIB, TFIIIC), which 
limit the spreading of the Silent Information Regulatory 
proteins (Sir) promoting the establishment of silenced 
chromatin in Saccharomyces cerevisiae (Sun et  al., 2011). 
Similarly, the Upstream Stimulatory Factors 1 and 2 (USF1, 
USF2) bind the 5′HS4 insulator element and are necessary to 
avoid the spreading of neighboring heterochromatin in 
chicken erythrocytes (Ghirlando et  al., 2012). Another 
example is the Heterochromatin Protein 1 (HP1), which binds 
H3K9me, a typical heterochromatin histone post-translational 
modification, and is required to prevent the spreading of 
H3K9me and H3K27me3 across natural boundaries in fungi 
(Stunnenberg et al., 2015; Jamieson et al., 2016). However, the 
unique homolog of HP1 in Arabidopsis, LHP1, regulates the 
deposition of H3K27me3 but does not prevent its spreading 
(Veluchamy et al., 2016). In general, no homologs of barrier 
elements described in animals and yeast have been reported to 
have similar functions in plants. Despite the absence of such 
barrier insulators in the literature, plant genomes have well-
delineated euchromatin/heterochromatin compartmentation 
(Schoborg and Labrador, 2010). This raises the questions of the 
existence and identity of plant-specific barrier insulators.

Heterochromatin establishment 
and maintenance in plants

In plants, the histone modification H3K9me2 is a hallmark 
of heterochromatin. It is established and maintained by 
SUPPRESSORS OF VARIEGATION HOMOLOG (SUVH) 
histone methyltransferases (Ebbs et al., 2005). CHH and CHG 
(where H is any base except G) DNA methylation and H3K9me2 
establishment were shown to be maintained through a positive 
feedback loop: SUVH proteins bind preferentially methylated 
non-CG cytosines and establish H3K9me2. Reciprocally, plant-
specific CHROMOMETHYLASES 2 and 3 (CMT2/3) bind 
H3K9me2 and establish DNA methylation on CHH (CMT2) and 
CHG (CMT3) (Papa, 2001; Jackson et al., 2002, 2004; Johnson 
et al., 2007, 2014; Du et al., 2012; Stroud et al., 2014; Li et al., 
2018b). Maintenance of CG methylation is ensured by the 
METHYLTRANSFERASE 1 (MET1; Cokus et al., 2008). De novo 
methylation of DNA (CG, CHG, and CHH) involves the 
RNA-directed DNA methylation pathway (RdDM) as well as the 
DOMAINS REARRANGED METHYLASE 1 and 2 (DRM1/2) 
proteins (Cao and Jacobsen, 2002a,b).

The initiation of the silencing of an active TE is mediated 
by non-canonical RdDM mechanisms based on the activity of 
RNA polymerase II (Nuthikattu et  al., 2013): the RNA 
DEPENDENT RNA POLYMERASE 6 (RDR6) and the DICER 
LIKE 3 (DCL3) pathways. In Arabidopsis thaliana, the RDR6 
pathway starts with the processing of TE mRNAs by RDR6 in 
order to produce a double-stranded RNA, which is cleaved by 
the endonucleases DCL2 and DCL4 (McCue et al., 2012). A 
pool of 21–22 nt siRNAs is thus generated and bound by the 
ARGONAUTE 1 (AGO1) protein (McCue et  al., 2012), 
creating a complex able to bind the long non-coding RNAs 
(lncRNAs) produced in situ by Pol V. This complex recruits 
the DOMAINS REARRANGED METHYLTRANSFERASE 2 
(DRM2), which catalyzes de novo cytosine methylation (Cao 
and Jacobsen, 2002b; Zhong et  al., 2014). In the DCL3 
pathway, the production of 24-nt siRNAs is independent of 
RDR2 and RDR6 and generated directly by DCL3, probably 
thanks to internal hairpin structures (Panda et  al., 2016). 
Maintenance of TE silencing first depends on the addressing 
of Pol IV at H3K9me2 and unmethylated H3K4 sites. 
Following recruitment, Pol IV, with the help of RDR2, 
produces a pool of double-stranded precursor RNAs, which 
are then cleaved by DCL3 to generate 24 nt siRNAs (Law 
et al., 2011, 2013; Zhang et al., 2013; Li et al., 2015b; Singh 
et al., 2019). In the second phase, Pol V produces a second 
pool of lncRNAs which can associate with AGO4 or AGO6 
loaded with the RNAs produced by Pol IV, thus allowing the 
recruitment of DRM2 (Wierzbicki et al., 2009; Matzke and 
Mosher, 2014; Duan et al., 2015). This model was recently 
refined after the demonstration that Pol IV transcripts can 
also guide the DNA methylation process in a DICER-
independent manner at several loci (Yang et  al., 2016; Ye 
et al., 2016; Kuo et al., 2017).
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Heterochromatin spreading is 
counteracted by active DNA 
demethylation in Arabidopsis 
thaliana

Several studies have shown that plants are prone to 
heterochromatin spreading (Saze et al., 2008; Miura et al., 2009; 
Eichten et al., 2012; Lang et al., 2015; Noshay et al., 2019). However, 
there is still little evidence for the mechanisms involved in spreading 
heterochromatin into neighboring regions or, conversely, in 
preventing heterochromatin spreading by maintaining boundaries 
between different chromatin domains with antagonistic features. In 
Arabidopsis, mutations in RdDM factors suppressed the epidermal 
patterning defects observed in a mutant of the DNA glycosylase/
lyase ROS1, a phenotype caused by the hypermethylation of the 
EPIDERMAL PATTERNING FACTOR 2 gene (Yamamuro et al., 
2014). Another DNA glycosylase, DEMETER (DME), is required for 
the expression of imprinted genes localized near TEs, in the 
endosperm of Arabidopsis (Gehring et  al., 2009). Mutations in 
DEMETER-Like (DML) 2, 3 and ROS1 are associated with increased 
DNA methylation of promoter and terminator regions (Lister et al., 
2008). In addition, mutations in CMT3 and SUVHs suppressed the 
phenotypes resulting from the mutation of the gene encoding the 
H3K9 demethylase INCREASE IN BONZAI METHYLATION 1 
(IBM1; Saze et al., 2008). RdDM and SUVH/CMT activities therefore 
appear to be counteracted by several DNA or histone demethylases 
as ROS1, DME, DMLs, and IBM1, but how these different 
antagonistic actions are orchestrated genome-wide is poorly 
understood. Nevertheless, a recent genetic screen revealed that 
mutants of Methyl-CpG-Binding Domain 7 (MBD7) and Increased 
DNA Methylation 3 (IDM3) fail to express a transgene composed of 
the sucrose transporter SUC2 coding sequence under the control of 
the 35S promoter. Subsequently, bisulfite sequencing analysis 
revealed that in a WT plant, 35S promoter accumulates DNA 
methylations in the region flanking the coding sequence of SUC2, 
whereas in mbd7 and idm3 mutants, the DNA methylations spread 
toward the 5′ region of the 35S promoter (Lang et al., 2015). In the 
model established by Lang and colleagues, MBD7 binds to mCG 
dense regions and interacts with IDM2 and IDM3. The complex 
composed of MBD7-IDM2-IDM3 would then recruit the histone 
acetyltransferase IDM1 to highly methylated loci, leading to in situ 
deposition of H3K23ac and H3K18ac marks, thus creating a 
permissive chromatin environment for ROS1 to locally remove the 
methylated cytosines in the regions bound by MBD7 (Lang et al., 
2015; Figure  1). Subsequently, the base excision repair pathway, 
composed of the Apurinic/Apyrimidinic Endonucleases (APE1L and 
APE2) and the Zinc Finger DNA 3’ Phosphoesterase (ZDP), 
processes the excision product of the 5 mC and generates a 3’OH gap 
which is filled by an unknown DNA polymerase (Li et al., 2015c, 
2018a; Figure 1). Thus, the combined action of these different actors 
is thought to prevent the diffusion of DNA methylations beyond 
their natural boundaries in plants. Very recently, the same genetic 
screen that allowed the identification of MBD7 has led to the 
discovery of another barrier factor, AGDP3. AGDP3 associates with 

H3K9me2  in a pH-dependent manner and protects several loci 
against ectopic DNA methylation. Since the targeting of ROS1 and 
subsequent demethylation of targeted loci appear to be dependent 
on AGDP3, it reinforces the idea that active demethylation acts 
downstream of the barrier activity (Zhou et al., 2021).

Euchromatin islands

Euchromatin islands (EIs) were initially defined in humans as 
small euchromatin regions within large heterochromatin regions, 
which contain expressed genes, are depleted for H3K9me2, and are 
enriched for CTCF binding sites (Wen et  al., 2012). Despite the 
absence of CTCF homologs, similar EI structures were described in 
Arabidopsis (Méteignier et al., 2022), rice (Wu et al., 2011), and barley 
(Baker et  al., 2015) and represent ideal context to study 
heterochromatin spreading and identify barrier insulator elements. 
No consensus DNA sequences at the boundaries between EIs and the 
flanking heterochromatin regions, which could serve as barrier 
insulator sequences, were reported. However, chromatin state 8, an 
AT-rich heterochromatic state, less inaccessible and dense than the 
classic GC-rich heterochromatic state 9 (Sequeira-Mendes et  al., 
2014), was always present in the proximal borders of Arabidopsis EIs 
(Méteignier et al., 2022). In Arabidopsis, mutants of the topoisomerase 
VI (Topo VI) complex failed to express EI genes at their physiological 
levels. Strikingly, EIs are invaded by H3K9me2 in a hypomorphic 
Topo VI mutant, which suggests that Topo VI participates in a 
chromatin barrier function in Arabidopsis (Méteignier et al., 2022). 
Interestingly, the BRASSINOSTEROID INSENSITIVE 4 (BIN4) 
subunit of Topo VI directly interacts with METHIONINE 
ADENOSYL TRANSFERASE 3 (MAT3), the major methyl donor of 
methylation reactions (Meng et al., 2018; Méteignier et al., 2022). In 
addition, MAT3 was required for H3K9me2 deposition at TEs, and 
Topo VI was required to exclude MAT3 from EIs, thereby providing 
a possible mechanistic explanation to the participation of Topo VI in 
a barrier function (Figure 2). The spreading of H3K9me2 over EIs 
was, however, not accompanied by an increase in cytosine 
methylation levels in CHG or CHH contexts, suggesting that Topo VI 
is involved in controlling the spreading of some chromatin marks 
rather than heterochromatin itself (Méteignier et  al., 2022). This 
uncoupling between H3K9me2 and DNA methylation has been 
observed in several other specific contexts. For instance, in triploid 
Arabidopsis seeds, small euchromatic AT-rich TEs overaccumulate 
H3K9me2 but lose CHH methylation (no change in CHG nor CG), 
which correlates with altered expression of neighboring genes (Jiang 
et al., 2017). This result suggests that H3K9me2 may repress RdDM, 
as it was observed in another independent study (Zemach et al., 
2013). Another study in Eutrema salsugineum, which lacks CMT3 
and gene body cytosine methylation, has highlighted a similar 
disruption of the reinforcement loops between H3K9me2 and 
non-CG methylation. In this organism, the ectopic expression of 
AtCMT3 increased CHG methylation over repetitive sequences 
containing pre-existing H3K9me2. Additionally, ectopic gene body 
CHG methylations at loci devoid of pre-existing H3K9me2 were also 
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reported. In the latter case, the CHG methylations were stably 
inherited through generations, but did not lead to subsequent 
induction of H3K9me2 deposition (Wendte et al., 2019). Hence, in 
the context of Topo VI-dependent barrier, H3K9me2 might also 
be established and maintained in a CHG-independent manner by 
unknown histone methyl transferases.

mCHH islands

In the heterochromatin-rich maize genome, gene-flanking 
regions are heavily methylated in CHH context and were therefore 
called mCHH islands (Gent et al., 2013). Mutation in the RDR2 
ortholog MOP1 decreased the production of 24-nt siRNAs by 
100-fold and altered the formation of mCHH islands (Nobuta et al., 
2008; Gent et al., 2014), revealing the important role of RdDM for 
CHH methylation in maize, which lacks known orthologs of CMT2 

(Bewick et al., 2017). Epigenome mapping of maize revealed that 
mCHH islands are specific to transition zones between CG/CHG/
H3K9me2-rich intergenic regions and H3K4me3-rich gene 
extremities. In addition, the same study suggested increased 
chromatin accessibility around promoters and terminators of genes 
adjacent to mCHH islands (Li et  al., 2015a). These studies thus 
identified mCHH islands as good candidates for barrier insulator 
elements. Interestingly, methylome analyses of mop1 and mop3 
mutants revealed that loss of mCHH islands was not associated with 
altered expression of neighboring genes, but rather with decreased 
CG/CHG methylation and elevated expression of adjacent TEs. This 
suggests that mCHH islands are essential for preserving silent TEs 
from activation by euchromatin spreading (Li et  al., 2015a). 
Reinforcing this idea, a recent study reports that disruption of mop1 
leads to loss of DNA methylation at TEs which are then susceptible 
to reactivation upon heat stress (Guo et al., 2021). Since then, mCHH 
islands have been identified in the genomes of many angiosperms 

FIGURE 1

Methyl-CpG-Binding Domain 7 (MBD7), ROS1, and the base excision repair pathway act together to locally demethylate DNA. MBD7 binds highly 
methylated loci (1) and, through binding of IDM2 and IDM3, targets the histone methyl transferase IDM1 to mCG-dense regions (2). IDM1 ensures 
in situ deposition of H3K18ac and H3K23ac marks (3), which allows ROS1 to be addressed to hypermethylated regions (4; Lang et al., 2015). After 
removal of 5mC by ROS1 (4), the excision product can be processed by APE1L, APE2, and ZDP to create a 5’P-3’OH gap (5), which is then filled by 
a yet unknown DNA polymerase and sealed by DNA ligase I (6; Li et al., 2015c,d, 2018a).
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(Zemach et al., 2010; Niederhuth et al., 2016; Corem et al., 2018; 
Martin et al., 2021). In Poaceae, mCHH islands are enriched at the 
extremities of 39% of genes, particularly at their 5′ extremity in 
smaller genomes. Among gene expression, gene length, distance from 
a TE, and gene body methylation, TE proximity and absence of gene 
body methylation were the strongest predictors for the presence of 5′ 
CHH islands (Martin et al., 2021). In Arabidopsis, the edges of long 
heterochromatic TEs are hypermethylated in CHH context and 
siRNAs overaccumulate at these positions (Zemach et al., 2013). 
Thus, mCHH islands could exert a similar function in very different 
genomes by establishing nearby TEs. Methylation in CHH context 
increases locally in the proximity of genes and overlaps almost 
exclusively with neighboring TEs in response to phosphate starvation 
in rice. Moreover, the large majority of genes containing differentially 
methylated regions after a long-term phosphate starvation are 
upregulated (Secco et al., 2015). A similar result has recently been 
observed in tomato (Tian et al., 2021). Such a dynamic appearance of 
mCHH islands in the vicinity of highly expressed genes neighboring 
TEs is consistent with the hypothesis that mCHH islands prevent 
euchromatin spreading to adjacent TEs. Thus, mCHH islands might 
constitute a conserved epigenetic response aimed at protecting plant 
genomes against opportunistic reactivation of TEs during stress 
exposure. However, to assert that mCHH islands constitute a genuine 
and widespread barrier against euchromatin spreading, further 
studies are required, such as the determination of H3K4me3 
distribution in the neighborhood of mCHH islands in mop mutants. 

In addition to their likely barrier function, mCHH islands also 
promote the expression of genes in the vicinity to TEs through the 
sequential recruitment of SUVH and DNAJ domain-containing 
proteins (Harris et al., 2018), raising the question of the causality 
relationship between mCHH islands and gene expression.

Are there common features in 
DNA loop formation and 
chromatin barriers in plants?

The interplay between the different insulator functions, such as 
enhancer-blocking, TAD structuration, and chromatin barrier, is 
rarely discussed in plants. In animals, repetitive sequences, such as 
tRNA genes, MIR, and Gyspy TEs, are found close to TADs and 
provide insulator sequences (She et al., 2010; Raab et al., 2012; Van 
Bortle and Corces, 2012; Wang et al., 2015). In contrast, plant TAD 
borders are enriched for specific transcription factor-binding sites. 
For instance in rice and Marchantia polymorpha, borders of a type 
of TADs are enriched for a TCP (Teosinte Branched1/Cycloidea/
Proliferating cell factor) binding motif (Liu et al., 2017; Karaaslan 
et al., 2020). However, TCP is not required for TAD formation in 
Marchantia (Karaaslan et al., 2020), suggesting that TAD formation 
is complex and redundantly controlled in plants. Indeed, in maize, 
single-cell chromatin accessibility mapping has revealed that 
TCP-binding sites are enriched in co-accessible cis-regulatory 

FIGURE 2

A hypothetical model for topoisomerase VI (Topo VI)-dependent insulation at Euchromatin Islands. The BIN4 subunit of Topo VI interacts with 
METHIONINE ADENOSYL TRANSFERASE 3 (MAT3) and is required to exclude MAT proteins from EIs (1). MAT3 localization at heterochromatin 
edges would allow local production of S-Adenosyl Methionine [SAM, (2)], the main methyl donor in methylation reactions, which is processed by a 
yet unknown histone methyltransferase to ensure in situ deposition of the repressive mark H3K9me2 in heterochromatin regions (3; Méteignier 
et al., 2022).
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regions, which corresponded to the borders of chromatin loops. 
Other transcription factor-binding sites were found at a similar 
location, such as APETALA2/ETHYLENE-RESPONSIVE 
ELEMENT BINDING PROTEINS and LATERAL ORGAN 
BOUNDARIES DOMAIN, all representing GC-rich motifs 
(Marand et al., 2021). Recently, the OSH1 transcription factor, which 
binds the RS2-9 DNA element in rice, was proposed to act as an 
insulator module (Liu et al., 2022). Although this module was able 
to block an enhancer-promoter interaction, histone marks and TAD 
changes were not investigated in an osh1 mutant. In euchromatin 
and at a more local scale, the BORDER plant-specific proteins are 
enriched at gene transcription start and end sites and are required to 
prevent transcriptional interference between neighboring genes (Yu 
et al., 2019). Taken together, these recent findings suggest potential 
candidates for a plant insulator function, which remains to 
be extensively characterized by histone modification analysis and 
chromatin contact mapping in mutant plants.

Discussion

The mechanisms initiating the diffusion of heterochromatin 
in plants are currently unclear. Heterochromatin spreading 
observed in ros1 is highly dependent on RdDM (He et al., 2009; 
Yamamuro et al., 2014). However, in the context of EIs, SUVH 
proteins can also play a minor role in the diffusion of chromatin 
marks (Méteignier et al., 2022). In maize, where the vicinity of 
several TEs is subjected to the diffusion of heterochromatin marks 
(Noshay et al., 2019), neither the mutation of MOP1, a component 
of RdDM, nor the mutation of MET2, the chromomethylase 
involved in mCHG maintenance, seem to alter methylation levels 
in the neighborhood of these TEs (Eichten et al., 2012). Thus, 
there is currently no consensus on the molecular bases underlying 
heterochromatin spreading in plants.

The apparent absence of homologs of well-known animal 
insulators in plants highlighted those plants seem to use specific 
protein-DNA modules as well as lineage-specific proteins to ensure 
insulator function. Studying the barrier function in different plant 
models with a wide range of genome size and structure could allow 
a better understanding of insulation and insulator dynamics. For 
instance, the Topo VI-dependent barrier function at the edges of 
euchromatin islands has only been highlighted in Arabidopsis 
(Méteignier et al., 2022) and would benefit from further study in 
other organisms. Since Topo VI is encoded in all known plant 
genomes, designing a Topo VI hypomorphic or conditional mutant 
in maize, for instance, and studying the genome-wide distribution 
of H3K9me2 and other chromatin marks could provide a better 
insight into how genes insulate away from the adjacent TE-rich 
heterochromatin. Additionally, the proposed model of barrier 
mechanism mediated by Topo VI is incomplete. First, the physical 
position of Topo VI in the context of EIs and whether Topo VI 
binds specific DNA sequences remain elusive. However, it should 
be noted that in animals, topoisomerases are prone to recognize 
and bind particular DNA structures rather than defined DNA 

sequences (René et al., 2007). Moreover, the human Top IIα is 
addressed to the centromeres by interacting with the 
phosphorylated form of histone H2A at Thr 120 during mitosis 
(Zhang et al., 2020). These observations raise the possibility that 
Topo VI barrier function might also be independent of a specific 
nucleotide sequence. Furthermore, the putative histone methyl 
transferase involved in the Topo VI-controlled H3K9me2 
deposition is unknown. The accumulation of RNA-seq and 
ChIP-seq data could make it possible to consider a data-mining 
approach to identify the missing factors whose mutation would 
also result, like Topo VI, in the repression of EI genes and changes 
in chromatin mark levels in EIs.

Like the barrier model involving Topo VI, the active 
demethylation pathway is still incomplete. Indeed, the DNA 
polymerase that fills the 5’P-3’OH gap resulting from the activity 
of the base excision repair mechanism with an unmethylated 
cytosine remains unknown. The discovery of the yet unidentified 
factors participating to the active demethylation pathway, or the 
Topo VI-mediated chromatin barrier, could be  achieved by 
proximity labeling strategies allowing the identification of very 
transient interactions (Arora et al., 2020). Moreover, the power of 
the CRISPR-CAS9-based gene editing could allow inserting 
reporter genes within EIs, then use them in genetic screens aimed 
at identifying mutant lines defective in EI gene expression and thus 
in putative new players involved in heterochromatin containment.
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