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Plastids are one of the main distinguishing characteristics of the plant cell. The

plastid genome (plastome) of most autotrophic seed plants possesses a highly

conserved quadripartite structure containing a large single-copy (LSC) and a

small single-copy (SSC) region separated by two copies of the inverted repeat

(termed as IRA and IRB). The IRs have been inferred to stabilize the plastid

genome via homologous recombination-induced repair mechanisms. IR loss

has been documented in seven autotrophic flowering plant lineages and two

autotrophic gymnosperm lineages, and the plastomes of these species (with a

few exceptions) are rearranged to a great extent. However, some plastomes

containing normal IRs also show high structural variation. Therefore, the role of

IRs in maintaining plastome stability is still controversial. In this study, we first

integrated and compared genome structure and sequence evolution of

representative plastomes of all nine reported IR-lacking lineages and those

of their closest relative(s) with canonical inverted repeats (CRCIRs for short) to

explore the role of the IR in maintaining plastome structural stability and

sequence evolution. We found the plastomes of most IR-lacking lineages

have experienced significant structural rearrangement, gene loss and

duplication, accumulation of novel small repeats, and acceleration of

synonymous substitution compared with those of their CRCIRs. However,

the IR-lacking plastomes show similar structural variation and sequence

evolution rate, and even less rearrangement distance, dispersed repeat

number, tandem repeat number, indels frequency and GC3 content than

those of IR-present plastomes with variation in Geraniaceae. We argue that

IR loss is not a driver of these changes but is instead itself a consequence of

other processes that more broadly shape both structural and sequence-level

plastome evolution.

KEYWORDS

plastid genome evolution, structural variation, inverted repeat region loss,
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Introduction

Plastids, one of the major distinguishing characteristics of

plant cells (Wicke et al., 2011), originated via endosymbiosis of a

eukaryotic cell with a free-living cyanobacterial-like prokaryote

(Margulis, 1988). The major role of plastids is performing

photosynthesis, but they also have other functions including

synthesis of starch, fatty acids, pigments, and amino acids

(Neuhaus and Emes, 2000). Photosynthetic land plants usually

have plastid genomes ranging from 120 kb to 160 kb in size and

encoding ca. 80 protein-coding genes, 30 structural RNA genes,

and four rRNAs (Wicke et al., 2011; Jansen and Ruhlman, 2012).

The plastomes of most autotrophic plants have a highly

conserved quadripartite structure containing two copies of

large inverted repeat (IR) regions termed Inverted Repeat A

(IRA) and Inverted Repeat B (IRB), and two single-copy (SC)

regions termed the large single-copy (LSC) and small single-

copy (SSC) regions (Wicke et al., 2011). The autotrophic plant IR

typically contains a core set of four rRNA genes, six tRNA genes,

and seven protein-coding genes (Bock, 2007; Wicke et al., 2011;

Zhu et al., 2016).

Most autotrophic seed plants possess canonical IRs (Jin

et al., 2020a); however, IR losses have been documented in

seven autotrophic flowering plants lineages and two autotrophic

gymnosperm lineages (Wu et al., 2011b; Lee et al., 2021).

Plastomes of following lineages have lost their IRA: the

Inverted Repeat-Lacking Clade (IRLC) of Leguminosae

(Shinozaki et al., 1986); Camoensia of Leguminosae outside

the IRLC (Lee et al., 2021); eight Erodium species of

Geraniaceae (Guisinger et al., 2011; Blazier et al., 2016);

Carnegiea gigantea (Sanderson et al., 2015) and Lophocereus

schottii (unpublished data from GenBank) from Cactaceae; and

the Cupressophyta composed of Cupressaceae, Taxaceae,

Sciadopityaceae, Podocarpaceae and Araucariaceae (Wu and

Chaw, 2014; Qu et al., 2017). Fewer lineages have experienced

losses of the IRB including the putranjivoid clade of Malpighiales

(Jin et al., 2020a); two Passiflora species of Passifloraceae (Cauz-

Santos et al., 2020); Tahina spectabilis of Arecaceae (Barrett

et al., 2016); and Pinaceae (Wu et al., 2011a).

Plastomes of the IRLC and the putranjivoid clade are highly

variable and rearranged to a great extent (Palmer and

Thompson, 1982; Palmer et al., 1987; Jin et al., 2020a),

supporting the idea that the IRs play an important role in

stabilizing the structural integrity of the plastome via

homologous recombination-induced repair mechanisms

(Maréchal and Brisson, 2010; Guisinger et al., 2011). However,

the plastomes of some species of the IRLC, such as alfalfa

(Medicago sativa subsp. sativa) and Wisteria floribunda, show

limited structural variation (Palmer et al., 1987; Lee et al., 2021).

In addition, plastomes containing canonical IRs yet with

significant plastome structural variation can be found in

Campanulaceae (Cosner et al., 2004), Oleaceae (Lee et al.,

2007), and Pelargonium (Geraniaceae; Chumley et al., 2006).
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Consequently, whether or not IRs play an important role in

maintaining plastome stability remains controversial. This open

issue could be addressed by comparing structural variation in

taxa without the IR (IR-lacking), closely related taxa with

plastome rearrangements that still have the IR (IR-present),

and their closest relative(s) with canonical inverted repeats

(CRCIRs). If IR-lacking plastomes have more structural

changes than both IR-present and CRCIR plastomes, it would

imply the loss of the IR is driving this structural instability.

However, if both IR-lacking and IR-present plastomes have

more structural changes than their CRCIRs, but do not differ

significantly from each other in the number of structural

rearrangements, it would imply the loss of the IR is not

driving structural instability. Furthermore, previous studies

have detected plastome-wide acceleration of substitution rates

for IR-lacking species in Cupressoideae (Qu et al., 2017) and

Fabaceae (Perry and Wolfe, 2002), but it is unclear if this

acceleration has also occurred in other IR-lacking lineages.

Studies on the IR loss have typically focused on a specific

lineage or just one or a few species, which prevents a broader

understanding of the role of IRs in plastome structure and gene

evolution. With the recent proliferation of sequenced plastomes,

it is now possible to comprehensively study plastome evolution

across all IR-lacking lineages of autotrophic seed plants to

address fundamental questions about the function of the IR.

We applied 84 plastomes (including 11 newly sequenced

plastomes and 73 plastomes from GenBank) to compare

structural variations (changes in gene and intron content,

rearrangement distances, inversions and repeats) and sequence

evolution (changes in substitution rates, selection pressure and

GC content) between plastomes of all nine IR-lacking lineages

and their closest relative(s) with canonical inverted repeats

(CRCIRs) in a phylogenetic context.
Materials and methods

Representative sample selection

All nine lineages containing IR-lacking plastomes were

sampled in this study. These include the angiosperm lineages

IRLC (Leguminosae), Camoensia (Leguminosae), Geraniaceae,

Cactaceae, Arecaceae, Passifloraceae, and the putranjivoid clade

(including Putranjivaceae and Lophopyxidaceae), and the

gymnosperm lineages of Cupressophyta ( including

Cupressaceae, Taxaceae, Sciadopityaceae, Podocarpaceae, and

Araucariaceae; Stull et al., 2021) and Pinaceae. All species with

IR-lacking plastomes of Arecaceae, Cactaceae, Geraniaceae,

Passifloraceae, the putranjivoid clade, and Camoensia were

included; up to eight species were sampled across each of the

larger IR-lacking clades (i.e., the IRLC, the Cupressophyta, and

Pinaceae) to represent major lineages. For each IR-lacking

lineage, we sampled their closest relative(s) with canonical IRs
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for comparison. The canonical IRs means IRs have similar

length and gene content as those of Amborella trichopoda

(NC 005086).
Sequence acquisition, assembly, and
annotation

To obtain better representative IR-lacking and CRCIR

plastomes, 11 new plastomes of Anthyllis barba-jovis

(ON009079), Coronilla valentina subsp. glauca (ON009080),

Hebestigma cubense var. cubense (ON009078), Robinia

pseudoacacia (ON009076), Afgekia filipes (ON022041),

Astragalus bhotanensis (ON009077), Glycyrrhiza uralensis

(ON009073), Hedysarum semenovii (ON009074), Maackia

hupehensis (ON009075) and Camoensia sp. (ON009081)

from Leguminosae, and Afrocarpus falcatus (ON009072) of

Podocarpaceae were determined based on the whole-genome

Illumina sequencing dataset. We used the DNeasy Plant Mini

Kit (Tiangen Biotech Co., Ltd., China) to extract total DNA

and used NEBNext Ultra II DNA Library Prep Kit for Illumina

(New England Biolabs, USA) to construct a short insert (350

bp) library. Paired-end (PE) sequencing with 2 × 150 bp was

performed on Illumina HiSeq X TEN at Plant Germplasm and

Genomics Center (Kunming Institute of Botany, China). Then

the paired-end reads were filtered using Trimmomatic v.0.32
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(Bolger et al., 2014) with default settings. Filtered reads were

used to de novo assembly plastomes using GetOrganelle

v.1.6.2a with default settings (Jin et al., 2020b). The final

assembly results were checked in Bandage (Wick et al.,

2015). We also downloaded 73 additional plastomes from

GenBank (https://www.ncbi.nlm.nih.gov; Table S1; GenBank

accessed August 30th, 2021). We initially used PGA (Qu et al.,

2019) and GeSeq (https://chlorobox.mpimpgolm.mpg.de/

geseq.html; Tillich et al., 2017) to annotate all plastomes with

Amborella trichopoda (NC_005086) as the reference

(Goremykin et al., 2003). Finally, the annotations generated

by PGA were manually adjusted in Geneious Prime v.2020.0.5

(Kearse et al., 2012).
Phylogenetic analyses

Phylogenetic analyses of the nine lineages, all IR-lacking

species and their CRCIRs, 21 IR-lacking species listed in Table 1

that have dispersed repeats at boundary regions of inversions, 22

Geraniaceae species listed in Table S5 were performed using

plastome protein-coding and rRNA genes that were present in

all examined species.We used get_annotated_regions_from_gb.py

(https://github.com/Kinggerm/PersonalUtilities; Zhang et al.,

2020) to extract and separate gene sequences (protein-coding

genes, and rRNA genes) and intergenic regions, and used
TABLE 1 Statistics of dispersed repeats and their corresponding inversions.

Species Inversion Site Inversion Length Repeat Length

Erodium carvifolium 30710–36608 5898 445

Erodium reichardii 5647–30221 24574 352

Erodium texanum 23425–46586 23161 3359

Drypetes longifolia 5605–89001 83396 1260

Drypetes hainanensis 5474–89321 83847 1191

Drypetes indica 5529–90486 84957 1047

Drypetes lateriflora 6031–90468 84437 1484

Drypetes similis 5716–89014 83298 1221

Drypetes diopa 5967–89759 83792 1357

Drypetes chevalieri 5917–90107 84190 1398

Passiflora capsularis 80769–112976 32207 791

Passiflora costaricensis 77218–114228 37010 1070

77218–84722 7504 280

Taiwania cryptomerioides 7164–41842 34678 271

Glyptostrobus pensilis 46836–123831 76995 274

Sciadopitys verticillata 7855–47024 39169 157

Prumnopitys andina 32987–110212 77225 152

Picea abies 8507–32712 24205 395

Abies fargesii 7812–53059 45247 1176

Larix gmelinii 9126–51283 42157 411,44

Keteleeria davidiana 8159–50365 42206 610,66,15

Pinus armandii 49465–50435 970 232
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MAFFT v. 7.305b (Katoh et al., 2005) to conduct alignment of

each region, then used concatenate_fasta.py (https://github.com/

Kinggerm/PersonalUtilities; Zhang et al., 2020) to concatenate

sequences into a data set. We reconstructed phylogenetic trees and

assessed the branch support using RAxML version 8.1.21 with

1000 bootstrap replicates and the “GTRGAMMA” model

(Stamatakis, 2014); results were visualized in FigTree v.1.4.4.
Repeat analyses

We used the Find Repeats plugin of Geneious Prime to

detect dispersed repeats; the minimum repeat length was set as

30 bp and the maximum mismatch was set as 0% (Jin et al.,

2020a). To ensure the accuracy of the detection results, we

excluded repeats up to 10 bp longer than the contained repeat

and excluded contained repeats when longer repeat has the

frequency of at least three.

We also used MISA (https://webblast.ipk-gatersleben.de/

misa; Thiel et al., 2003) with preset parameters followed by the

core PERL function MISA.pl to identify the tandem repeats. The

repeat units are one (mononucleotide), two (di-) nucleotides,

three (tri-) nucleotides, four (tetra-) nucleotides, five (penta-)

nucleotides, and hexanucleotides. The parameters were set

as follows:

Definition (unit size, min repeats): 1-10 2-6 3-5 4-5 5-5 6-5,

Interruptions (max_difference_between_2_SSRs): 100 (default

setting). For the CRCIRs with the normal quadripartite

structure, to avoid redundancy for the repeat identification,

one IR copy was excluded for this analysis.
Comparative analyses of genome
structure

We used the progressiveMauve algorithm in Mauve v2.3.1

(Darling et al., 2010) with default settings to build whole

plastome alignments for each of the nine lineages and its

CRCIRs, respectively. For optimal homology assessment, one

IR copy was excluded from plastomes with both IRs (Wicke

et al., 2013). The strand orientation of each Locally Collinear

Block (LCBs) was determined compared with those of their

CRCIRs, and each LCB is then assigned a number and direction

(+/-; Jin et al., 2020a). Subsequently, we used GRIMM (http://

grimm.ucsd.edu/cgi-bin/grimm.cgi; Tesler, 2002) to calculate

plastome rearrangement distances, the minimum number of

inversions were required to transform the LCB orders from

plastome of reference species (with yellow background in Table

S1) to the target plastomes of IR-lacking species and their

CRCIRs. The orientation of the SSC is arbitrary in IR-present

plastomes (Walker et al., 2015), which is different in the IR-

lacking plastomes and plastomes of their CRCIRs of two

Leguminosae groups, we then manually reversed SSC in
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plastomes of CRCIRs of two Leguminosae groups to eliminate

the arbitrary affection.
Molecular evolutionary analyses

The synonymous substitution rates of protein-coding genes

of whole plastomes, single-copy regions, and IR regions were

analyzed using HyPhy v.2.2 (Pond et al., 2005) with the

MG94×GTR_3 × 4 codon model, respectively. The protein-

coding genes of the single-copy (SC) regions were classified

into 11 data sets according to their functions including atp genes,

chl genes, ndh genes, pet genes, psa genes, psb genes, rpl genes,

rpo genes, rps genes, other housekeeping genes (other-HK: accD,

clpP,matK, ycf1, ycf2, and ycf12) and other photosynthesis genes

(other-PS: ccsA, cemA, rbcL, ycf3, and ycf4). We also extracted IR

region protein-coding genes (rps12, rps7, ndhB, ycf2, ycf1, rpl23,

rpl2 of angiosperm species; ycf2, ndhB, rps12, rps7 of

gymnosperms species). These protein-coding gene alignments

were generated using MAFFT v.7.305b (Katoh et al., 2005), and

were used to constrain nucleotide alignments using PAL2NAL

(Suyama et al., 2006).

We assessed the direction and the strength of changes of

selection pressure across functional genes (using the same

classification as above for synonymous substitution rates) via

the nonsynonymous/synonymous rate ratio (also called “omega”

and denoted by w or dN/dS) calculated using branch models in a

phylogenetic framework (Figures S1A-I). We tested different

hypotheses using branch models in EasyCodeML v.1.21 (Gao

et al., 2019) that allow w to vary among branches in the tree.

Omega in selected branches (foreground) was then compared

with omega in unselected branches (background) in each of the

nine lineages, respectively. When w < 1, the sequence is under

purifying selection, and when w > 1, the sequence is under

positive selection. If selection pressure is relaxed, w will move

toward 1, which means, under purifying selection, the smaller

the value, the more relaxed; and under positive selection, the

larger the value, the more relaxed (Wicke et al., 2016). For each

terminal branch of the phylogeny, w was calculated using the

free-ratios branch model (model = 1) implemented in the

codeml program from the PAML package v.4.8a (Goldman

and Yang, 1994; Yang, 2007; De La Torre et al., 2017).
Microstructural changes and single
nucleotide variation

We classified sequences into three data sets (protein-coding

genes, rRNAs, and intergenic regions), then used DnaSP v.6

(Rozas et al., 2017) to identify the frequency (number of mutated

bases/number of total plastome bases) of short insertions or

deletions (indels) involved in microstructural changes (Yamane

et al., 2006; Wicke et al., 2016). We used SNP-sites v. 2.5.1 (Page
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et al., 2016) to count the frequency of single nucleotide variation

sites (SNVs). Both analyses compared each plastome of the IR-

lacking species and their CRCIRs with the plastome of the

reference species (with yellow background in Table

S1), respectively.
GC content and codon usage

We employed the program CodonW v.1.4.4 (http://

codonw.sourceforge.net/; Guisinger et al., 2011) to conduct

the analyses of relative synonymous codon usage (RSCU), total

guanine-cytosine (GC) content, and guanine-cytosine content

at third codon position (GC3). RSCU values indicate codon

usage bias in protein-coding sequences; RSCU values >1.00

indicates that the codons used more frequently than expected,

while RSCU values < 1.00 indicates codons used less frequently

than expected.
Statistical analysis

The ape and nlme R package (Paradis and Schliep, 2019;

Pinheiro et al., 2022) were used to perform the phylogenetic t-

test and phylogenetic least squares regression (PGLS) to

determine whether any of these metrics differed between the

IR-lacking plastomes and those of their CRCIRs while taking

phylogenetic relatedness into account. Based on the phylogenetic

tree of all IR-lacking species and their CRCIRs (Figure S1J), the

phylogenetic t-test to account for variances of dispersed repeat

number, tandem repeat number, rearrangement distance, indels

frequency, SNVs frequency, whole plastome GC content,

protein-coding genes GC content, GC3 content, synonymous

substitution rate between IR-lacking plastomes and those of

CRCIRs was performed by coding the categorical variable as a

dummy quantitative variable with value 0 for IR-lacking species

and 1 for CRCIRs following Organ et al. (2007) and Charboneau

et al. (2021). Following Organ et al. (2007), PGLS was used to

determine whether there is a correlation between two

continuous variables of dispersed repeat length and inversion

length based on the phylogenetic tree of 21 species listed in

Table 1 (Figure S1K), dispersed number and rearrangement

distance, as well as w and rearrangement distance based on the

phylogenetic tree of all IR-lacking species and those of their

CRCIRs (Figure S1J).

To test if IR can drive plastome structural variation, the

phytools R package (Revell, 2012) was used to perform a

phylogenetic ANOVA with post-hoc tests based on the

phylogenetic tree of 22 species listed in Table S5 (Figure S1L)

on rearrangement distance, repeat number, indels frequency,

SNVs frequency, whole plastome GC content, GC3 content and

synonymous substitution rates between eight IR-lacking

plastomes from Erodium and all six structural variable IR-
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present plastomes of Geranium in Geraniaceae taking

phylogenetic relatedness into account.
Results

Plastome features in nine lineages

All 11 newly sequenced plastomes were submitted to the

GenBank (ON009072–ON009081 and ON022041; Table S6).

Specific characteristics of plastomes from the nine lineages are

described below. Relative to those of their CRCIRs (with the

plastome size of 124,858 bp–139,924 bp after removing one IR),

the plastome length of the IR-lacking species was usually shorter,

ranging from 113,064 bp in Carnegiea gigantea of Cactaceae to

145,625 bp in Agathis dammara of the Cupressophyta (Table

S1). Consistent with previous studies, plastomes of the

Cupressophyta, two Leguminosae lineages, two species of

Cactaceae, and eight Erodium species had lost their IRA, while

those of Pinaceae, two species of Passifloraceae, the putranjivoid

clade, and Tahina spectabilis of Arecaceae had lost IRB

(Figure S1J).

Gene content was variable in plastomes of the IR-lacking

species (details shown in Table S1). Tahina spectabilis

(Arecaceae) had the largest number of protein-coding genes

(i.e., 79, the same number as its CRCIRs). In contrast, the other

IR-lacking lineages had different degrees of gene loss or

pseudogenization, typically involving accD, infA, rpl20, rpl22,

rpl23, rpl33, rps7, rps12, rps16, ycf1, ycf2 and/or ycf12. Among

these genes, the most frequently lost gene was rps16 and rpl20,

rpl22, rpl23 and rpl33. For IR-lacking plastomes of Cactaceae

and Pinaceae, multiple ndh genes (ndhA~ndhK) were lost and/or

became pseudogenes (Table S1). Except for T. spectabilis, other

species lost the clpP intron 1 or both intron 1 and 2 (details

shown in Table S1); the rps12 intron at the 3’ portion was lost in

IRLC, the putranjivoid clade, and Passiflora; the atpF intron was

lost in the putranjivoid clade and Passiflora (Table S1). Many

gene duplication events also occurred in the IR-lacking species

(Table S1), including eight tRNA genes (trnD-GUC, trnG-GCC,

trnH-GUG, trnI-CAU, trnQ-UUG, trnS-GCU, trnT-GGU and

trnV-GAC), and five protein-coding genes (psbK, psbI, psaM,

rpl33 and ycf12).
Length and quantity of repeats

We observed that most plastomes of IR-lacking species had

more dispersed repeats and larger dispersed repeats than those

of their CRCIRs (Figures 1A, S6). Tahina spectabilis had 3

more dispersed repeats than the average of its CRCIRs;

Cactaceae averaged 27 more dispersed repeats than their

CRCIRs; Geraniaceae averaged 12.6 more dispersed repeats

than their CRCIRs; IRLC averaged 15.3 more dispersed repeats
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than their CRCIRs; the putranjivoid clade averaged 17.8 more

dispersed repeats than their CRCIRs; Passifloraceae averaged

35 more dispersed repeats than their CRCIRs; the

Cupressophyta averaged 41.1 more dispersed repeats than

their CRCIRs; Pinaceae averaged 24.9 more dispersed repeats

than their CRCIRs; Camoensia averaged 4.5 fewer dispersed

repeats than its CRCIRs (Table S2). Plastomes of all Drypetes

species, one Passiflora species (Passiflora costaricensis), two

Erodium species (Erodium trifolium and Erodium texanum),

and three Pinaceae species (Abies fargesii, Cedrus deodara, and

Pseudolarix amabilis) possessed a pair of dispersed repeats with

a length of more than 1000 bp (Table S2).

Contrary to these increases in dispersed repeats, plastomes of

most IR-lacking species showed decreases in tandem repeats

compared to those of their CRCIRs (Figures 1B, S6). Tahina

spectabilis had 11.3 fewer tandem repeats than the average of its

CRCIRs; Cactaceae averaged 37 fewer tandem repeats than their

CRCIRs; Geraniaceae averaged 19.5 fewer tandem repeats than

their CRCIRs; IRLC averaged 23.4 fewer tandem repeats than their

CRCIRs; Camoensia averaged 27 fewer tandem repeats than its

CRCIRs; the putranjivoid clade averaged 44 fewer tandem repeats

than their CRCIRs; the Cupressophyta averaged 0.125 fewer

tandem repeats than their CRCIRs; Pinaceae averaged 17.6 fewer

tandem repeats than their CRCIRs; Passifloraceae averaged 3.5

more tandem repeats than their CRCIRs (Table S2).
Plastome major structural variation

The plastome structure of most IR-lacking species

underwent greater rearrangement compared with that of

their CRCIRs (Figures 1C, S2, S6). The rearrangement
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distance of IR-lacking plastomes was 0–12, compared with

0–2 in their CRCIRs (Table S2). The plastome of E. texanum

plastome had the largest rearrangement distance and three

IRLC species (Afgekia filipes, Astragalus bhotanensis, Cicer

arietinum and Glycyrrhiza uralensis) had the smallest in all

IR-lacking species. Subsequently, we found one to three pairs

of dispersed repeats at boundary regions (within 500 bp from

the endpoints) of 21 of the 146 inversions (Table 1), and the

length of such dispersed repeats had a significant positive

correlation with the length of inversions (Figure 3A). We

also observed an interesting phenomenon in IR-lacking

plastomes: no matter how complex their plastomes were in

terms of structural variation, the original six genes in the IR

(rrn16, trnI-GAU, trnA-UGC, rrn23, rrn4.5, and rrn5) always

maintained the same order and direction.
Nucleotide substitution rates

Except for T. spectabilis, C. scandens, and six Erodium species,

the synonymous substitution rates of protein-coding genes in most

IR-lacking species were higher compared with those of their

CRCIRs (Figures 2, S6), which are 1.1 times to 6.9 times greater

(dSIR-lacking/dSIR-normal) than those of their CRCIRs (Table S2).

Eleven different kinds of protein-coding genes in the single-copy

(SC) region of the nine lineages showed different degrees of higher

or lower synonymous substitution rates ranging from 5 times less to

12 times greater than those of their CRCIRs (show detail in Figure

S3 and Table S2). Except for the ndhB of C. scandens, the original IR

genes of the nine lineages had higher synonymous substitution rates

ranging from 1.2 times to 24.5 times greater than those of their

CRCIRs (Figure S4).
A B D
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C

FIGURE 1

Violin plots for comparisons of eight variables between IR-lacking plastomes and those of their CRCIRs with phylogenetic t-test. (A) dispersed
repeat number; (B) tandem repeat number; (C) rearrangement distance; (D) indels frequency; (E) SNVs frequency; (F) whole plastome GC
content; (G) protein-coding genes GC content; (H) GC3 content.
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For IR-lacking species, the dSIR/dSSC values of the same kind of

genes were about 1 (Figure S5). But the rpl2 of two species, the rpl23

of six species, the ndhB of two species, the rps7 of one species, the

rps12 of two species, the ycf1 of four species, and ycf2 of three species

had dSIR/dSSC values less than 0.5 (Table S2). And the rpl2 of four

species, the rpl23 of three species, the ndhB of eight species, the rps7

of six species, and the rps12 of seven species had dSIR/dSSC values

greater than 3.7 (Table S2).
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Changes of selection direction and
intensity

The analysis using different branching models showed that

the IR-lacking lineages were under purifying selection as a

whole, and the selection was relaxed significantly compared

with the background branches, except for Arecaceae (Table 2).

However, when we classified protein-coding genes, we found
A B

D E F
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C

FIGURE 2

Boxplots for comparisons of synonymous substitution rates of whole protein-coding genes between IR-lacking plastomes and those of their
CRCIRs with phylogenetic t-test. (A) Cupressophyta; (B) Pinaceae; (C) IRLC; (D) the putranjivoid clade; (E) Cactaceae; (F) Geraniaceae; (G)
Passiflora; (H) Arecaceae; (I) Camoensia. Thick lines within boxes are medians, and outliers are shown as circles.
A B C

FIGURE 3

PGLS analysis of (A) dispersed repeat length and inversion length; (B) dispersed repeat number and rearrangement distance; (C) rearrangement
distance and w.
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that some kinds of genes had different selection direction and

intensity (show detail in Table S3). More specially, we found that

rpl, rpo and rps genes were under significantly relaxed purifying

selection; only rpl and rps genes in Cactaceae were detected to be

under significant positive selection (Table S3).
Statistics of indels and SNVs frequency

The indels frequency of plastomes of IR-lacking species

was significantly higher than those of their CRCIRs

(Figures 1D and S6). Specifically, the indels frequency in

protein-coding genes, rRNA genes, and intergenic regions in

IR-lacking species was 0.8–10.5, 1.0–15.9, and 0.8–2.2 times of

those in CRCIRs (Table S2). Comparing with those of other

IR-lacking species, the indels frequency of T. spectabilis was

the lowest.

The SNVs frequency of most IR-lacking species was also

higher than those of their CRCIRs (Figures 1E, S6). SNVs

frequency was the lowest in rRNA genes and the highest in

intergenic regions in both IR-lacking species and CRCIRs.

The SNVs frequency of protein-coding genes, rRNA genes,

and intergenic regions in IR-lacking species was 0.8–3.7, 0.9–

13.1, and 0.8–3.1 times of those in CRCIRs (Table S2).
GC content and codon usage

The GC content of IR-lacking species was significantly

lower than those of their CRCIRs (Figures 1F, S6).

Specifically, the GC content of IR-lacking species was in the

range of 33.9%–39.5%, compared with a range of 35.8%–40.1%

for their CRCIRs (Table S2). The GC content of protein-coding

genes was also significantly lower than that of their CRCIRs

(Figures 1G, S6). However, the GC3 content of IR-lacking

species was significantly higher than that of their CRCIRs

(Figures 1H, S6), the GC3 content of IR-lacking species was
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in the range of 23.9%–40.70%, compared with 24.7%–33.9% in

their CRCIRs (Table S2)

There was no difference in the total number of codons used

by IR-lacking species compared with their CRCIRs, nor was

there any difference in the preferred codon usage per amino

acid, but most of the IR-lacking species had slightly higher

RSCU values (Table S4). Most of the preferred codon usage

ended with A/T; only three codons end with G/C. However, T.

spectabilis had five codons end with G/C (Table S4). Of the stop

codons, TAA was more frequent than any other codon

(Table S4).
Phylogenetic ANOVA in Geraniaceae

Only SNVs frequency and GC3 content of ANOVA analyses

actually showed a significant difference (Figure 4). For SNVs

frequency, IR-lacking plastomes and CRCIRs plastomes

(pairwise corrected P-values= 0.0054), and CRCIRs plastomes

and IR-present plastomes (pairwise corrected P-value = 0.0076)

showed significant differences; For GC3 content, IR-present

plastomes and IR-lacking plastomes (pairwise corrected P-

value = 0.0012) showed significant differences. However, the

phylogenetic ANOVA performed on the other six variables

(repeat number, rearrangement distance, indels frequency, GC

content and dS) showed no significant difference among

groups (Figure 4).

The differences of each variable of IR-lacking plastomes

averaged 4.3 higher rearrangement distance, 19.6 less tandem

repeats,14.6 more dispersed repeats, 0.0004 higher indels

frequency, 0.03069 higher SNVs frequency, 0.00597 higher dS,

0.023 higher GC content and 0.05 lower GC3 content than those

of CRCIRs plastomes; The differences of each variable of IR-

lacking plastomes averaged 2.1 less rearrangement distance, 10.3

less tandem repeats, 30.6 less dispersed repeats, 0.0004 lower

indels frequency, 0.0029 higher SNVs frequency, 0.00391 higher
TABLE 2 Selectional strength and direction. w0 indicates the result of the one-ratio model (all branches in the phylogenetic tree of this model are equal);
w1 indicates the result of the two-ratio model.

Lineage w0 w1 P-value Selection Change

Arecaceae 0.4106 0.3777 0.6097 not significant Negative intensification

Cactaceae 0.1520 0.7628 0.0000 significant Negative relaxation

Geraniaceae 0.1799 0.2870 0.0000 significant Negative relaxation

Leguminosae 0.1612 0.2858 0.0000 significant Negative relaxation

Camoensia 0.2028 0.3950 0.0000 significant Negative relaxation

the putranjivoid clade 0.2042 0.4302 0.0000 significant Negative relaxation

Passiflora 0.1998 0.3226 0.0000 significant Negative relaxation

Cupressophyta 0.1905 0.3499 0.0000 significant Negative relaxation

Pinaceae 0.2157 0.4162 0.0000 significant Negative relaxation
fr
P-value indicates the significance of LRTs of the one-ratio model against the two-ratio model.
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dS, 0.004 higher GC content and 0.076 lower GC3 content than

those of IR-present plastomes; The differences of each variable of

IR-present plastomes averaged 6.3 higher rearrangement

distance, 9.3 less tandem repeats, 30 more dispersed repeats,

0.0008 higher indels frequency, 0.0278 higher SNVs frequency,

0.0045 higher dS, 0.01904 higher GC content and 0.026 higher

GC3 content than those of CRCIRs plastomes (Table S5).
Discussion

Plastomes characterization of IR-lacking
species

Among nine IR-lacking lineages, five lineages have lost IRA

and four lineages have lost IRB (Figure S1J). The loss of one copy

of IR appears to be a random event in a phylogenetic context.

Variation in IR regions and gene loss are major contributors to

the variation in plastome size and structure (Chen et al., 2021).

Due to the loss of IR and some genes, the plastome length of the

IR-lacking species is generally much shorter. Only one exception

was detected, the IR-lacking plastome of Agathis dammara

(145,625 bp) is larger than the plastomes of its four CRCIRs

(136,689 bp–139,924 bp) because it has double rRNA5 genes and

more tandem repeats. Plastomes of the studied IR-lacking

species, except for T. spectabilis (Arecaceae), have differing

degrees of gene loss or pseudogenization. Although there were

no genes consistently lost across all nine lineages, we found that

the genes with the highest loss frequency are rpl and rps genes,

which participate in translation and protein-modifying as large

and small subunits of ribosomal protein (Bock, 2007; Wicke

et al., 2011). The IR-lacking plastomes have also experienced

frequent loss of infA and accD. The function of infA is as a
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translation initiation factor (Wicke et al., 2011). The function of

accD, involving lipid acid synthesis, is also unrelated to

photosynthesis (Wicke et al., 2011). Although IR-lacking

species lose many genes, the loss of these genes does not

destroy the core function of plastids. Therefore, IR-lacking

species can function as fully autotrophic plants. In addition,

plastids, as semi-autonomous organelles (Herber, 1962), are

regulated by nuclear genes, and the function of these lost

genes may be compensated by nuclear genes. In Cactaceae and

Pinaceae, a large number of lost ndh genes are involved in the

redox of photosynthetic NADH dehydrogenase (Bock, 2007),

which may slightly fine-tune photosynthesis (Li et al., 2021). The

reason for the loss of the ndh gene in these cases is still not yet

clear. Some ndh genes may not be essential for plant survival, or

their lost functions can be compensated by other factors (Suorsa

et al., 2012; Strand et al., 2019). Except for T. spectabilis, all other

IR-lacking species have lost the clpP intron 1 or both intron 1

and 2. We believe that this shared loss is probably biologically

significant, but its cause and mechanism remain unexplained

(Jansen et al., 2008; Wang et al., 2018; Bedoya et al., 2019; Jin

et al., 2020a).

Many gene duplication events, frequently accompanying

dispersed repeats, occurred in IR-lacking species (Table S1).

trnI-GAU and trnA-UGC, located in the IR region, have the

highest duplication frequency. Experiments involving diverse

plants plastomes (Hotto et al., 2011; Zhelyazkova et al., 2012;

Guo et al., 2015; Castandet et al., 2016) have shown that trnI-

GAU and trnA-UGC are the most highly expressed genes

(Mower and Vickrey, 2018). This increase in expression is

likely driven by the presence of two gene copies (one in each

IR region); this suggests that one of the main functions of IR may

be to increase gene dosage (Mower and Vickrey, 2018). We also

found the duplication of rrn5 in Agathis dammara and
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FIGURE 4

Boxplots for phylogenetic ANOVA statistical with post-hoc tests of eight variables between IR-lacking plastomes IR-present plastomes with
variation and their CRCIRs. (A) dispersed repeat number; (B) tandem repeat number; (C) rearrangement distance; (D) indels frequency; (E) SNVs
frequency; (F) whole plastome GC content; (G) GC3 content; (H) synonymous substitution rates.
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Sciadopitys verticillata. Choi et al. (2019) also found two copies

of three rRNA genes of rrn4.5, rrn5 and rrn23 in the plastomes of

some Medicago spp. from the IRLC. Duplications of these

original IR genes in the IR-lacking plastome may help to

maintain gene expression levels.
Significant structural variation in IR-
lacking plastomes

Multiple studies have found increased structural variation in

plastomes of IR-lacking lineages (Palmer and Thompson, 1981;

Palmer and Thompson, 1982; Palmer et al., 1987; Guisinger et al.,

2011; Wu et al., 2011a; Wu et al., 2011b; Choi et al., 2019; Jin et al.,

2020a). This has led to the suggestion that IRs function to stabilize

the structure of the plastome, perhaps by imposing structural

constraints on the plastome, thereby impeding rearrangement

events (Mower and Vickrey, 2018). Our study shows that all IR-

lacking lineages have increased rearrangement compared with

their CRCIRs, mainly attributable to inversions, ranging from 603

bp in Agathis dammara bp to 84,957 bp in Drypetes indica. Most

plastomes of IR-lacking lineages have a significantly increased

number of novel small, dispersed repeats (> 30 bp) compared with

those of their CRCIRs. Many previous studies (e.g., Wu et al.,

2011b; Qu et al., 2017; Ruhlman et al., 2017; Mower and Vickrey,

2018; Jin et al., 2020a; Lee et al., 2021) suggested the presence of

smaller repeats is a major driver of plastomic rearrangements and

the accumulation of novel small dispersed repeats may substitute

for the function of original IR. Our study also detected a

significant positive correlation between numbers of such

dispersed repeats and the rearrangement distances (Figure 3B),

and the rearrangement endpoints of approximately 15% of the

inversions are associated with small, dispersed repeats. This

suggests that repeat-mediated intra- and intermolecular

recombination plays a major role in controlling plastome

rearrangement. Moreover, we confirmed that longer dispersed

repeats have a stronger ability to mediate inversion (Figure 3A).

A previous study speculated that increased genomic

rearrangements could be explained by relaxed selection on

variation caused by improper DNA repair (Guisinger et al.,

2011). In this study, we confirmed that there was an obvious

correlation between the rearrangement distance and overall

selection pressure (Figure 3C). Although the selection pressure

on different classes of genes is varied (Table S3), the selection

pressure in the IR-lacking plastomes tends to be relaxed compared

with that in plastomes of their CRCIRs (Table 2). This means the

weaker the purifying selection pressure (more relaxed) on the

plastid genome, the more drastic the change in plastome structure.

This result is also consistent with the high frequency of indels and

SNVs (Figures 1D, E), which may be due to the mutations

introduced into plastomes (Kimura and Ota, 1971).
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Increased plastome sequence evolution
in IR-lacking plastomes

Our study found that the genome-wide synonymous

substitution rate of most IR-lacking species was accelerated

(Figure 2). Change in synonymous substitution rate is often

assumed to be neutral and dependent on base mutations (Kimura,

1983). Therefore, improper DNA repair also might be the reason for

its acceleration (Guisinger et al., 2011). In addition, there was an

order of magnitude difference in synonymous substitution rate

between different lineages, which may be due to their different

habit (herbs have higher dS) and age (Smith and Donoghue, 2008).

The results of classification and calculation of protein-coding genes

in SC region showed that the synonymous substitution rate of

housekeeping genes accelerated higher than photosynthesis genes in

IR-lacking species compared with their CRCIRs (Table S2). This is

not surprising given that the main function of the chloroplast is

photosynthesis (Wicke et al., 2011), which should result in more

conservative evolution in photosynthesis genes.

Previous studies have shown that rates of nucleotide

substitution are 3.7 times lower in IR genes compared with SC

genes (Mower and Vickrey, 2018), which is generally considered

to be a consequence of enhanced copy-correction activity in the

IR (Wolfe et al., 1987; Perry and Wolfe, 2002; Zhu et al., 2016).

This means that decreased substitution rates should follow gene

transfer from the SC into the IR (Perry and Wolfe, 2002; Zhu

et al., 2016) and increased substitution rates should follow the

gene transfer from the IR into the SC (Li et al., 2016; Zhu et al.,

2016). Consistent with previous studies, we found that the

substitution rate significantly increased in the remaining copy

of IRs in IR-lacking plastomes (e.g., Perry and Wolfe, 2002;

Guisinger et al., 2008; Wu and Chaw, 2014; Qu et al., 2017), and

about 74% of them achieve substitution rate levels of SC genes

(Figure S4; Figure S5 and Table S2). Previously, this acceleration

has been considered as a direct result of IR copy loss following

the loss of homologous recombination between two IR copies,

rather than as an intrinsic property of these genes (Perry and

Wolfe, 2002). Our results show the synonymous substitution

rate of SC genes of IR-lacking plastomes and their CRCIRs

plastomes are not significant different (Figure S3 and Table S2).

Including the GC content (33.9%–39.5%) of our studied IR-

lacking plastomes, the GC content is highly conserved in the

plastomes of land plants, typically between 30–40% (Bock, 2007),

which is affected by the error-checking bias of the DNA

polymerase and/or efficiency for DNA denaturation during

replication or transcription (Guisinger et al., 2011). The decrease

in GC content may be detrimental to the stability of the sequence

(Yakovchuk et al., 2006). The increase of GC3 content in IR-

lacking plastomes confirm the “constraint model” proposed by

Birdsell who thought the increase is due to the high recombination

rate caused by the process of biased DNA repair (Genereux, 2002).
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Does IR promote plastome structure and
sequence evolution?

The function of the IR remains elusive. All reported

autotrophic species containing IR-lacking plastomes have

normal phenotypes. The absence of an IR also does not

necessarily impact a clade’s adaptability or speciation rate, as

evidenced by the IRLC of Fabaceae, which contains ca. 5,400

species (International Legume Database and Information

Service) spanning diverse habitat types around the globe.

Lee et al. (2021) questioned the function of the IR in

maintaining plastome structure and even the function of IR per

se. Our thorough analyses on IR-lacking autotrophic seed plant

lineages and their CRCIRs found significant plastome structural

rearrangement, gene loss/pseudogenization and duplication,

accumulation of novel small repeats, and accelerated rates of

substitution rates in IR-lacking lineages. However, five IR-lacking

species have conservative structures (Palmer et al., 1987; Lee et al.,

2021 and our results), and some IR-present lineages that have

experienced IR-contraction or IR-expansion also have highly

rearranged plastomes and increased rates of molecular evolution

(Lin et al., 2012; Blazier et al., 2016; Weng et al., 2016). We found

most variables of IR-lacking plastomes from Erodium and IR-

present plastomes from Geranium were numerically larger than

those of their CRCIRs, although the tandem repeat number of

CRCIRs was higher than those of IR-lacking plastomes and IR-

present plastomes, and GC3 content of CRCIRs was higher than

those of IR-lacking plastomes but lower than those IR-present

plastomes. However, our phylogenetic ANOVA results only

showed significant differences among IR-lacking plastomes, IR-

present plastomes and CRCIRs in three variables: SNVs, GC

content, and GC3 content, and of those only SNVs were at

greater frequency in both IR-lacking and IR-present plastomes

compared to CRCIRs by post-hoc pairwise t-tests. The ANOVA

results for the other variables might not have shown significant

differences among groups due to limited sample sizes. Additionally,

the IR-present plastomes had numerically higher rearrangement

distance, dispersed repeat number, tandem repeat number, indels

frequency and GC3 content than those of IR-lacking plastomes

(Figure 3). In light of these results showing as much or greater

structural and sequence instability in Geranium plastomes with the

IR as in Erodium plastomes without it, we inferred IR loss may not

be a direct driver of increased structural variation and sequence

evolution in the IR-lacking plastomes, but that IR loss itself might

be a result of other processes that generally impact structural

variation and evolutionary rates across the entire plastome.

Previous studies identified nuclear-encoded plastome DNA repair

genes like CHM/MSH1 and RecA could suppress recombination

between repeats, mutations in these genes could increase plastome
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rearrangements and nucleotide substitutions (Guisinger et al.,

2011). Loss of function in nuclear-encoded DNA repair genes

may cause more structural rearrangements and increased

molecular evolution in IR-lacking plastomes, and the loss of the

IR may thus be an accompanying event involving the process of

nucleocytoplasmic co-evolution.
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SUPPLEMENTARY FIGURE 1

TheMLphylogenetic tree of (A)Cupressophyta; (B) Pinaceae; (C) IRLC; (D) the
putranjivoid clade; (E) Cactaceae; (F) Geraniaceae; (G) Passiflora; (H)
Arecaceae; (I) Camoensia; (J) all IR-lacking species and their CRCIRs; (K) 21
IR-lacking species listed in ; (L) 22Geraniaceae species listed in Table S5 based

on protein-coding and rRNA genes matrix. The number at each node
indicates the ML bootstrap values.

SUPPLEMENTARY FIGURE 2

Plastid genome variation in the nine lineages. (A) Arecaceae; (B)
Cactaceae; (C) the putranjivoid clade; (D) Passiflora; (E) IRLC; (F)
Camoensia; (G) Geraniaceae; (H) Cupressophyta; (I) Pinaceae. Whole-

plastome alignments divide the plastid genome of our study taxa into
different Locally Collinear Blocks (LCB), which are shown as color-coded

representations of syntenic regions. The IRA or IRB was removed from
plastid genomes with two copies of the large inverted repeats to allow for
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an optimal homology assessment. Blocks below the horizontal central
line represent inversions relative to the references. The height of the

colored region within a block reflects the average sequence identity
relative to the reference. Species names are color-coded to indicate

their family: references species (black), CRCIRs species (blue), and IR-
lacking species (red). The pink blocks in both IR-present species indicate

the IR regions. Red blocks represent rrn5, rrn4.5, rrn23, and rrn16 genes,
green blocks represent trnA-UGC and trnI-GAU genes.

SUPPLEMENTARY FIGURE 3

Boxplots for comparisons of synonymous substitution rates of SC region

protein-coding genes between IR-lacking species and their CRCIRs with

phylogenetic t-test. (A) Cupressophyta; (B) Pinaceae; (C) IRLC; (D) the
putranjivoid clade; (E) Cactaceae; (F) Geraniaceae; (G) Passiflora; (H)
Arecaceae; (I) Camoensia.

SUPPLEMENTARY FIGURE 4

Boxplots for comparisons of synonymous substitution rates of original IR

protein-coding genes between IR-lacking species and their CRCIRs with
phylogenetic t-test. (A) Cupressophyta; (B) Pinaceae; (C) IRLC; (D) the
putranjivoid clade; (E) Cactaceae; (F) Geraniaceae; (G) Passiflora; (H)
Arecaceae; (I) Camoensia.

SUPPLEMENTARY FIGURE 5

Frequency distribution histogram of the dSIR/dSSC values.
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Boxplots for comparisons of eight variables between IR-lacking species

and their CRCIRs from each of nine lineages with phylogenetic t-test.
(A) dispersed repeat number; (B) tandem repeat number; (C)

rearrangement distance; (D) indels frequency; (E) SNVs frequency; (F)
whole plastome GC content; (G) protein-coding genes GC content; (H)

GC3 content.
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