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In most agriculture farmlands, weed management is predominantly reliant on integrated 
weed management (IWM) strategies, such as herbicide application. However, the overuse 
and misuse of herbicides, coupled with the lack of novel active ingredients, has resulted 
in the uptrend of herbicide-resistant weeds globally. Moreover, weedy traits that contribute 
to weed seed bank persistence further exacerbate the challenges in weed management. 
Despite ongoing efforts in identifying and improving current weed management processes, 
the pressing need for novel control techniques in agricultural weed management should 
not be overlooked. The advent of CRISPR/Cas9 gene-editing systems, coupled with the 
recent advances in “omics” and cheaper sequencing technologies, has brought into focus 
the potential of managing weeds in farmlands through direct genetic control approaches, 
but could be achieved stably or transiently. These approaches encompass a range of 
technologies that could potentially manipulate expression of key genes in weeds to reduce 
its fitness and competitiveness, or, by altering the crop to improve its competitiveness or 
herbicide tolerance. The push for reducing or circumventing the use of chemicals in 
farmlands has provided an added incentive to develop practical and feasible molecular 
approaches for weed management, although there are significant technical, practical, 
and regulatory challenges for utilizing these prospective molecular technologies in 
weed management.
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INTRODUCTION

The world population is projected to increase from the current average of 7.7 billion people 
in 2018–2020 to 8.5 billion people in 2030 (OECD/FAO, 2021). Population growth is one of 
the key drivers affecting global agricultural commodities for food and non-food demand. One 
of the most significant challenges facing crop improvement programs globally is the capacity 
to adequately match crop production with demand, thereby ensuring food security. Global 
crop production is encumbered by various abiotic and biotic stresses which are further exacerbated 
by climate change. It is evident that innovative approaches and technologies are urgently 
needed to address these issues, ensuring global crop production can meet the expected world 
population increase in the coming years.
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Numerous initiatives spearheaded by various research 
institutes, private companies, and philanthropic organizations 
to tackle both abiotic and biotic stresses are currently underway. 
Many of these initiatives involve the use of recent advances 
in genome editing to improve crop resilience and adaptability 
to various environments, improve yields in suboptimal conditions, 
and increase crops’ resistance to pathogens and insect pests. 
To date, several promising findings, such as the alterations of 
plant architecture, increased drought adaptation capabilities, 
increased salt tolerance, and increased pest and disease resistance 
have been reported (Wang et  al., 2014; Yin and Qiu, 2019; 
Zhang et  al., 2019; Tyagi et  al., 2020; Zeng et  al., 2020; Massel 
et  al., 2021). A recent report on the transgenic expression of 
the human RNA demethylase FTO (fat mass and obesity 
associated) gene in rice and potato have resulted in an 
astonishingly ~50% increase in yield (Yu et al., 2021), although 
the approach involved would be  considered as genetically 
modified (GM) and will fall under GM regulations.

Many molecular strategies for crop improvements have been 
largely focused on the improvement of crop resilience, 
adaptability, and yield, such as improving resistance to pathogens 
and insect pests. However, an equally pressing issue in farming 
is the control of weeds in agricultural lands. Weeds are a 
detrimental threat to global crop production in both developing 
and developed countries (Chauhan, 2020). Overall, among the 
biotic factors causing crop losses, weeds contribute to the 
highest potential yield loss to crops, followed by animal pests 
(insects, mites, nematodes, birds, rodents, etc.) and pathogens 
(fungi, viruses, bacteria, etc., Oerke, 2006). Annual crop losses 
and cost of weeds have been estimated to be  at AUD 3.3 
billion in Australia and USD 33 billion in the United  States 
(Pimentel et  al., 2005; Lewellyn et  al., 2016).

Some molecular approaches have been implemented in 
conjunction with herbicide application to reduce the proliferation 
of weeds in agricultural lands. One such approach is the 
development of herbicide-resistant crops, such as the well-
known Roundup Ready® crops (Padgette et  al., 1995, 1996; 
Barry et  al., 1997). The development of glyphosate-resistant 
crops enables the application of glyphosate, a non-selective 
herbicide, to eliminate unwanted weeds in the field at various 
application timings, thus enhancing the level of weed control. 
However, the emergence of herbicide-resistant GM crops has 
also contributed to the lack of novel herbicides discovery as 
it encourages the use of existing herbicides (Duke, 2012). Other 
factors such as the banning of currently used herbicides, high 
cost of new active ingredients discovery and marketing further 
discourage the development of novel herbicides (Duke, 2012; 
Székács, 2021). Nevertheless, ongoing research for novel mode-
of-action herbicides is crucial as it provides alternative tools 
to combat and circumvent current trends of herbicide-resistant 
weeds. For example, in the lysine biosynthesis pathway which 
remains largely unexplored for herbicide development, novel 
inhibitors that target dihydrodipicolinate synthase (DHDPS), 
which catalyzes the first and rate-limiting step in lysine 
biosynthesis has been reported (Da Costa et  al., 2021).

Gene discovery, “omics,” and genome editing technologies 
currently applied in crop research can be  potentially applied 

to weeds as tools for weed management. However, unlike in 
crop improvement, the utilization of molecular technologies 
to control weeds poses many challenges. These challenges 
include concerns surrounding the use and regulation of GM 
technologies in managing weeds and non-crop plant species 
in the wild, and the potential ecological risks posed by the 
intentional release of GM plant materials (Neve, 2018; Westwood 
et  al., 2018; Barrett et  al., 2019). Aside from GM methods, 
transient technologies relying on the non-transformative 
applications of RNA interference (RNAi) mechanism are also 
potential molecular approaches to control weeds instead of 
heavy reliance on herbicides. To date, significant advances in 
this technology have been made in crop pest and disease 
management (Cagliari et  al., 2019).

The ongoing challenges in controlling weed-related damage 
to agriculture production have highlighted the need for new 
avenues to control weeds, other than relying on the conventional 
use of herbicides. Weed control technology must continuously 
improve to stay ahead of weed adaptation and evolution, and 
molecular approaches could potentially be  explored as tools 
to control weeds. This review discusses the current challenges 
in managing herbicide resistance in weeds, and the molecular 
approaches that could be  integrated into current strategies and 
aid in future weed management. Molecular approaches, including 
CRISPR/Cas9, gene drives and RNAi technology, are discussed 
in this review, along with a proposed list of potential gene 
targets for future molecular research on weed management.

CHALLENGES IN WEED MANAGEMENT

Weed management is challenging due to the diversity of weed 
and crop species and the various agricultural climates that 
these crops can be  sown. There is no “one size fits all” model 
for any cropping system. The application of mechanical or 
chemical control methods alone has failed to lead to a sufficient 
suppression of weeds. However, integrated weed management 
(IWM) approaches, which encompasses coordinated application 
of various mechanical, chemical, and biological control methods, 
can help reduce weed seed bank and provide environmental 
and economic benefits in the long run (Harker and O’Donovan, 
2013; Knezevic et al., 2017; Jabran and Chauhan, 2018; Alagbo 
et  al., 2022). Despite the usefulness of IWM, such strategies 
need to be  heavily researched to determine the appropriate 
cultural, physical, and chemical methods that would be  the 
most beneficial for the agroecological zone. Additionally, the 
change in the global climate has rendered some tried and 
true practices ineffective, leaving the door open to 
innovation in IWM.

Climate change has raised complications in a number of 
different agricultural systems, and many of the challenges with 
weed management will be  intensified which have been 
summarized in Ramesh et al. (2017). Firstly, with the expected 
reduction in rainfall in already dry regions, the resilience of 
crops will be  encumbered. In this scenario, weeds have 
mechanisms to allow them to combat such stressors and 
out-compete the struggling crops, while also having extended 
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periods of growth beyond their usual growing season (Peters 
and Gerowitt, 2014; Ramesh et  al., 2017). This is also partially 
linked to their ability to quickly accumulate mutations to 
be  better adapted to rapidly changing climate scenarios, in 
contrast to many crops which rely on breeding programs to 
introgress desired traits in a relatively slow manner. Focusing 
more on the management side, climate change is expected to 
result in the need for new weed management strategies that 
will need to be rapidly implemented to be an effective combatant 
to the rapid climate variance. The change in climate will also 
result in the increased instability of current herbicides. For 
example, suddenly warmer regions will need to implement 
herbicides with higher heat tolerances or spray strategies will 
need to be  altered to navigate new patterns of rainfall. Thus, 
from the examples highlighted above, the potential to further 
agitate weed management systems due to climate change can 
be  seen. In addition to the compounding effects of climate 
change on weed management, the following review highlights 
some of the traits that allow for weeds to be  so hardy, in 
addition to the already known complications prominent within 
weed management.

Herbicide Resistance in Weeds
The increased occurrence of various herbicide-resistant weeds 
in agricultural lands is one of the major issues faced in weed 
management. Human interventions and farming practices, such 
as the massive adoption of herbicide-based technologies to 
control weeds over large farmlands, have contributed to the 
evolution of herbicide resistance in many weeds (Cardina et al., 
2002; Roux and Reboud, 2007). This is especially the case 
with continuous and non-judicious use of herbicides with the 
same mode of action. Biological factors that include the genetics, 
life cycle, and ecology of weeds also play a part in the evolution 
of their herbicide resistance mechanisms. Furthermore, no new 
mode of action herbicide has been released in the market for 
more than 30 years (Duke, 2012), which adds further pressure 
in controlling the increased number of herbicide-resistant weeds 
globally. Although herbicides with new modes of action, such 
as cinmethylin (Campe et  al., 2018), tetflupyrolimet (Dayan, 
2019; Dayan et  al., 2019), and cyclopyrimorate (Shino et  al., 
2021) have been developed, weed control cannot be  heavily 
dependent on utilizing novel herbicides as weeds can also 
develop resistance. From 1957 to 2020, the global reported 
number of unique cases of herbicide-resistant weeds has increased 
from 2 to 507 (Heap, 2022). In general, herbicide resistance 
mechanisms can be  categorized into two broad types: (1) 
target-site resistance, and (2) non-target site resistance.

Target-site resistance typically involves specific site mutations 
in the target enzyme, which prevents herbicide from binding 
to the target enzyme. Mutations could occur in the binding 
sites within the enzyme, or on other parts of the enzyme which 
could alter the conformation of the enzyme in ways that the 
herbicide could no longer inhibit the activity of the enzyme. 
Other forms of target-site resistance include target gene 
amplification (the increase in target gene copies) and the increase 
in target gene expression. These resistance mechanisms aim to 
increase the production capacity and abundance of the target 

enzyme, in which higher doses of a herbicide would be required 
to fully inhibit the target enzyme. For example, gene amplification 
of the herbicide target gene 5-enolpyruvylshikimate-3-phosphate 
synthase (EPSPS) has been reported in weed species, such as 
Amaranthus palmeri (Gaines et al., 2010), Chloris truncata (Ngo 
et  al., 2018), and Hordeum glaucum (Adu-Yeboah et  al., 2020), 
whereas ACCase gene amplification has been reported in Digitaria 
sanguinalis (Laforest et  al., 2017).

Non-target site resistance stems from the physiological 
characteristics of the plant and how it absorbs, metabolizes, 
and/or sequesters the herbicide (Jugulam and Shyam, 2019). 
As opposed to target-site resistance mechanisms, non-target site 
resistance is significantly more challenging to identify, as reducing 
the concentration of the herbicides entering and remaining in 
the plant systems usually involve multiple gene families controlling 
key processes such as metabolism, translocation, and sequestration 
of the herbicide molecules. Cases of weeds that have evolved 
non-target site resistance against major herbicide groups have 
been summarized in recent literature (Gaines et al., 2020; Perotti 
et al., 2020). For example, enhanced metabolism of the herbicide 
molecules is associated with the proteins, such as cytochrome 
P-450 monooxygenases (P450s), glutathione-S-transferases (GSTs) 
and/or glycosyl-transferases (GTs), which are involved in the 
various phases of herbicide detoxification (Gaines et  al., 2020; 
Perotti et al., 2020). P450s form one of the largest gene families 
in plants and are vital to plant development in defense, having 
roles in the synthesis of hormones, lipids, primary and secondary 
metabolites, and metabolisms of various compounds (Mizutani, 
2012; Xu et al., 2015). However, in terms of herbicide metabolism, 
they participate in the first phase by modifying the chemical 
functional groups of the herbicide molecules, enabling the 
conjugation of the herbicide molecules via GSTs or GTs to 
thiols groups or glucose (Cummins et  al., 2013; Chronopoulou 
et al., 2017). Conjugated herbicide molecules are then transported 
to vacuoles via transporter proteins, such as the ATP-binding 
cassette (ABC) proteins (Martinoia et  al., 1993; Theodoulou, 
2000; Conte and Lloyd, 2011), and cation amino acid transporter 
(CAT; Su et al., 2004; Jóri et al., 2007), for compartmentalization 
and degradation.

Another example of non-target site resistance is through 
reducing translocation of the herbicide, so once the herbicide 
enters the source leaves they are prevented from reaching the 
growing and meristematic tissues via the phloem and/or xylem. 
Reduced translocation can be due to sequestration, which traps 
the herbicide molecules within the source tissues, or altered 
activity of transporter proteins, which either prevent or limit 
the entrance of the herbicide molecules into the phloem and/
or xylem (Délye, 2013). Reduced translocation of glyphosate 
(Ge et  al., 2011, 2012; Moretti and Hanson, 2017), paraquat 
(Yu et  al., 2004, 2010; Brunharo and Hanson, 2017; Moretti 
and Hanson, 2017), and 2,4-D (Riar et  al., 2011; Goggin et  al., 
2016) have been reported in different weed species.

Weed Seed Bank Persistence
Most weed species are known to be  hardy and persistent in 
nature, producing thousands of seeds that can withstand various 
adverse environmental conditions, while staying dormant in 
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the soil for long periods (Manalil and Chauhan, 2021; Chauhan 
and Manalil, 2022). When optimal germination conditions are 
met, the seeds will germinate and compete with the crops 
sown on the same area of land. This makes weed management 
challenging, such as the application of selective herbicides when 
both the weeds and the crop in the farmland belong to the 
same group of flowering plants (e.g., monocot weed species 
growing within cereal crops). Consistent application of the 
range of control methods in IWM can be a long-term solution 
for minimizing weed seed bank, although only a limited number 
of studies on weed seed bank corresponding to management 
are available (Sosnoskie et  al., 2009; Schwartz et  al., 2015). 
Additionally, in agricultural farmlands, weed seed bank can 
contain seeds of multiple different weed species. Every weed 
species has their own biology, life cycle, and ecology, which 
in turn would require different IWM approaches.

Seed dormancy is the main contributor to a persistent weed 
seed bank globally and is a trait with high plasticity in weed 
species, thus, making weed control difficult to achieve as it 
adjusts the weed population to a cropping system (Baskin and 
Baskin, 2006; Schwartz-Lazaro and Copes, 2019). Dormancy 
can be categorized into two types: (1) primary dormancy, where 
dormancy is induced during seed development and prior to 
dispersion from the mother plant, and (2) secondary dormancy, 
when the dispersed seeds are met with suboptimal environmental 
conditions for germination (Carmona, 1992; Vivian et al., 2008). 
While seed dormancy is also a heritable genetic trait, it is 
complex to study due to the trait’s genetic and environmental 
(G × E) interactions (Foley and Fennimore, 1998). Nevertheless, 
recent genetic and molecular studies on seed dormancy using 
model plant species have provided important genomic 
information to aid the understanding of seed dormancy in 
weeds (Gu et al., 2018; Pipatpongpinyo et al., 2020), and genes 
that are involved in the regulation of seed dormancy have 
been extensively reviewed (Graeber et  al., 2012; Nonogaki, 
2014; Klupczyńska and Pawłowski, 2021).

Lack of Genomic Resources in Weeds
Major obstacles in implementing molecular approaches for 
weed management include the lack of genomic resources on 
many major weeds, which encompasses the lack of genomic 
and molecular studies on weeds relative to many crop plants. 
Tools from genomics and molecular biology should be utilized 
to obtain genomic information on weeds, which can aid in 
the investigation of herbicide resistance mechanisms.

Initiatives such as the International Weed Genomics 
Consortium1 have begun to fully sequence several major weed 
species in recent years, such as Lolium rigidum and Conyza 
sumatrensis (Manning, 2021). This initiative and future works 
in addressing greater availability of genomic resources of various 
major weed species would be  beneficial not only for the 
development of molecular approaches for diagnostic and weed 
management, but also for a better understanding of weed 
biology, weedy traits, and the adaptive evolution of herbicide 

1 https://www.weedgenomics.org/

resistance (Ravet et  al., 2018). Genomic resources of these 
major weed species could also be important in revealing potential 
genetic resources that could be utilized for future crop breeding 
for the integration of beneficial traits from weed species into 
crops. Harnessing the genetic information of weed species also 
enables a better understanding of weeds’ biotic and abiotic 
tolerance. As most weeds are extremely tolerant to various 
harsh environments, generating and studying the genomic 
resources of these weeds could also aid in the understanding 
of stress tolerance and possibly be  applied to related crops. 
Other genomic information such as population genetics can 
also potentially contribute to management decisions, such as 
the choice of herbicides and herbicide rotation (Perotti 
et  al., 2020).

POTENTIAL MOLECULAR APPROACHES 
TARGETING WEEDS TO CONTROL 
FITNESS

In the current context of agriculture, the goal of studying 
weed biology and physiology is to understand the habitat, life 
cycle, propagation, and proliferation patterns of weeds, while 
applying these to reduce their fitness and colonization in 
agricultural farmlands. Herbicide application and other 
management-based approaches are means to reduce the fitness 
of the weed population in agricultural lands. Long-term objectives 
of weed management would be  to reduce the global weed 
seed banks, effectively controlling the weed populations rather 
than treating the “symptom” of managing weeds as they appear. 
Numerous genetic approaches could be  implemented which 
could be  used to improve weed management in the future 
(Figure  1). These strategies combine genomics and 
biotechnological tools and could be  implemented in either the 
crop or weed species depending on the desired outcome.

Genomics Tools
The increasing level of “omics” data available in weed species 
enables researchers to gain better insights into weedy 
characteristics such as dormancy, invasiveness, and herbicide 
tolerance/susceptibility mechanisms. In the case of glyphosate 
resistance in Ipomoea purpurea, using targeted exome 
re-sequencing, Van Etten et  al. (2020) found no mutations in 
the expected glyphosate target protein of EPSPS, but instead 
found selective sweeps in other genes involved in herbicide 
detoxification which varied by population. Therefore, although 
the physiological mechanism is the same for glyphosate resistance 
in this weed, varied populations of divergent mechanisms for 
herbicide detoxification are present. Understanding the evolved 
herbicide resistance tactics of weeds can provide prospective 
genes and gene networks that could be manipulated in a diverse 
range of crops for alternative herbicide tolerance mechanisms.

Advances in genomics tools and resources for weeds will 
be crucial for the development of various molecular approaches 
for weed management. Cumulative efforts in building genomic 
resources for weeds will form the basis for the development 
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of plant transformation and gene editing protocols for gene 
function studies. It can also help scientists to better understand 
complex traits such as abiotic stresses, and various non-target 
site resistance mechanisms employed by weeds (Ravet et  al., 
2018). However, the development of genomic tools and “omics” 
database for weeds poses several challenges. These include the 
complexities in establishing the understanding of underlying 
biology across the large diversity of weed species and the 
diverse nature of weed-living systems (Martin et  al., 2019; 
Patterson et  al., 2019). Furthermore, unlike reference model 
plant species and other well-studied crop species, obtaining 
the desired genotypes (e.g., highly homogenous lines) for the 
development of genomic reference materials is encumbered by 
the maintenance of large genetic diversity in weeds (Basu et al., 
2004; Stewart et  al., 2009; Vigueira et  al., 2013).

Marker-assisted crop breeding has led to enormous genetic 
gains for numerous traits such as disease resistance and yields, 
and have the potential to be  applied for weed management 
strategies. Researchers can use Genome-Wide Association Studies 
(GWAS) to associate mutations in genetic elements to key 
traits for improved weed management, such as herbicide tolerance 
or those that allow crops to outcompete weeds. This strategy 
has been successfully applied to crop species such as wheat 
(Shi et  al., 2020; Xu et  al., 2020), cotton (Thyssen et  al., 2014, 
2018), sorghum (Adhikari et  al., 2020), and fababean (Abou-
Khater et  al., 2022) for varied natural herbicide tolerance.

Similarly, novel genetic variation can be  induced using 
chemical mutagenesis to create mutant populations, in turn 

producing new allelic variants and/or discovering new modes 
of action for weed control. Implementation of this method 
can be seen where imidazolidinone tolerance in wheat (Newhouse 
et  al., 1992) and chickpea (Croser et  al., 2021) was produced 
using ethyl methanesulfonate (EMS) mutant population. Leucaena 
leucocephala is another example of the implementation of 
chemical mutagenesis for weed management. Normally a pasture 
crop in Northern Australia, Leucaena leucocephala is known 
to be  a rampant weed in other regions. In an attempt to 
combat this weed, a mutagenized population was created to 
develop various sterile alternatives, including cytoplasmic male 
sterile and a triploid variety (Mcmillan et  al., 2019). Although 
EMS mutagenesis can achieve a non-GM outcome in an elite 
crop variety and provide a rapid strategy to market, the effects 
of this approach on agronomic/quality traits will need 
further evaluation.

CRISPR/Cas9
The CRISPR/Cas9 approach has been one of the most used 
technologies for genetic modification of crops and other 
organisms. It is a flexible and versatile option for highly targeted 
modification of genomes, mostly applied to disrupt gene function 
(Zhang et  al., 2018). First, it creates highly targeted Double-
Stranded Breaks (DSB) within the host genome with the 
introduction of two CRISPR components: a guide RNA (gRNA) 
and a CRISPR Associated Nuclease (Cas). The Cas protein 
contains two nuclease domains which each cut one strand of 
the DNA, targeted to the specific location in the genome 

FIGURE 1 | A conceptual framework for innovative weed management. Conventional approaches using chemicals and farm management are often applied 
together and can be improved or integrated with biotechnological approaches for future weed management. Biotechnological weed management can be applied to 
crops or weeds via stable and transient approaches.
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through the small non-coding gRNA. Targeting potential of 
the gRNA limited to regions directly upstream of a Cas-dependent 
Protospacer Adjacent Motif (PAM), which for the most common 
Cas9 from Streptococcus pyogenes is 5′-NGG-3′. Together, these 
components facilitate targeted DSBs, forcing the plant to repair 
the break by Non-Homologous End Joining (NHEJ) or 
Homology-Directed Repair (HDR). The first and most 
predominant in plants, NHEJ, fixes the break by ligating the 
broken ends together, but often does so erroneously. If targeted 
to the coding region of a gene, a frameshift mutation will 
lead to a gene knockout. The randomness of NHEJ repair 
means the outcomes are often viewed synonymously with 
mutagenesis or natural mutation, allowing gene-edited products 
to avoid the regulatory constraints of being classified as 
genetically modified.

The application of CRISPR/Cas9  in crop improvement has 
been extensively reviewed (Chen et  al., 2019; Massel et  al., 
2021). Modified versions of the Cas9 proteins have also resulted 
in newer technologies such as base editing and prime editing 
for precise genome editing (Molla et  al., 2021). The CRISPR/
Cas9 approach is certainly a promising tool that could be utilized 
and adapted for weed management in two ways. The first 
would be  to modify the genomes of the crop to boost its 
performance and outcompete weeds, through mechanisms such 
as increased herbicide tolerance, improved early vigor, or through 
allelopathic means to reduce weed establishment. Alternatively, 
one could implement gene editing strategies to the weed itself 
to alter its development or herbicide tolerance.

The delivery of the CRISPR/Cas9 constructs often requires 
the establishment of efficient transformation systems for many 
of these major weed species. Plant transformation systems are 
expensive to develop, time-consuming, and often genotype-
specific. Developing plant transformation systems for the 
appropriate weeds would be  highly challenging. In addition 
to optimizing plant transformation systems for these weed 
species, the delivery of the CRISPR/Cas9 constructs editing 
targeted genes in specific weed species, and the propagation 
of weed species carrying these constructs will be difficult from 
a regulatory standpoint. Although GM regulation could 
be  avoided if the CRISPR/Cas9 editing components could 
be  segregated out from the transgenic population prior to 
releasing into the wild for propagation, the regulations are 
highly complex and vary globally. Nevertheless, the rapid 
advancement of CRISPR/Cas9 technology could be  useful for 
designing synthetic gene drives that could potentially be  used 
for population and fitness control in weeds.

Gene Drive
Gene drive refers to the process which sequences of DNA 
are biasedly inherited in their favor and circumventing 
Mendelians inheritance, which results in a preferential increase 
of a specific genotype (Burt and Trivers, 2006; National 
Academies of Sciences, Engineering, and Medicine, 2016; 
Alphey et  al., 2020). They are able to spread through 
populations, even when they impose a fitness cost on their 
host (Lindholm et  al., 2016). Gene drives exist in nature 
through a variety of mechanisms, such as meiotic drives, 

transposable elements, and homing endonuclease genes (HEGs). 
HEGs were first suggested as tools that can be  used for 
generating synthetic gene drives (Burt, 2003), and were first 
used in gene-drive systems in strains of Drosophila (Rong 
and Golic, 2003; Chan et al., 2013) or anopheline mosquitoes 
(Windbichler et  al., 2011).

The idea of using gene drives for weed management is not 
new, as it has been discussed in several studies (Neve, 2018; 
Westwood et  al., 2018; Barrett et  al., 2019). Unlike the 
implementation of gene drives in controlling insect populations, 
the utilization of gene drives to control weeds faces significant 
challenges caused by the diversity of weed biology, and technical 
difficulties in developing efficient gene drive that can work 
in plants. Gene drives enable the spread of specific alleles 
only over generations; thus, the utilization of gene drives will 
be  most effective in organisms that can reproduce quickly or 
that are highly dispersed. Unfortunately, not all weed species 
can be  selected for genetic management via gene drive, due 
to different life-history factors. This includes modes of 
reproduction (sexual, asexual, or hermaphrodite), modes of 
crossing (inbreeding or outcrossing), modes of seed/pollen 
dispersal, seed dormancy, and genetic architecture such 
as polyploidy.

An efficient gene drive would require good cutting specificities 
so that the intended genetic change can be accurately inherited 
onto the progeny. The subsequent discovery of targeted genome 
editing tools, such as CRISPR/Cas9, have further improved 
cutting specificities and efficiencies of gene drive systems. 
CRISPR/Cas9-based gene drives have been successfully 
demonstrated in bacteria (Valderrama et al., 2019), yeast (Dicarlo 
et  al., 2015), insects (Gantz and Bier, 2015; Gantz et  al., 2015; 
Hammond et  al., 2016; Kyrou et  al., 2018), mice (Grunwald 
et  al., 2019), and most recently in Arabidopsis (Zhang et  al., 
2021). Furthermore, a successful CRISPR/Cas9-based gene drive 
requires an efficient HDR pathway, instead of the NHEJ pathway 
(Gantz and Bier, 2015). In plants, HDR can be  difficult to 
achieve as NHEJ is predominantly used to repair double-strand 
breaks (Puchta, 2004; Huang and Puchta, 2019). However, it 
has been shown that factors such as the amount of donor 
template, the concentration of Cas9 protein in the cell, and 
the timing of generating double-stranded breaks determine 
HDR efficiency in plants (Čermák et  al., 2015; Gil-Humanes 
et  al., 2017; Miki et  al., 2018; Chen et  al., 2019; Peng et  al., 
2020). The regulatory context will determine how this technology 
is able to be  deployed in different jurisdictions and the extent 
to which societies (and markets) accept the use of gene drives, 
as HDR gene editing is often viewed as a GM outcome and 
subject to strict regulations.

By overcoming the biology and technical challenges of 
developing gene drive systems for weed management, gene 
drives can be  used to (1) suppress the weed population, or 
(2) sensitize the weed population. Suppressing mechanisms 
refer to proliferating the mutation of crucial genes that will 
reduce the fitness of the weed population, thereby reducing 
their capability to compete with crops. The sensitizing approach 
refers to specifically reintroducing the herbicide susceptibility 
back into the resistant weed population.
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Transient Technology
Transient technology allows the user to temporarily manipulate 
the gene expression of the plant without making any stable changes 
to the genomic DNA. This means that outcomes are not subjected 
to strict GM regulations, significantly less development time is 
required, and do not rely on having tissue culture systems in 
place to modify the genome. Further, these systems can often 
be  applied to weeds or crops that are already growing to modify 
traits on-the-spot, rather than requiring a gene drive system to 
spread the desired changes throughout the population.

The utilization of a double-stranded RNA (dsRNA) spray 
packaging has been shown to improve a range of management 
options for diseases and insects across a range of plant species 
(Mitter et  al., 2017). This approach packages a dsRNA capable 
of targeting and downregulating the expression of key genes 
in the host plant involved in disease/pest growth. There is 
enormous potential for a similar approach to be  applied to 
control weeds. One option is to use RNAi to target herbicide-
resistant weeds, reducing the expression of their tolerance 
mechanism so previously developed herbicides will continue 
to work. Alternatively, this system could be  adapted to target 
key genes that are solely found within weed species without 
impacting their expression in crops, whereby reducing the gene 
expression may reduce the competitiveness of the weed (e.g., 
development issues, loss of flowering, and reduced seed set).

Spray-on technologies have been rapidly advancing, where 
systems have been developed for transient expression of genes 
(or RNAi machinery) through packaging into viral vectors. 
Torti et  al. (2021) demonstrated that target genes controlling 
growth and other physiological changes can be  modified via 
the RNAi approach, and this may be applied to weed management. 
It is possible that a spray-on strategy could be used to specifically 
target either the crop or weed species using promoters that 
would only drive expression of genes in either plant. In terms 
of herbicide efficiency, one could imagine a scenario where a 
farmer could boost herbicide tolerance in the crop species 
without creating a stable genetic alteration that would not 
express in the weed species. Similarly, the weeds could 
be  specifically targeted with an RNAi vector to silence key 
endogenous genes which would complement or replace the 
use of herbicides. Furthermore, the genes are non-transmissible 
to the next generation so different herbicide treatments could 
be applied over the years to reduce the emergence of herbicide-
resistant weed populations (Mitter et  al., 2017; Cagliari et  al., 
2019). Transient silencing/overexpression approaches are not 
expected to be  regulated as GM products, thus they could 
be developed and released to potentially complement or replace 
current weed management strategies.

POTENTIAL GENE TARGETS FOR 
REDUCING WEED FITNESS

Regardless of the challenges in implementing molecular 
approaches in weed management, either via genome editing 
approaches, or the dsRNA spray for transient editing, numerous 
prospective genes could be targeted for knockout and knockdown 

in weed species to reduce fitness, or conversely, genes targeted 
in the crop to improve fitness. Much of the challenge for 
spray-on technologies will be to ensure the transient alterations 
to gene expression are solely found in either the weed or crop 
species. As for the utilization of gene drives to release into 
the cropping environment, it will rely heavily on the successful 
creation of transgenic weeds carrying the gene drive, and the 
capability to drive the intended mutation into the weed population 
across several generations.

Cytochrome P450 Family and Herbicide 
Target Genes
There is a wide range of potential gene targets that could 
be targeted by the abovementioned molecular approaches. Genes 
that will lead to various downstream phenotypic effects that 
reduce the plant’s survival and fitness when perturbed are often 
desirable targets for these approaches. For example, to improve 
herbicide efficiencies, one could consider altering genes within 
the cytochrome P450 family. These proteins have been shown 
to be upregulated in response to herbicide application (Pasquer 
et al., 2006; Hirose et al., 2007; Lu et al., 2015), which antagonizes 
the application of other herbicides, such as ACCases and 
acetolactate synthase (ALS) inhibitors (Peterson et  al., 2016). 
Therefore, reducing the expression of P450s could potentially 
make the plant more susceptible to the herbicide, if the 
knockdown/out of this gene was not lethal.

However, although gene members of the cytochrome P450 
family and other gene families (such as glutathione-S-transferases 
and glycosyl-transferases) involved in non-target site resistance 
are obvious targets for genetic manipulation, these gene families 
are often large and diverse (Martin et  al., 2019), which makes 
targeting these genes specifically almost impractical. Thus, 
genetic resources from “omics” studies could also aid in revealing 
conditions and genetic elements that could be  involved in the 
regulatory network of these superfamilies conferring herbicide 
resistance. For example, further understanding of how P450s 
are induced by herbicide application can be useful in designing 
vectors to exploit this mechanism. Hirose et  al. (2007) has 
reported that the promoter of CYP72A21  in rice is activated 
when 2,4-D was applied, leading to increased CYP72A21 
expression. One could consider altering the promoter region 
via gene editing to deactivate or suppress its sensitivity to 
2,4-D application, which may avoid any constraints if a complete 
knockout is lethal. Thus, through targeting genes such as P450s, 
herbicide efficiency could be  boosted by increasing the 
susceptibility in weed species.

Plant Growth Regulator Genes
Two options for improving weed management are to reduce 
the competitiveness of the weed species or to improve the 
early vigor of the crop plant. Therefore, genes that are involved 
in primary functions of growth and development could 
be  targeted for either trait. In terms of reducing weeds’ fitness 
and competitiveness, knockdown of these genes in weeds would 
be particularly useful in increasing their susceptibility to various 
biotic and abiotic stresses. For example, members of the 
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phenylalanine ammonia-lyase (PAL) gene family could be targeted 
in the weed species. These genes are involved in the first step 
of the phenylpropanoid biosynthesis pathway, which leads to 
the synthesis of precursors of various primary and secondary 
metabolites important for growth and responses to various 
biotic and abiotic stresses, such as UV radiation, temperature, 
and pathogen infection (Edwards et al., 1985; Dixon and Paiva, 
1995; Huang et  al., 2010; Vogt, 2010; Kim and Hwang, 2014; 
Feng et  al., 2022). Additionally, molecular components (e.g., 
transcription factors, hormone receptors, and transporters) that 
interact with plant hormones to regulate plant development 
could be  selected as potential targets for reducing weed 
competitiveness. However, developing molecular tools targeting 
these components can be highly challenging due to the complex 
network of interactions between the molecular components and 
plant hormones (Domagalska and Leyser, 2011; Vanstraelen 
and Benková, 2012; Gallavotti, 2013; Schaller et al., 2015; Waldie 
and Leyser, 2018). Provided that challenges on developing 
genomic tools and resources for weeds can be  overcome, the 
testing of gene drive systems and spray-on transient technologies 
targeting plant growth regulator genes in weeds could potentially 
complement many current weed management strategies.

Alternatively, improving early vigor of the crop plant may 
lead to improved growth which in turn, leads to suppression 
of weed growth (De Vida et  al., 2006). Although in some 
instances, researchers have been searching for plants that can 
maintain high yields despite weed competition, this strategy 
further contributes to the ongoing weed seed bank issues. 
Therefore, weed-suppressive strategies and control methods 
employed in IWM are preferred. Additionally, there have been 
a few studies searching for QTLs for weed competitive traits 
in crops (Coleman et  al., 2001; Bharamappanavara et  al., 2020; 
Dimaano et  al., 2020). Although many of these studies have 
not mentioned specific genes from fine mapping, it is likely 
that genes involved in growth and development like maturity 
genes, tillering genes, and leaf development genes will be strong 
candidates for improvement.

Sex Determining and Flowering Time 
Genes
Plants possess diverse sexual systems that include obligate selfing, 
outcrossing, and apomixis. Different sexual systems are determined 
by their underlying genetics of temporal and spatial development 
of reproductive systems, resulting in sexual systems such as 
hermaphroditism, dioecism, monoecism and so on (Bawa and 
Beach, 1981; Charlesworth, 2002). Studies of the genetic basis of 
sex determining genes influencing floral and reproductive organs 
development in the genus Silene (Monéger, 2007; Bernasconi et al., 
2009; Charlesworth, 2013), and the weed species of Amaranthus 
tuberculatus and Amaranthus palmeri (Montgomery et  al., 2019, 
2021), have provided gene targets that could potentially be  tested 
for gene drive development and spray-on transient technology. 
Perturbing sex determining genes, including male-sterility and 
female-sterility factors, could potentially create an imbalance of 
sexes within the weed population, thus potentially causing the 
weed population to collapse. Interestingly, a flowering time gene, 

FLOWERING LOCUS T (FT) homolog is reported to be  in the 
male-specific Y (MSY) region in the dioecious weed species of 
Amaranthus tuberculatus and Amaranthus palmeri (Montgomery 
et  al., 2021), suggesting that perturbing the expression of this FT 
homolog could potentially alter the flowering time and affect fitness.

Flowering time genes have been extensively characterized 
in various plants, and the perturbation of these genes, such 
as CONSTANS (CO) and FT, result in abnormal timing of 
flowering and floral development (Koornneef et  al., 1991; 
Putterill et  al., 1995; Araki et  al., 1998; Kobayashi et  al., 1999; 
Kim et al., 2013). Disrupting the genetic sequence and expression 
of CO and FT homologs in weeds using gene drive and transient 
technology could potentially generate offspring with abnormal 
flowering time and floral development. This could directly affect 
the competitiveness of weeds in farmlands. However, it is 
important to note that the homologs of CO, FT, and their 
counterparts with similar amino acid sequences such as CO-
like and FT-like genes in different plant species can possess 
various levels of functional redundancy (Yano et  al., 2000; 
Izawa et  al., 2002; Hayama and Coupland, 2004; Yoo et  al., 
2004; Hanzawa et  al., 2005; Faure et  al., 2007; Wong et  al., 
2014; Wolabu et  al., 2016). Therefore, in-depth functional 
characterization of these genes in various weeds species would 
be  required to test the feasibility of selecting flowering time 
genes as targets for molecular weed management.

Seed Dormancy
Targeting seed dormancy genes is another obvious choice to 
inhibit seed fitness. In plants, there are varied combinations 
of seed dormancy genes that coordinate the control and longevity 
(Li and Foley, 1997; Nonogaki, 2014; Pipatpongpinyo et  al., 
2020). Oftentimes, these genes include transcription factors 
that induce flavonoid biosynthesis, production and accumulation 
of ABA, and gibberellic acid biosynthesis (Finch-Savage and 
Leubner-Metzger, 2006; Debeaujon et al., 2007). By implementing 
CRISPR/Cas9 targeting seed dormancy genes and incorporating 
into gene drives, it could potentially reduce the capability of 
the seed to germinate in the environment. This would work 
similarly to the “terminator technology” or genetic use restriction 
technology (GURT) to maintain the intellectual property of 
genetically modified materials (Visser et  al., 2001; Lombardo, 
2014). In this technology, there is a genetic switch that once 
released would mean the next generation of seeds are non-viable.

Seed Shattering
Seed shattering is a key weedy trait that differentiates domesticated 
and wild plants (Dong and Wang, 2015). In crops, the retainment 
of inflorescence/pods is a staple of domestication which allows 
farmers to harvest the crops rather than the natural shedding 
of mature grains from the crops. The loss of the seed shattering 
trait would be  important to reduce the spread of weeds across 
agricultural lands. A common mechanism in seed shattering 
in both monocots and dicots is the formation of the abscission 
layer in the inflorescence/pods via cell wall thickening and 
lignification (Harlan and deWet, 1965; Elgersma et  al., 1988; 
Fuller and Allaby, 2009; Seymour et  al., 2013; Dong and 
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Wang, 2015). This mechanism and subsequent physiological 
processes leading to seed shattering are controlled by a complex 
network of plant signaling components involving plant hormones 
(Vivian-Smith and Koltunow, 1999). On the gene level, it has 
been reported that the loss-of-function mutation in the major 
seed shattering gene in sorghum (Sh1) and its ortholog in 
rice was selected for their non-shattering phenotypes (Lin et al., 
2012; Lv et  al., 2018; Li et  al., 2019). Konishi et  al. (2006) 
has reported that the non-shattering trait in domesticated rice 
can be caused by a single nucleotide change in the qSH1 gene. 
As such, CRISPR/Cas9 or base editing could potentially 
be  applied in a variety of weed species to re-create the single 
nucleotide polymorphism (SNP) in the homologous regulatory 
region of the qSH1 gene in rice to emulate loss of shattering.

Root Exudate Profile Modification
Natural phenomenon such as allelopathy may give insight into 
alternative methods for weed control. In these cases, plants are 
in direct chemical-mediated competition with each other, and 
there is a potential to exploit these natural systems to reduce 
weed seed banks. The alteration of the root exudate profiles in 
crops via molecular approaches to boost crop competitiveness 
and decrease weed fitness presents a relatively unexplored area 
of research for weed management. One example where this has 
already been achieved is in the competition of sorghum and the 
parasitic plant Striga hermonthica (Bellis et  al., 2020), which is 
a major concern when growing this staple food throughout Africa 
(Ejeta and Gressel, 2007). Bellis et  al. (2020) used CRISPR/Cas9 
to edit a Striga-susceptible sorghum variety to generate a loss-
of-function mutation in the LOW GERMINATION STIMULANT 
1 (LGS1) gene, which is believed to alter the stereochemistry of 
strigolactones in the root exudates, which in turn affect the fitness 
of the parasitic weed. Similarly, Bari et  al. (2021) demonstrated 
CRISPR/Cas9 editing on the strigolactone biosynthetic gene, More 
Axillary Growth 1 (MAX1), in tomato to confer resistance against 
root parasitic weed Phelipanche aegyptiaca.

Crop allelopathy and other allelopathy applications, such as 
straw mulching, can be  effectively used to control weeds in the 
field (Iqbal et al., 2007; Schulz et al., 2013; Andrew et al., 2015). 
Identified allelochemicals include many plant secondary 
metabolites and plant growth regulators (Cheng and Cheng, 
2015). As such, the molecular approaches discussed in this 
review could potentially be  employed to target biosynthesis and 
regulatory genes of these allelochemical compounds, with the 
possibility to customize crop root exudate profiles that can exert 
negative effects on the growth of neighboring weed species. 
Successful implementation of this approach would be  akin to 
the engineered crop producing its own “herbicide” to control weeds.

CONCLUSION AND FUTURE 
DIRECTIONS

Research efforts in weed science have been mainly focused 
on chemical weed control and herbicide resistance. Due to 
the lack of economic value in studying weeds (aside from 
studying how we  can effectively kill them in farmlands) as 
compared to food and industrial crops, there is a general lack 
of weed genomic resources available, which could potentially 
be tapped for various purposes. The availability of weed genomic 
resources could aid in the further understanding of weeds’ 
resilience and their stress tolerance, their evolution and adaptation 
to various climates, and discovery of potentially untapped useful 
bioproducts. The advancement of biotechnological tools and 
their uses in weed species would directly benefit other 
applications. For example, we could improve our understanding 
of the underlying genetics of weed species and use this knowledge 
to boost weed growth in harsh environments for bioremediation 
purposes in contaminated mining sites.

Although many of the molecular approaches discussed in 
this review possess several technical and regulatory challenges 
of their own, their potential usefulness in weed management 
in reducing or circumventing the use of chemicals in farmlands 
brings many benefits. However, several roadblocks need to 
be addressed. Apart from the investment required for establishing 
transformation systems in weeds, good scientific education for 
the public on the use of these technologies are also required 
for the successful adoption of these technologies in weed 
management. Also, concerns regarding the use and release of 
gene drives into weed population, such as the unintentional 
transmission of genetic materials to closely related non-weed 
species, and the possible outcome of population collapse or 
extinction in weed species and the effect on the ecological 
scale would also need to be  addressed.
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