
Frontiers in Plant Science | www.frontiersin.org 1 April 2022 | Volume 13 | Article 887511

ORIGINAL RESEARCH
published: 26 April 2022

doi: 10.3389/fpls.2022.887511

Edited by: 
Haiyan Cen,  

Zhejiang University, China

Reviewed by: 
Ulhas S. Kadam,  

Gyeongsang National University,  
United States

*Correspondence: 
Dmitry Kurouski  

dkurouski@tamu.edu

Specialty section: 
This article was submitted to  

Technical Advances in Plant Science,  
a section of the journal  

Frontiers in Plant Science

Received: 01 March 2022
Accepted: 05 April 2022
Published: 26 April 2022

Citation:
Farber C and Kurouski D (2022) 

Raman Spectroscopy and Machine 
Learning for Agricultural Applications: 

Chemometric Assessment of 
Spectroscopic Signatures of Plants 
as the Essential Step Toward Digital 

Farming.
Front. Plant Sci. 13:887511.

doi: 10.3389/fpls.2022.887511

Raman Spectroscopy and Machine 
Learning for Agricultural 
Applications: Chemometric 
Assessment of Spectroscopic 
Signatures of Plants as the Essential 
Step Toward Digital Farming
Charles Farber 1 and Dmitry Kurouski 1,2,3*

1 Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States, 2 Department of 
Biomedical Engineering, Texas A&M University, College Station, TX, United States, 3 Department of Molecular and 
Environmental Plant Science, Texas A&M University, College Station, TX, United States

A growing body of evidence suggests that Raman spectroscopy (RS) can be used for 
diagnostics of plant biotic and abiotic stresses. RS can be also utilized for identification 
of plant species and their varieties, as well as assessment of the nutritional content and 
commercial values of seeds. The power of RS in such cases to a large extent depends 
on chemometric analyses of spectra. In this work, we critically discuss three major 
approaches that can be used for advanced analyses of spectroscopic data: summary 
statistics, statistical testing and chemometric classification. On the example of Raman 
spectra collected from roses, we demonstrate the outcomes and the potential of all three 
types of spectral analyses. We anticipate that our findings will help to design the most 
optimal spectral processing and preprocessing that is required to achieved the desired 
results. We also expect that reported collection of results will be useful to all researchers 
who work on spectroscopic analyses of plant specimens.
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INTRODUCTION

Predictive modeling suggests that the world’s population will be  9.8 billion people by the year 
2050. In order to feed the world, we  will need to produce about 70% more food than we  do 
now (Payne and Kurouski, 2021a). This problem does not stand alone: If agricultural land 
expansion continues at its current rate, a 593 mega-hectare area approximately the size of 
India will be committed to agriculture (Searchinger et al., 2019). Such expansion would be fueled 
by the destruction of natural ecosystems around the world. There are many strategies to 
increase food yield without developing more agricultural land. Of these, protecting and improving 
existing crops are among the most important.

Plants constantly interact with the world around them (Fujita et  al., 2006). When conditions 
are ideal, they can commit their energy stores to food production. However, plants can be affected 
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by stresses based on interactions between themselves and other 
living organisms (biotic) or their environment (abiotic). Rapid 
detection, identification, and treatment of both biotic and abiotic 
stresses are key to improving crop yield around the world.

Biotic stresses are organisms that harm plants, including 
agricultural pests and pathogens. These stresses cause tremendous 
losses in many staple crops. Within the five most grown species 
(wheat, rice, maize, potato, and soybean), about 20–30% of 
the crop is lost each year due to pests and pathogens, with 
greater losses observed in regions with existing food security 
issues (Savary et  al., 2019). For example, in the 2018/2019 
growing year, an estimated 497 million metric tons (MMT) 
of rice was produced (Payne and Kurouski, 2021b). Without 
losses from pests and pathogens, between 596.4 and 646.1 
MMT could have been produced. Control of pests and pathogens 
is essential to improving yield without expanding 
agricultural space.

In contrast, abiotic stresses are environmental factors that 
can harm plants. Example stresses include salt, water, temperature, 
nutrient deficiency, and misapplication of herbicides (Henry 
et  al., 2004; Panta et  al., 2014; Waqas et  al., 2017). Abiotic 
stresses are constant issues in agriculture: Altogether, they are 
thought to be associated with 50–70% of all crop losses around 
the world (Dos Reis et  al., 2012). The issues of abiotic stresses 
can be further complicated by their visual symptomatic similarity 
to biotic stresses, which can lead to wasted resources diagnosing 
for a pathogen instead of inadequate environmental conditions. 
Rapid response and treatment of abiotic stresses are critical 
to increase crop yield.

An equally important method for combatting plant stress 
is development of varieties with higher yield and tolerance to 
stresses. Despite great progress in genotyping technology, 
phenotyping has not progressed at the same rate (Forster et al., 
2015). Most traits require that the plant be  germinated and 
tested for a response. While these tests are generally quite 
simple, such as subjecting the plants to elevated salt levels to 
test for salt stress resistance, slow growth rates limit the scalability 
of this technique. A method that could correlate information 
about seeds or seedlings with their valuable traits would 
be  powerful to accelerate plant breeding efforts.

To address these issues in agriculture, modern spectroscopic 
technologies that enable detection and identification biotic 
stresses, abiotic stresses, and plant varieties are required. 
Spectroscopic methods are based on various interactions between 
light and matter, and how these interactions change under 
stress or between varieties. Depending on the method, 
spectroscopy can provide rich chemical information about the 
sample, allowing the experimenter to connect spectral and 
chemical changes in the plant. These methods are typically 
fast but cannot survey entire fields at the rate of the imaging 
methods. Most spectroscopies are noninvasive and 
nondestructive, enabling their use in the field.

Vibrational spectroscopy methods use light to probe the 
vibrations of molecular bonds in the sample. Because each 
molecule has a unique set of bonds, these methods enable 
identification of chemicals in a sample by shining light on 
them alone, suggesting that these methods can be  noninvasive 

and nondestructive. In plant science, vibrational spectroscopy 
can reveal the chemical composition differences between plants 
with different stresses or genetic backgrounds. In this thesis, 
two methods will be  discussed: infrared in this section and 
Raman later. Infrared (IR) spectroscopy uses absorption of 
light in the middle-infrared range (2,500–20,000 nm) to identify 
the molecular bonds present in a sample. The specifics of an 
IR experiment depend on the instrument used, but the 
interpretation of the data remains uniform. For example, in 
a transmission infrared instrument, light is passed through 
the sample to a detector. In this case, light is absorbed as it 
passes through the sample. In an attenuated total reflection 
(ATR) instrument, in contrast, light is shined onto the sample 
surface at a specific angle that allows light absorption at a 
sample–crystal interface. The remaining light then travels to 
the detector. In either case, wavelengths absorbed by the sample 
will not reach the detector as much as those not absorbed. 
These variations in absorption/transmission can be  plotted 
against excitation wavelength to create an infrared spectrum 
(Farber et al., 2019b). The greatest advantage of IR is its ability 
to associate chemical changes with differences between stresses 
or varieties of plants or pathogens. Abu-Aqil and colleagues 
illustrated this in their differentiation of phytopathogenic bacteria 
from two different genera and several strains (Abu-Aqil et  al., 
2020). Bacterial samples were isolated from infected plant 
material, cultured, then sampled using FT-IR following a brief 
drying period. The spectra largely showed the same bands 
across strains and species, but the intensities of the bands 
varied by genotype. Using principal component analysis and 
support vector machines, the team was able to discriminate 
between the different species and strains with high accuracy. 
The team demonstrated the great strength of IR: ability to 
identify the chemical makeup of the sample to further understand 
how the classification algorithms differentiate between the strains 
and genera. This study also identifies one of the limitations 
of IR spectroscopy—water. Water has a large, broad absorption 
band across the 0–1,000 cm−1 region of the spectrum which 
can obscure valuable sample information if not removed 
(Benjamin, 1994). This water issue also limits maximum distance 
between the sample and the IR detector, as water vapor in 
that space may interfere with the spectrum. A spectroscopic 
method insensitive to water and with the potential to generate 
spectra from great distances may be  a useful complement for 
IR spectroscopy.

Raman spectroscopy (RS) is a form of vibrational spectroscopy, 
a family of methods that uses light to probe the vibrations 
of bonds within molecules. Vibrational methods enable the 
identification of molecules present in a sample. With this useful 
property, Raman has been described for use in a wide variety 
of fields, including forensics, polymer chemistry, and geology 
(Lippert et  al., 1993; Sharma et  al., 2003; Westley et  al., 2017). 
Initially described by C.V. Raman and K.S. Krishnan in 1928, 
the Raman effect arises from interactions between matter and 
light (Raman and Krishnan, 1928). Raman spectroscopy is 
based on inelastic light scattering from a sample. Scattering 
causes the light to change directions and potentially energy 
level. Most scattering events are elastic (known as Rayleigh 
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scattering), resulting in no energy change. These photons are 
excluded using optical filters. In an inelastic scattering event, 
photons exchange energy with molecules in the sample. In 
Stokes scattering, the photons lose energy, whereas in anti-
Stokes, they gain energy. The ratio of Stokes/anti-Stokes scattering 
is dependent on the temperature of the analyzed system, but 
Stokes is more common than anti-Stokes at room temperature 
(25°C; Richard-Lacroix and Deckert, 2020). In a typical regular 
Raman experiment, the Stokes scattered light is analyzed rather 
than the anti-Stokes.

Both Stokes and anti-Stokes scattering can be  amplified by 
localized surface plasmon resonances (LSRPs) that are generated 
on the surfaces of noble metal nanostructures upon their 
illumination by light. LSPR-enhanced Raman, also known as 
surface-enhanced Raman scattering (SERS) was first observed 
by Fleishman (Fleischmann et al., 1874) and the later explained 
by Van Duyne (Jeanmaire and Van Duyne, 1977). A growing 
body of evidence shows that SERS can be used to detect fungal 
toxins present at low concentrations in grain. Specifically, Lee 
et al. utilized SERS to quantify afatoxin, a metabolite produced 
by Aspergillus favus, in corn at a concentration range of 
0–1,206 μg/kg (Lee et  al., 2014). Using SERS, Kadam and 
co-workers were able to detect the transgene DNA from multiple 
transgenic lines of Arabidopsis (Kadam et  al., 2017a). The 
authors demonstrated that SERS enabled quantification of the 
transgenes as low as 0.10 pg. without need for PCR amplification. 
The lrudayaraj group also showed that SERS could be  used 
for detection and quantification of alternative splice sites in 
Arabidopsis genes AtDCL2 and AtPTB2 (Kadam et  al., 2014b), 
as well as rare RNA transcripts from protoplasts in this plant 
species (Kadam et al., 2014a, 2017b). These examples demonstrate 
that SERS can be a good alternative to RS if additional sensitivity 
is required for diagnostics of the pathogens.

For this work, we  collected Raman spectra from healthy 
rose plants, as well as plants diagnosed by rose rosette disease 
(diagnosed by PCR). In one of the infected group of plants, 
disease symptoms were visible (symptomatic group), whereas 
in another one symptoms were not visible (asymptomatic group).

MATERIALS AND METHODS

Leaf samples of The Double Knock Out® Roses that were 
grown outdoors in College Station, Ferris, and Van Alstyne, 
TX, and Durant, OK, were collected and analyzed by both 
Raman and PCR testing (Farber et al., 2019a). Growing conditions 
were identical at all locations. Healthy plants were negative 
by PCR. All positive by PCR plants were divided into two 
group: symptomatic and asymptomatic based on the evidence 
of at least several rose rosette present on those plants (Farber 
et  al., 2019a).

PCR Analysis
We have used PCR testing procedures previously described 
by Farber and co-workers (Farber et  al., 2019a). Briefly, plant 
leaves were homogenized in 1X phosphate-buffered saline that 
contained 0.05% Tween-20 (1X PBS-T). After the short incubation 

in 1X PBS-T, the homogenate was removed and the sample 
tube was washed twice with 50 μl 1X PBS-T. Next, the extracted 
RNA was resuspended in water and stabilized with RNase 
inhibitor (#N2511, Promega, Madison, WI). Virus diagnostics 
was performed using a One-Step RT-PCR kit (#210212, Qiagen, 
Valencia, CA) with the following primers: The primary uses 
to confirm the presence of the virus are as follows: RRVF 
(5′-GCACATCCAACACTCTTGCAGC-3′) and RRVR 
(5′-CTTATTTGAAGCTGCTCCTTGATTTCC-3′). PCR products 
were visualized by electrophoresis through 2% agarose gels for 
1 h at 5v/cm in 1X TAE buffer (40 mM Tris, 20 mM Acetate, 
1 mM EDTA, pH 8.6). The sizes of amplified DNA products 
were determined by using 50–2000 bp DNA Markers 
(HyperLadder™ 50 bp, Bioline, Memphis, TN). Expected product 
size is 271 bp. Presence/absence is determined based on bands, 
with faint bands being considered as inconclusive (Farber 
et  al., 2019a).

Raman Spectroscopy
Raman spectra were collected form fresh plant leaves using 
Agilent Resolve spectrometer. Laser power of 495 mW and 1 s 
acquisition time were used. Approximately 2–4 spectra were 
collected form one leaf. Spectra were acquired from leaf areas 
in-between the leaf veins. This approach allows for minimization 
of the spectral divergence caused by histological heterogeneity 
of plant leaves. Spectra were baselined automatically by the 
instrument software and imported into the MATLAB addon 
PLS_Toolbox 8.6.2 for statistical analyses (Farber et al., 2019a). 
We  avoided to perform spectral analysis of leaves that had 
visual damages or yellowness. Typically, such leaves provided 
poor signal to noise spectra. All healthy-looking leaves exhibited 
Raman spectra with excellent signal to noise ratio.

RESULTS AND DISCUSSION

Collection of individual spectra is insufficient to make a conclusion 
about presence or absence of a biotic or an abiotic stress (Payne 
and Kurouski, 2021a). Plant tissues exhibit substantial anatomic 
and histological heterogeneity that will result in spectral variations. 
It is important to exclude the contribution of such heterogeneities 
to the reported spectra. Therefore, several rather than one 
spectrum is typically collected. In this case, statistical analysis 
of the spectra is required. There are three different levels of 
statistical analysis of spectra that will be  discussed in this work: 
summary statistics, statistical testing, and chemometric 
classification. We will demonstrate the outcomes of each of these 
methods and will demonstrate advantages and disadvantages of 
each of these statistical approaches.

Summary Statistics
Summary statistics are numbers that describe the trends of a 
dataset. These include measures of the following: central tendency 
such as the mean or median; dispersion such as the standard 
deviation or variance; shape such as the skew; and dependence 
such as correlation coefficients. For the purposes of Raman 
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spectra, we are most often concerned with the central tendency, 
summarized with the mean, and the dispersion, summarized 
with the standard deviation.

Figure  1 shows examples of mean spectra. Each of the three 
groups contains many spectra but averaging them together 
summarizes the data but may obscure spectral heterogeneity. In 
this case, the healthy group contains 134 spectra, the symptomatic 
group, 114 spectra, and the asymptomatic group, 441 spectra. 
On the right-hand side of the spectra, there appears to be differences 
in the intensities of the 1,610 and 1,720 cm−1 bands across the 
three groups. The mean, of course, does not tell the whole story.

By plotting the standard deviations, we  can now observe 
how much each data group varies (Figure  1). As one might 
expect, the healthy group showed the least variability. Interestingly, 
the asymptomatic group showed the most variability. This 
suggests that the asymptomatic state represents a wide range 
of plants—from those just recently infected (potentially 
resembling healthy spectroscopically) to actively producing 
compounds to fight the infection, indicated by the elevated 
1,610 cm−1 (aromatics) and 1,720 cm−1 (carbonyl) bands.

From these two summary statistics, we can make two general 
assertions: First, we  have an idea of what the typical spectrum 
looks like, based on the mean. Second, we  understand just how 
much our sample of spectra vary compared to the typical spectrum. 
Additionally, the control spectra were more uniform than the 
other groups, while the asymptomatic were the most variable.

There are many potential explanations as to why the spectra 
vary at all. In the context of these rose leaf spectra, it is 
possible that the assigned labels truly represent a wide range 

of conditions. For example, asymptomatic may include plants 
that are toward the beginning or end of the pathogen’s dormancy 
and are responding at different levels. On a general scale, the 
spectra could vary for many acquisition-related factors, such 
as presence of leaf veins or other variations in the leaf surface.

From summary statistics alone, we cannot make any further 
inferences such as: what is the chance to observe a control 
spectrum with intensity X at 1,610 cm−1 if the true mean 
intensity of the control spectra at that position is Y? For this, 
we  need statistical testing.

Statistical Testing
Statistical testing is a process by which a hypothesis about some 
trend in data can be  evaluated. Using a statistical test, we  can 
find the probability that we  observe spectra like those in our 
dataset if our hypothesis is true. Each test starts with some 
hypothesis. For example, we  may be  interested in whether the 
mean intensities of the three groups at the 1,610 and 1,720 cm−1 
bands are the same or not. In this case, the null hypothesis is: 
“The true mean intensities of the 1,610 cm−1 band in each group 
are the same.” We  can summarize this as follows: μHL  = μAS  = μSY, 
where μX is the population mean for group X. To be  able to 
test this hypothesis, we must also outline the possible alternative. 
In this case, that alternative is “The true mean intensities at 
1,610 cm−1 bands in at least two groups are not equal.” If our 
test concludes that there is a significant chance that any of μHL, 
μAS, or μSY are not equal, we  have against the null hypothesis 
and in favor of the alternative. We  would also construct the 
same hypothesis pairs for 1,720 cm−1 but conduct the tests separately.

FIGURE 1 | Rose leaf mean spectra (solid lines) and standard deviations (shaded regions). Left—stacked; right—offset vertically for clarity. HL—Healthy control; 
AS—asymptomatic; SY—symptomatic.
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The test we  will conduct to test our hypothesis is called the 
ANOVA. ANOVA tests the question we set forth in our hypothesis: 
whether the means of the groups are different from each other 
or not. In some ways, this test is like a t-test, which is for 
comparison of two groups. ANOVA can compare many groups 
at once, whereas to compare all groups by t-testing, three separate 
tests are needed: HL v. AS; HL v. SY; and SY v. AS.

To conduct an ANOVA, the sample dataset must first meet 
a set of assumptions: The data must follow a normal distribution; 
the samples must be independent of each other; and the samples 
must have the same variance; and the data must come from 
a random sample. For independence and random sampling, 
based on the experimental design, we assume that the intensity 
of one spectrum does not depend on the intensity of the 
others and that the leaves were sampled randomly from the 
plants. For the other two assumptions, specific tests exist. 
Homogeneity of variance can be  checked using procedures 
such as the Levene’s test (Levene, 1960). Normality can be tested 
with Anderson–Darling test or other methods (Anderson and 
Darling, 1954). From the Levene’s test, we  found that our rose 
data does not meet the assumption of homogeneity of variance 
at either Raman shift. With the Anderson–Darling test, we found 
that only the healthy data at 1,720 cm−1 was normally distributed. 
Based on these results, we  will need to use a different type 
of test.

Nonparametric statistical tests are methods which do not 
require an underlying distribution (i.e., normal distribution) 
to draw inferences from a dataset. The Kruskal–Wallis (KW) 
test is the nonparametric equivalent of the ANOVA (Kruskal 
and Wallis, 1952). The assumptions of the test are very simple: 
Data come from random sampling; the observations are 
independent; and the data can put in order (are ordinal), if 
they are not innately numerical. The rose data meets these 
assumptions, so we  can proceed with the test.

With the nonparametric test, the procedure and outcome 
change slightly. First, instead of evaluating the intensity, 
we  instead investigate the “rank” of the intensity of each 
spectrum. The spectral intensities at the band of interest, 
regardless of group membership, are sorted from smallest to 
largest and assigned a rank based on their position, with 1 
being the smallest observation. Instead of evaluating the sample 
means, the sample median is evaluated instead. Our hypotheses 
change to “The medians of all groups are equal” and “The 
median of at least one group is not equal” for the null and 
alternative hypotheses, respectively. The results of our KW test 
were a Chi-square statistic of 70.08 and value of p  = 6×10−16. 
This small value of p indicates that there is an extremely small 
chance that the medians of these groups are equal given the 
sample data. This suggests that we  have found evidence to 
reject the null hypothesis in favor of the alternative, that at 
least one of the groups has a different median from the others.

By itself, the KW test only indicates that a difference exists. 
It does not tell us which group is ifferent from the others. 
To identify this, a post-hoc test is needed. For the KW, the 
Dunn–Sidak test is considered the most appropriate (Šidák, 
1967). Using this post-hoc test, we  can obtain 95% confidence 
intervals for the mean ranks of the data. For the sake of 
comparison, the results of the ANOVA (though improper to 
conduct in this case) are plotted as well (Figure 2). Interestingly, 
despite failing the assumptions of the ANOVA, the outcomes 
of both tests are the same: All three groups are significantly 
different from each other at 1,610 cm−1.

The choice between ANOVA and alternative tests comes down 
to whether the data can meet the assumptions of ANOVA or 
not. One way to compare these two tests is by evaluating their 
power, or probability that the test rejects the null hypothesis when 
it is false. In their work, Hecke found that for a large, simulated 
dataset, when the ANOVA assumptions were met, the two tests 

FIGURE 2 | 95% Confidence intervals for the true mean intensity (left) or mean rank of intensity (right) for the rose leaf data at the 1,610 cm−1 band. SY - 
symptomatic; HL - healthy control; AS - asymptomatic.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Farber and Kurouski Raman Spectroscopy for Agriculture

Frontiers in Plant Science | www.frontiersin.org 6 April 2022 | Volume 13 | Article 887511

FIGURE 3 | Flowchart of model construction and testing.

had similar powers. However, when the assumption of normally 
distributed data was broken, KW had greater power (Hecke, 2012). 
This does not mean that KW should be  used at all times, even 
when ANOVA assumptions are met. When using the nonparametric 
test such as KW, intensity information is replaced by ranks. While 
the ANOVA can help draw conclusions about the relationships 
between intensities across groups, KW can only provide the order 
of the groups because the analysis is based only on ranks.

From this result, we  can say that the intensity ranks of the 
three treatments are significantly different from each other 
and infer on the biochemical changes that may result in this 
being the case. As shown in this section, statistical testing is 
not without great limitations, particularly if one wishes to use 
a parametric test. Additionally, these tests are limited to evaluating 
at single Raman shifts or specific areas under the curve. Because 
Raman spectra are relatively large (1,651 individual Raman 
shift–intensity pairs in one spectrum of a rose leaf), a method 
which could make use of all these variables would be  ideal. 
Additionally, statistical tests are not appropriate for predicting 
the group membership of data. For these, we  need a different 
approach—classification algorithms.

Classification Algorithms
A classification algorithm (or classifier) is an organized set of 
mathematical steps in which the identities of different groups 
of data are established. These algorithms vary in how this 

membership is established. At the surface level, classifiers can 
be divided in two broad categories: unsupervised and supervised. 
In an unsupervised classification problem, the groupings or 
classes of samples are not known or otherwise not supplied 
to the algorithm. This makes the application of these types 
of models less restrictive, but the results often more difficult 
to interpret. An unsupervised classifier is ideal for exploring 
data where relationships are unknown or for providing an 
initial assessment of relationships in the dataset before further 
analysis. A supervised classification problem is the exact opposite: 
The classes of all samples are provided to the algorithm. In 
a controlled experiment, this is a common scenario. When 
initially building a classifier, the model first requires data of 
known origin (control versus infected, for example). Supervised 
classification is limited by knowledge of the sample, as categories 
can only be established from experimenter knowledge and may 
not capture some underlying trends. Additionally, without 
proper sampling and testing, supervised classifiers can overfit 
the data, providing overly optimistic classification accuracy. 
The process of developing a classification model is summarized 
in Figure  3. The following sections will walk through the 
figure and elaborate on each cell.

Sample Size
For multivariate analyses, the performance of the model will 
typically improve with increasing numbers of spectra in each 
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category (Saccenti and Timmerman, 2016). Additionally, as 
previously described, co-averaging scans together can improve 
the signal-to-noise of each individual scan in the sample. 
However, scanning time greatly limits sample size. We  have 
observed satisfactory performance with approximately 50 scans 
per sample category, but larger samples are better when possible.

Baselining
Baseline correction (or “baselining”) involves removal of 
background signals to improve analysis. It can be  thought of 
as a type of preprocessing step (described in further detail 
below). Some commercial instruments, such as the Agilent 
Resolve instrument used by our group, have built-in baselining 
algorithms. Publicly published algorithms such as automatic 
weighted least-squares and adaptive iteratively reweighted penalized 
least squares (airPLS) have shown great results for baseline 
correction of spectral data (Haaland et  al., 1985; Zhang et  al., 
2010). Baselining can also be done manually in many spectroscopy 
programs (selecting regions of the spectrum that are baseline 
by hand). All methods depend on knowledge of where Raman 
bands are expected to be  to prevent data loss or appearance 
of baseline artifacts as bands. Baselining is important to remove 
background signals that may influence analysis.

Preprocessing
Preprocessing steps are treatments applied to the dataset before 
analysis to ultimately improve classification performance. In 
this section, we  will use a single multivariate classification 
method (PLS-DA) to evaluate a wide variety of preprocessing 
steps. These models will be  built using the default parameters 
described in further detail in the PLS-DA section. For the 
purposes of this analysis, the number of latent variables (LV) 
will be  fixed at 7. Models with 1, 3, or 5 LVs were also tested, 
but these all performed much worse regardless of the 
preprocessing steps uses. To facilitate testing, we  will use 
PLS_Toolbox’s Model Optimizer feature, which allows the user 
to quickly build and compare the results of many different 
models for the same dataset.

For this analysis, we  will evaluate 6 different preprocessing 
steps as well as a handful of their combinations. These steps 
are briefly described in Table  1. This is not an exhaustive 
analysis, but these methods are some of the most commonly 
used (Verboven et al., 2012). Besides finding the best combination 
to maximize the model performance, preprocessing steps can 
help reduce spectral noise, remove acquisition artifacts such 
as cosmic rays, background from fluorescence. Normalization, 
for example, is useful for rescaling the data so that overall 
differences in intensity do not dominate how the model 
differentiates the data. This is helpful for determining what 
bands (and therefore molecules) change between each group 
when classifying the data (Song et  al., 2021).

The results of this analysis and brief descriptions of each 
preprocessing step are presented in Table  2. The performance 
of each model is evaluated using its F1 score, which indicates 
better performance as it approaches positive 1. We  can see, 
for the given dataset and model method (PLS-DA), taking the 

first derivative then mean centering (Analysis 10, bold) resulted 
in the best performance. The difference between the best and 
the worst set of steps was 0.13, between normalization (Max =1)  
and the 1st Derivative + Mean center. We found that 5 methods 
performed worse than using no preprocessing at all—SNV, 
median center, both normalization methods alone, and area 
norm + mean center.

Model Building
Model building varies from method to method but will generally 
involve an initial partition of the dataset into “training” and 
“validation” sets. This partition can be  done algorithmically, 
such as by the Kennard–Stone method, or by simple random 
selection of data to include in one category or the other 
(Kennard and Stone, 1969). A model is initially developed 
using the training dataset, during which the different components 
of the model (varying method by method) can change with 
each correct or incorrect classification. This step is then followed 
by cross-validation, a process by which the training dataset 

TABLE 1 | Description of preprocessing steps tested.

Preprocessing steps Description

None No preprocessing beyond automatic baselining by 
instrument software.

SNV Standard normal variate scaling—find mean intensity in 
each spectrum then subtract from all wavenumbers 
then divide by standard deviation. After scaling, each 
spectrum will have intensities with mean = 0 and 
standard deviation = 1.

Mean Center Find the mean intensity at each wavenumber for the 
entire dataset and subtract from all spectra. Each 
wavenumber will have a mean of 0 after this process.

Median Center Like Mean center but with median instead. Resilient to 
outliers.

Normalize (Area) Scale all spectra so the area under the curve of each is 
1.

Normalize (Max = 1) Scale all spectra so the maximum intensity in each is 1.
Derivative Takes the derivative of each spectrum. Can help reveal 

overlapping bands and act as baseline correction.

TABLE 2 | Performance of all preprocessing combinations tested.

Analysis no. Preprocessing steps
Average F1 score of 

cross-validation

1 None 0.8069
2 SNV 0.7582
3 Mean Center 0.8155
4 Median Center 0.7942
5 Normalize (Area) 0.7699
6 Normalize (Max = 1) 0.7593
7 1st Derivative 0.8699
8 SNV, Mean Center 0.8069
9 Norm (Area), Mean Center 0.7804
10 1st Der, Mean Center 0.8878
11 1st Der, Median Center 0.8536
12 2nd Der, Mean Center 0.8669
13 Area norm, 1st Der 0.8405

Bold, Best combination; Italics, combination used in “Applied Examples” section.
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split into smaller training and validation sets to find which 
version of the model has the best performance. Many cross-
validation methods exist, exhibiting different performance levels 
depending on the model type (Arlot and Celisse, 2010). Following 
cross-validation, the model is complete and can be  applied to 
the validation data to determine how the model will perform 
with never-before-seen data.

Model Evaluation
The performance of a classifying model is typically evaluated 
by its sensitivity and specificity (Loong, 2003). The sensitivity 
is the ability of the model to correctly assign data to its known 
group versus the wrong group. Specificity is the ability of the 
model to correctly exclude data from groups it is known not 
belong in versus assigning it to those groups. These values 
are also known as the true positive rate (TPR) and true negative 
rate (TNR), respectively. Accuracy can summarize the 
performance of a model for a given group:

 
Accuracy TPR TNR

TPR TNR FPR FNR
TPR TNR

=
+

+ + +
=

+
2

where the FPR and FNR are the false positive and negative 
rates, respectively. The FPR reflects the proportion of samples 
from a different group assigned to the group in question, 
while the FNR is the proportion of samples from the group 
in question incorrectly assigned to a different group. In the 
previous Preprocessing section, the performance of the model 
was summarized using the F1 score, which for a given group 
is defined as:

 
F TPR

TPR FPR FNR
1 2

2
=

+ +

For the Applied Examples section, models will be  evaluated 
based on their accuracy for each group. In part 2, they will 
be  evaluated based on the true positive rate instead.

Many other metrics for evaluating models exist. For example, 
when a model is binary, or contains only two groups, it can 
be evaluated using the Matthews Correlation Coefficient (MCC), 
a value that ranges from 1, where all data are assigned correctly, 
to −1, where all data are assigned to the wrong category. The 
MCC is defined as:

 
MCC TP TN FP FN

TP FP TP FN TN FP TN FN
=

´ - ´

+( ) +( ) +( ) +( )

Chicco and colleagues found that the MCC consistently 
provided the most reliable interpretation of the model compared 
to either accuracy or MCC (Chicco and Jurman, 2020). This 
measure is typically limited to binary models but multiclass 
extensions have been described (Gorodkin, 2004).

These evaluation parameters exist for the calibration, cross-
validation, and validation of a model, but either cross-validation 
or (ideally) validation are reported. If the model performs to 
the experimenter’s expectations, it can be  retained and applied 

to new data. Otherwise, the preprocessing and model method 
selection should be  revisited to find a model/preprocessing 
combination with higher classification performance.

Applied Examples—The Rose Data
This section will describe several types of classification algorithms 
typically employed with Raman spectral data, then provide 
examples of their application using the rose dataset described 
previously. The details of the algorithms are cited with the 
respective algorithms. All spectra were preprocessed using area 
normalization and mean centering. For models that have a 
validation step, cross-validation accuracy with the “most probable” 
class assignment threshold are reported here. The accuracies 
of these models per class are summarized in Table  3.

Clustering—Ward’s Method
Clustering is a category of unsupervised classification methods 
in which data are assembled into groups based on their “distance” 
from each other. Data typically start in their own clusters 
which are then linked together by determining which clusters 
are the closest to each other. This process is repeated until 
all data are united in one large cluster containing many smaller 
clusters. In Ward’s method, clusters are formed by determining 
which new clusters would result in the lowest within-cluster 
variance (Ward, 1963).

We used clustering by Ward’s method to analyze the entire 
example rose dataset. As indicated by the overall cluster 
dendrogram (Figure  4), no class-specific trends are captured 
by the clustering. This is further confirmed by evaluating the 
spectra of different proposed clusters. Whether using two or 
three clusters (Figure 5), the spectral differences across groups 
are primarily associated with variations in intensity. Additionally, 
the lack of variation at the 1,720 cm−1 provides further evidence 
that the observed clusters may not be  related with the known 
categories in the data. These cluster results indicate that the 
spectra cluster with each other based on their intensities, rather 
than their known categories.

However, when clustering only the asymptomatic data, an 
interesting trend is revealed: One cluster has a stronger 1720 cm−1 
band than the other (Figure  6). This suggests that the 
asymptomatic class may represent different stages of infection: 
Those having weaker 1,720 cm−1 bands perhaps may be  earlier 
in infection, while those plants with increased intensity at 
1,720 cm−1 may have more advanced infections. For the purposes 
of the subsequent analyses, these two groups will be maintained 
as a single category as they were when originally analyzed 
(Farber et al., 2019a). Clustering helped to identify an interesting 
trend in the data that the original label did not capture. The 
main advantage of clustering is to quickly identify trends in 
datasets that are not immediately apparent, particularly when 
group membership is unknown.

Support Vector Machine Classification
Support vector machines (SVM) are a family of classification 
algorithms initially designed for binary classification. In brief, 
they function by finding the hyperplane (roughly, a line in 
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multidimensional space) that separates the categories the best. 
This hyperplane is selected to maximize its distance from the 
datapoints in each category to improve its ability to predict 

never-before-seen data. This hyperplane also has a “soft margin,” 
which allows samples to appear near, but on the incorrect 
side of, the hyperplane without greatly influencing the results. 

TABLE 3 | Performance of all classification models tested on the rose data.

Analysis 
no.

Method Settings
Accuracy

SY HL (Control) AS Avg

1 Cluster – Ward’s Method n/a n/a n/a n/a
2 SVM-C Cost = 100; Gamma = 3.1623 0.908275 0.860005 0.91939 0.89589
3 SVM-C Cost = 5e10; Gamma = 3.1263e-4 0.911805 0.86669 0.924645 0.901047
4 KNN k = 3 0.75646 0.6522 0.765585 0.724748
5 KNN k = 5 0.77699 0.67549 0.76551 0.73933
6 KNN k = 12 0.763625 0.70393 0.728525 0.732027
7 KNN k = 3 0.708195 0.663415 0.730175 0.700595
8 KNN k = 4 0.701885 0.68899 0.743955 0.71161
9 KNN k = 10 0.688575 0.72838 0.77635 0.731102

10 SIMCA AS, HL, SY 0.68253 0.52277 0.696485 0.633928
11 SIMCA AS, SY, HL 0.680005 0.50373 0.696485 0.62674
12 SIMCA SY, HL, AS 0.57649 0.50373 0.676385 0.585535
13 SIMCA SY, AS, HL 0.57649 0.676385 0.50373 0.585535
14 SIMCA HL, AS, SY 0.68253 0.755105 0.6579 0.698512
15 SIMCA HL, SY, AS 0.76012 0.755105 0.676385 0.730537
16 SIMCA Classification Rule – Combined 0.690965 0.70838 0.66145 0.686932
17 SIMCA Classification Rule – T2 0.596759 0.663845 0.61075 0.623785
18 SIMCA Classification Rule – Q 0.765035 0.763725 0.666705 0.731822
19 SIMCA q = 0.9; t = 0.95 0.78141 0.764245 0.68164 0.742432
20 SIMCA q = 0.85; t = 0.95 0.76857 0.752155 0.687765 0.736163
21 SIMCA q = 0.8; t = 0.95 0.777235 0.74689 0.690818 0.738314
22 SIMCA q = 0.95; t = 0.9 0.769445 0.76398 0.683415 0.738947
23 SIMCA q = 0.95; t = 0.85 0.687031 0.73645 0.69922 0.707567
24 SIMCA q = 0.95; t = 0.8 0.75961 0.73774 0.707165 0.734838
25 PLS-DA SIMPLS, no orth, no prior, no weights; 95% confidence 0.859395 0.814955 0.7449 0.806417
26 PLS-DA model 25 with NIPALs 0.86028 0.816885 0.75628 0.811148
27 PLS-DA model 25 with DSPLS 0.86028 0.816885 0.75628 0.811148
28 PLS-DA RobustPLS 0.75 0.82432 0.739675 0.759945 0.774647
29 PLS-DA RobustPLS 0.75 0.805645 0.75721 0.749905 0.77092
30 PLS-DA model 25 with hist weights 0.863935 0.828595 0.80203 0.83152
31 PLS-DA NIPALS hist 0.82287 0.793585 0.78549 0.800648
32 PLS-DA DSPLS hist 0.82287 0.793585 0.78549 0.800648

A B

FIGURE 4 | Example clustering dendrogram at full size (A) or zoomed in to reveal the details of individual clusters (B). HL—healthy control; AS—asymptomatic; 
SY—symptomatic.
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Extensions of SVM enable the algorithm to handle classification 
of more than two categories (Noble, 2006).

We conducted support vector machine classification (SVM-C) 
using LIBSVM implemented in PLS_Toolbox (Chang and Lin, 

A B

C D

FIGURE 5 | Example cluster dendrograms and spectra for 2 (A,B) or 3 (C,D) clusters.

A B

FIGURE 6 | Clustering on the asymptomatic (AS) class only. Spectral averages (A) and zoom of the 1720 cm−1 region with individual spectra (B).
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2011). SVM-C requires initial optimization of two parameters: 
C (cost), a value associated with the soft margin, and gamma, 
associated with the shape of the hyperplane. In PLS_Toolbox, 
the model is initially provided with 9 cost and gamma values 
to iterate through which can be  customized by the user. To 
facilitate rapid parameter optimization, we reduced the number 
of cross-validation iterations to make the model building process 
faster. After each iteration of SVM-C in PLS_Toolbox, a 
misclassification fraction plot (Figure 7A) is generated, illustrating 
the misclassification percent from each gamma-cost pair. The 
X on the plot indicates the gamma-cost pair used in the final 
model. The plot can be  used to determine whether the final 
gamma-cost pair was the most optimal. Ideally, the X should 
be  toward the middle of the plot, rather than on an edge. 
We increased the maximum cost value tested to shift the plotted 
region to the right of the initial region, but the model failed 
to build due to hardware limitations when excessively large 
cost values were used. The final optimized model misclassification 
plot indicates further optimization is possible, but such 
optimization would require better computational resources 
(Figure  7B). The final model showed slight accuracy increases 
for all three classes compared to the initial model (Table  4).

k-Nearest Neighbors
k-nearest neighbors (KNN) classification is a method in 
which class assignment is determined by the class label of 
the k nearest neighbor points in space (Kramer, 2013). The 
model is initially trained to develop a set of patterns to 
compare new samples to. After training, new samples are 
compared to their nearest k neighbors to determine class 
membership (Laaksonen and Oja, 1996). For example, if 
k  = 3, then datapoint X is assigned to a class based on the 
three nearest neighbors to it. This method can also be  used 
for clustering and regression.

We used the KNN classifier implemented in PLS_Toolbox 
to conduct KNN classification. One user-defined parameter, 
k, can be  optimized to improve model performance. We  used 
the default value of k = 3 to obtain the k versus cross-validation 
(CV) error plot (Figure  8A). This plot shows how the error 
rate of CV changes with the number of neighbors selected. 
We  then selected two additional k values to test: 5 and 12. 
5 was selected because it shows local minima in all three 
curves, while 12 is near the minimum for HL, which has the 
largest error of the three groups. From Table  4, k  = 5 is an 
improvement over 3, but 12 demonstrates tradeoffs in accuracy—
while SY and AS accuracy goes down, HL accuracy increases 
(as previously indicated by Figure  8A). Despite these changes 
in accuracy, changing the k value does not dramatically alter 
the overall model accuracy.

k-nearest neighbors classification can suffer when one class 
contains many more samples than the others. In the current 
dataset, the SY class is twice as large as the other two classes 

A B

FIGURE 7 | Misclassification fraction plots for the initial (A) and final (B) support vector machine classification (SVM-C) models. X - The gamma/cost pair reported 
in the final model.

TABLE 4 | Performance of the best classification model of each type on the 
Rose data.

Analysis 
no.

Method

Accuracy

SY
HL 

(Control)
AS Avg

3 SVM-C 0.911805 0.86669 0.924645 0.901047
30 PLS-DA 0.863935 0.828595 0.80203 0.83152
19 SIMCA 0.78141 0.764245 0.68164 0.742432
9 KNN 0.688575 0.72838 0.77635 0.731102
P-A PLS-DA 0.913235 0.913235 0.913235 0.913235
P-B PLS-DA n/a 0.92172 0.92217 0.921945
P-aggregate 0.91759

P-A and B—Previous models A and B originally described in Farber et al. (2019a). 
P-aggregate—averaged accuracy of P-A and P-B averages.
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put together. To attempt to combat any effects this might have 
on the classification, we  reduced the SY class to 120 samples 
using the Kennard–Stone algorithm (Kennard and Stone, 1969). 
Using the even dataset, We  built a new KNN model using 
k  = 3 to obtain the k versus CV error plot (Figure  8B). Based 
on the plot, we  decided to build models using k  = 4 and 10, 
where local minima in error were observed. These models 
showed slight improvement for classification of the HL and 
AS but had markedly worse performance in classifying the 
SY category (Table  4).

Soft Independent Modeling of Class Analogy
Soft independent modeling of class analogy (SIMCA) is a 
classification method built on principal component analysis 
(PCA; Wold and Sjöström, 1977). PCA is a method in which 
the most important parts of the data are identified and retained 
to compress and simplify the dataset. These important parts 
of the data are called principal components (PCs; Abdi and 
Williams, 2010) In SIMCA, a PCA model is built for each 
class (or combination of classes) to identify the PCs. These 
PCs are then used in the SIMCA classification.

We attempted to optimize a SIMCA model for the rose 
data. PCA and SIMCA analyses were conducted using the 
methods as implemented in PLS_Toolbox. The first step in 
building the SIMCA model is to assemble the initial PCA 
models for each class. For this example, the number of 
PCs in each model was selected that approximately 90% of 
the variance was explained. This was 4, 5 and 5 PCs for 
AS, HL, and SY, respectively. After assembling the three 
PCA models, we then built the SIMCA model. For all SIMCA 
models, both the Hotelling T2 value and Q residuals were 
used in the decision rule for classification. The confidence 
limits for both values were set at 95%. We  found that the 
performance of the model varied dramatically with the order 
that the three classes were modeled. The model assembled 

using the order HL, SY, AS showed the best overall 
performance of the SIMCA models, but no model 
performed exceptionally.

Using the HL, SY, and AS order, we  further optimized the 
SIMCA model. First, the type of decision rule was tested. 
Decision rules are how a model determines which data belongs 
in a class. For SIMCA in PLS_Toolbox, the decision rule 
determines which values are used as distance measures. Options 
include: Hotelling T2 values, Q residual values, both T2 and 
Q (both), or a combined measure derived from T2 and Q 
(combined). The initial model used both values, so the other 
three options were tested. We  found that both and Q only 
performed similarly, while the combined and T2 options 
performed worse. Next, using “both” as the decision rule, 
we  varied the confidence limit for T2 and Q from their initial 
values of 0.95 to find the optimal combination. We  found that 
reducing the Q value to 90% while leaving T at 95% slightly 
improved the model (Table  4).

Partial Least Squares Discriminant Analysis
Partial least squares discriminant analysis (PLS-DA) is a 
frequently used classification method for spectroscopic data 
(Shashilov and Lednev, 2010). It combines linear discriminant 
analysis (LDA) with the multicollinearity tolerance of partial 
least squares. LDA is a robust method that works by maximizing 
the ratio of between-class variance to within-class variance 
to guarantee maximum separation between groups (Izenman, 
2008). It is normally limited by datasets with high 
multicollinearity, or those where many explanatory variables 
have linear relationships with each other. Raman data often 
highly multicollinear—the intensities of Raman shifts near 
each other (1,525 and 1,527 cm−1, for example) tend to have 
linear relationships. PLS-DA works well with multicollinear 
data, making it well-suited for Raman data analysis (Lee 
et  al., 2018).

A B

FIGURE 8 | Cross-validation error versus k plots for the full (A) and even (B) datasets.
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We reanalyzed this rose dataset using PLS-DA. While it 
has been previously analyzed using this method, in this case, 
we  will maintain three separate groups instead of combining 
groups to improve accuracy (Farber et  al., 2019a). In PLS_
Toolbox, the user-defined parameters for PLS-DA include: which 
PLS algorithm to use; whether the model is orthogonalized 
or not; and sample weighting. We  calibrated the initial model 
using the default parameters for PLS-DA: SIMPLS algorithm, 
no orthogonalization, and no weights. We  found that SIMPLS 
with weighted classes performed the best, though the difference 
was not large. While orthogonalization is generally an 
improvement over regular PLS-DA, it does not impact the 
overall accuracy of the model (Bylesjö et  al., 2006).

One of the major outcomes of PLS-DA is the loadings plot, 
which indicates which parts of the data were the most important 
for the prediction (Eriksson et  al., 2013). Each latent variable 
(LV, analogous to a principal component) of the model has its 
own loadings plot (Figure  9). The greater the absolute distance 
of a point from the zero-line, the more important that position 
was for the prediction. For example, in Figure  9, the band 
near 1,525 cm−1 was important in both LVs 1 and 2, but the 
region around 1,350 cm−1 was more important for LV 2 than 
LV 1. Because the loadings plots are basically a type of Raman 
spectra, they can be  used to determine what spectral regions 
might change from class to class.

CONCLUSION

The results of the best models from each method tested 
(excluding clustering) are summarized in Table  4. With the 
preprocessing steps selected, SVM-C was able to achieve 90% 
classification accuracy across the three classes. However, every 
modelling method, sample set, and preprocessing step set 
are different. Different sets of preprocessing steps may have 

improved the performance of the other modeling methods. 
Alternative approaches to applying the data may also improve 
the outcome.

For example, in the publication for which the rose data 
were generated, a pair of PLS-DA models was used for the 
overall classification (P-A and P-B in Table 4). The first model 
(SA) discriminated between HL + AS and SY, while the second 
(HA) separated HL and AS. Each step also employed different 
preprocessing steps to maximize the accuracy of classification. 
These two models together performed similarly to the single 
SVM-C model (though the SVM was limited by available 
hardware). Ultimately, we found that without combining groups, 
SVM-C was the best method to classify these data. SVM-C 
should not be  regarded as the best method for everything, 
however. Instead, many different methods should be  tested 
before finally deciding which to use. We also suggest performing 
cross-validation of models to avoid the overfitting. The alternative 
approach is data partitioning into training and validation sets, 
where the training set is used for model development and the 
validation set is used for external validation (Payne et  al., 
2021). From the perspective of disease sensing, the presented 
results describe a simple scenario of rose rosette diagnostics 
that did not take into consideration other factors, such as 
geographical location of plants, plant variety abiotic stresses 
that plants could face. We  infer that consideration of these 
factors is required to develop Raman spectroscopy into robust 
and reliable sensing approach. Finally, the authors want to 
note that all raw data for the reported above analyses can 
be  available upon request.
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FIGURE 9 | Loadings plot for the first two latent variables (LVs) of the best 
performing PLS-DA model.
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