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As a crucial element for plants, calcium (Ca) is involved in photosynthesis and

nutrient absorption, and affects the growth of plants. Poplar is an important

economic forest and shelter forest species in China. However, the optimum calcium

concentration for its growth is still unclear. Herein, we investigated the growth,

biomass, photosynthetic pigments, photosynthetic parameters and products, chlorophyll

fluorescence parameters, water use efficiency (iWUE), and antioxidant enzyme activity of

“Liao Hu NO.1” poplar (P. simonii × P. euphratica) seedlings at 0, 2.5, 5, 10, and 20

mmol·L−1 concentrations of Ca2+, and further studied the absorption, distribution, and

utilization of nutrient elements (C, N, P, K, and Ca) in plants. We found that with increasing

calcium gradient, plant height and diameter; root, stem, leaf, and total biomasses;

net photosynthetic rate (Pn); stomatal conductance (Gs); intercellular carbon dioxide

(Ci) level; transpiration rate (Tr); Fv/Fm ratio; Fv/F0 ratio; chlorophyll-a; chlorophyll-b;

soluble sugar and starch content; superoxide dismutase (SOD), catalase (CAT), and

peroxidase (POD) levels; and long-term water use efficiency (iWUE) of poplar seedlings

first increased and then decreased. These parameters attained maximum values when

the calcium concentration was 5 mmol·L−1, which was significantly different from the

other treatments (P < 0.05). Moreover, a suitable Ca2+ level promoted the absorption

of C, N, P, K, and Ca by various organs of poplar seedlings. The absorption of C, N,

P, and K increased first and then decreased with the increased calcium concentration,

but the optimum calcium concentrations for the absorption of different elements by

different organs were different, and the calcium concentration in leaves, stems, and roots

increased gradually. Furthermore, the increase in exogenous calcium content led to a

decreasing trend in the C/N ratio in different organs of poplar seedlings. C/P and N/P

ratios showed different results in different parts, and only the N/P ratio in leaves showed a

significant positive correlation with Ca2+ concentration. In conclusion, the results of this

study indicate that 5 mmol·L−1 concentration of Ca2+ is the optimal level, as it increased

growth by enhancing photosynthesis, stress resistance, and nutrient absorption.
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INTRODUCTION

Among all the nutrients required for plant growth and
development, calcium is an essential element. On the one
hand, calcium plays an important role in various physiological
functions of plants, such as regulating plant growth and
development as a ubiquitous second messenger and responding
to various biological and abiotic stresses (Hochmal et al., 2015;
Kudla et al., 2018). On the other hand, calcium is an important
component of the cell wall and membranes, thus helping in
maintaining the normal structure and function of cells and
reducing or delaying damage to the cell membrane (Hocking
et al., 2016). At the same time, calcium regulates the mitosis of
plant cells by controlling the spatial and temporal distribution of
calcium ions or their receptors (calmodulin), which is positively
correlated with the consumption of organic carbon (Hepler,
1994; Zhang and Liu, 2021). Calcium also affects the ability of
plants to absorb other elements, and there are antagonistic and
synergistic effects between other elements (Jackson, 1967; Arif
et al., 2016). Over the past several decades, despite the rich
content of calcium in the soil, people have not paid attention
to it. In recent years, with the deepening of calcium research,
new physiological functions of calcium have been recognized,
and research on the role of calcium in plant growth has attracted
increasing attention.When plants encountered Ca deficiency, the
chlorophyll fluorescence parameters of tomato, Fm and Fv/Fm,
dropped below the control level, and superoxide dismutase
activity was also reduced (Schmitz-Eiberger et al., 2002). Calcium
deficiency depressed plant growth in peach, damaged cell
membranes, and impaired chlorophyll and chlorophyll precursor
biosynthesis (Aras et al., 2021). However, excessive absorption
of calcium ions can induce the closure of leaf stomata, thereby
reducing photosynthesis and resulting in slow growth (Blatt,
2000). In addition, excessive free Ca2+ in the cytoplasm can
precipitate PO3−

4 ions, interfere with physiological processes

related to phosphorus metabolism, inhibit respiration, and affect
plant growth by hindering normal signal transduction (Hirschi,

2004). Studies have shown that the absorption and utilization

of magnesium in tea plants are hindered by excessive calcium
treatment, and the utilization efficiency of light energy in leaves
is reduced, thus affecting the growth of new shoots and inhibiting
the growth of roots in tea plants (Wang et al., 2010; Liang
et al., 2021b). In addition, in a high-calcium environment, the
metabolism of photosynthetic pigment of golden flower tea is
disturbed, and the synthesis of chlorophyll is inhibited, which
leads to a decrease in the light capture ability and photosynthetic
activity of leaves and a decrease in photosynthetic capacity, thus
eventually inhibiting plant growth (Chai et al., 2021). Meanwhile,
with the increase in the calcium supply level, the content
of nitrogen, phosphorus, potassium, zinc, and manganese in
tobacco plants increased first and then decreased, while the
content of calcium increased gradually (Jie et al., 2005; Chang
et al., 2020). Studies have shown that both Ca deficiency and
excessive Ca inhibit N absorption and utilization, and the adverse
effects of Ca deficiency on seedling growth and N metabolism
are greater than those associated with excessive Ca2+ supply
(Xing et al., 2021). An appropriate calcium content could

significantly promote nutrient absorption and accumulation
under salt stress conditions and improve the distribution ratio
of nitrogen, phosphorus, and potassium in mature pods of
peanut (Shi et al., 2018). Although there is a correlation
between calcium and plant photosynthetic characteristics and
the absorption of other nutrient elements, calcium deficiency
and calcium overload affect plant photosynthetic characteristics
and the absorption of other nutrient elements, thus inhibiting
plant growth. However, it is not clear whether excessive calcium
inhibits the growth of shelterbelt tree species by affecting
the photosynthetic characteristics and the absorption of other
nutrient elements.

Poplar has the fastest growth rate among all the trees
inhabiting temperate climates. Poplar’s physiological traits are
wide adaptability, strong survivability, and high biomass yield,
and poplar can absorb excess carbon (Cândea-Crăciun et al.,
2019; Henner et al., 2020). Poplar has been planted as a short
rotation coppice and as an economic forest and ecological
shelterbelt in large Chinese areas for wind speed reduction, sand
fixation, and soil and water conservation (Zhou et al., 2013; Yan
et al., 2017; Ahmed et al., 2020). However, due to the one-sided
pursuit of economic value in early planting and the lack of proper
planning, many problems occurred in these large-scale poplar
plantations, such as top bud death, premature tree decay and
death, soil and ecosystem degradation, and so on (Zhou et al.,
2020). In recent years, the development of science and society
has led to global warming, reduced soil moisture content, and
resulted in other problems, which have further accelerated the
decline of poplar plantations, resulting in the overall reduction in
their resistance to stress, a reduction in protection efficiency, and
thus the phenomenon of the absence of forest networks (Dhillon
et al., 2017; Feng et al., 2018). At present, studies on poplar
plantation restoration and nutrient absorption mainly focus on
N addition (Jiang et al., 2021), mitigation of drought stress (Li
et al., 2021), and root pruning (Jing et al., 2018), and less focus
is placed on calcium. Therefore, it is necessary to explore the
effect of calcium on nutrient absorption in poplar plants and
promote nutrient absorption, utilization, and transformation in
poplar plantations to improve stress resistance and productivity.

To meet the needs of a growing world for socioeconomic
development and environmental protection, it is necessary
to study the effects of calcium on the growth, physiological
characteristics, and absorption of elements by various organs
of poplar plants. The test material “Liao Hu NO.1” poplar is
a hybrid of natural pollination “P. simonii × P. euphratica” in
the F1 generation. It has the characteristics of fast growth, salt-
alkali tolerance, easy reproduction, and cold resistance (Wang
and Peng, 2015). A greenhouse incubation experiment was
carried out with treatments including five calcium concentration
gradients (0, 2.5, 5, 10, and 20 mmol·L−1). The objectives of this
study were as follows: (1) to determine the optimum calcium
concentration for poplar seedling growth; (2) to investigate
mineral element resorption and utilization by the organs of
poplar seedlings in the presence of five concentrations of calcium;
and (3) to determine the C, N, and P concentrations and
ecological stoichiometry of the different organs under different
calcium levels.
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MATERIALS AND METHODS

Cultivation of Poplar Seedlings
This experiment was carried out in the greenhouse of Shenyang
Agricultural University from April 2019 to July 2019. The
experimental materials were seedlings of the annual poplar
P. simonii × P. euphratica, which is a fast-growing, salt-
tolerant species called “Liao Hu NO.1” poplar in China. Six
poplar seedlings were planted into one pot with dimensions
of 32 cm length × 18 cm width × 14 cm height. After the
poplar seedlings were planted, 7 L of DI water was added to
each pot. We ensured that the conditions were uniform in all
the pots. After 20 days of recovery, the lateral bud of each
poplar seedling was treated, so that only one lateral bud was
selected for each seedling at the same position and treated
with calcium.

Experimental Design
The nutrient solution was formulated with deionized water
according to Xie (2014). The pH of the solution was maintained
at 5–6 by adding NaOH. In this culture solution, five different
concentrations of Ca2+ (0, 2.5, 5, 10, and 20 mmol·L−1)
were added and labeled as Ca0, Ca1, Ca2, Ca3, and Ca4,
respectively (Paiva et al., 1998). Calcium was provided by
anhydrous CaCl2, and other compounds that provided a large
number of elements were KNO3, MgSO4·7H2O, KH2PO4,
NaNO3, EATA-Na2, and FeSO4·7H2O. Trace elements were
provided by H3BO3, MnCl2·4H2O, CuSO4·5H2O, ZnSO4·7H2O,
and H2MoO4·H2O. After the seedlings were stable, the nutrient
solution was poured every 5 days before the growth boom
and once every 3 days during the growth period. During the
growth of seedlings, each treatment was equipped with an
air pump, which was continuously ventilated from 7:00 to
19:00 h and ventilated 1 h for every 2 h after 19:00 h. Other
management measures were carried out in accordance with the
routine procedures.

Determination of the Growth Index of
Poplar Seedlings
Growth of Poplar Seedlings
The heights and basal diameters of the seedlings were measured
in July 2019 before destructive harvesting. The basal stem
was measured with a Vernier caliper, accurate to 0.01mm,
and the plant height was measured with a ruler, accurate
to 0.10 cm.

Biomass of Poplar Seedlings
During the harvest of seedlings, three non-destructive poplar
seedlings were selected for each treatment in July 2019. The
whole plant was removed from the planting pot. After washing,
the whole plant was separated into roots, stems, and leaves with
pruning shears and placed in an envelope for marking. These
envelopes were then placed in an oven at 105◦C for 30min and
dried to obtain a constant weight at 65◦C. The dry weights of
the roots, stems, leaves, and total plant biomass were determined
using an analytical balance.

Determination of Photosynthetic
Characteristics of Poplar Seedlings
Photosynthetic Pigments
The photosynthetic pigments were extracted and determined by
the ethanol method. The absorbance was measured at 665 nm
and 649 nm after extraction with 95% ethanol for 48 h, and the
chlorophyll-a and chlorophyll-b contents were measured. The
following equations were used for calculations (Chen and Li,
2016):

Ca= 13.95A665–6.88A649
Cb= 24.96A649–7.32A665
where Ca and Cb are chlorophyll-a and chlorophyll-b,

respectively, and A665 and A649 represent the absorbance
values of photosynthetic pigment extracts at 665 and
649 nm, respectively.

Photosynthetic Parameters
Photosynthetic parameters were measured by using a
photosynthetic instrument. During the peak growth of poplar
seedlings (July 2019), sunny weather was chosen in the morning,
three plants for each process were selected randomly, and the
third functional or fully expanded leaf from the top of the plants
was labeled with a red thread to investigate gas exchange. The
gas exchange was measured using a Li-6400 photosynthesis
system (Li-Cor Inc., Lincoln, USA) during 9:00–11:00 a.m.
The photosynthetic photon flux (PPF) and CO2 concentration
were maintained at 1,000 µmol·m−2·S−1 and 400 mol·mol−1,
respectively. The net photosynthesis rate (Pn), stomatal
conductance (Gs), transpiration rate (Tr), and intercellular CO2

concentration (Ci) were automatically recorded (Zhao et al.,
2013; Fang et al., 2018).

Photosynthate
Soluble sugar concentrations were determined using the
anthrone colorimetric method (Zhao, 2002). About 0.5 g of
sample was placed in a centrifuge tube, and 10ml of 80% ethanol
was added. Next, the mixture was incubated at 95◦C in a shaking
water bath for 10min and then centrifuged at 5,000 rpm for
10min. The supernatants were collected, combined, and stored
for later use. The extraction process was performed three times
to ensure complete extraction of all the sugar content. Next,
5ml of anthrone reagent was added to 0.2ml of soluble sugar
extraction liquid and placed in a water bath at 100◦C for 10min.
The absorbance at 620 nm was measured to calculate the soluble
sugar concentration according to the standard curve of glucose
(Xie et al., 2018). Starch concentrations were determined using
the perchlorate method (Wang et al., 1993). A total of 3ml of
H2Owas added to the above sediment, and it was then placed in a
100◦C water bath for 15min. After cooling to room temperature,
a total of 2ml of 9.2 mol·L−1and 4.6 mol·L−1 of HClO4 and
H2O were added to the above sediment. It was centrifuged at
4,000 rpm for 10min. The supernatant was added to achieve a
50ml constant volume for measuring the absorbance at 620 nm
using the anthrone method. Then, the starch concentration was
calculated according to the standard curve for glucose. Soluble
sugar and starch concentrations were calculated on the basis of
dry mass (Chen and Li, 2016).
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Chlorophyll Fluorescence
The chlorophyll fluorescence parameters were determined in July
2019 at dusk. The OJIP curve for the leaves of poplar seedlings
was prepared by using a portable, rapid chlorophyll fluorescence
analyzer after leaf clamping and darkening treatment for 20 min.

Determination of the Stress Tolerance of
Poplar Seedlings
Water Use Efficiency
The iWUE value calculated from δ13C was used to characterize
the water use efficiency of plants. The leaves were first crushed
using a plant leaf drying crusher and then using a ball mill,
and finally passed through a 100-mesh sieve. After complete
drying, the sample weighed approximately 0.7mg and was tightly
wrapped in a tin boat. Then, δ13C was measured by a stable
isotope mass spectrometer (DELTA V Advantage Isotope Ratio
Mass Spectrometer), and the iWUE value was calculated using
the following formula (Song et al., 2015; Ren et al., 2020):

iWUE = A/Gs = (Ca− Ci)/1.6

= Ca (1− Ci/Ca)/1.6

= Ca (b− 113C)/1.6(b− a)

where A represents the net photosynthetic rate, Gs stands for
stomatal conductance, and Ca and Ci are CO2 pressure values
in the atmosphere and leaf cells, respectively. A and b represent
the partial effects of CO2 diffusion into stomata and the partial
effect of stomatal photosynthetic carboxylase RUBP on carbon
isotopes, respectively.

Antioxidant Enzymes
For the determination of antioxidant enzymes, 0.4 g of samples
was taken from fresh leaves, stored in a frozen pipe, fixed with
liquid nitrogen, and stored in a refrigerator at −80◦C. At the
time of measurement, samples were taken according to the
mark and put into a mortar. Then 5ml of precooled phosphate
buffer was added, the sample was ground, the homogenate was
centrifuged at 13,000 rpm at 4◦C for 15min, and the supernatant
was placed into a centrifuge tube for reserve (three repeats for
each sample). Peroxidase (POD) level was determined by the
guaiacol method. Catalase (CAT) level was determined based
on ultraviolet absorption by hydrogen peroxide. Superoxide
dismutase (SOD) level was determined by methionine (Perveen
et al., 2020).

Nutrient Elements in Each Organ
The total carbon and nitrogen contents were measured using a
stable isotope mass spectrometer (DELTA V Advantage Isotope
Ratio Mass Spectrometer). To measure total P content, samples
were first digested with nitric acid and hydrogen peroxide, and
then the extracted solutions were analyzed using an ultraviolet
photometer (Shang et al., 2018; Zhang et al., 2018). The
concentrations of potassium and calcium were measured using
a flame atomic absorption spectrophotometer (Jing et al., 2018).

Statistical Analysis
Excel and SPSS 22.0 software programs were used for sorting
and drawing, statistical analysis, differential analysis, correlation
analysis, and principal component analysis. All experiments were
conducted with three replicates, and the results are expressed
as the mean ± standard error (SE) values. The different letters
in the chart indicate that the differences in each index between
different calcium treatments reached the significance level
of 5%.

RESULTS

Growth of Poplar Seedlings
In general, the indicators of growth and biomass showed an
increasing trend initially and then decreased with increasing
calcium concentrations (Figures 1, 2; Table 1). With the
increasing gradient of calcium, the best value for all indicators
was observed in the treatment with 5 mmol·L−1 of calcium,
and there were significant differences with other treatments
except for root biomass (P < 0.05). The maximum plant
height and diameter increased by 17.94 and 25.91%, respectively,
compared to plants with no calcium treatment (Figure 2).
When Ca2+ concentration was 5 mmol·L−1, the root biomass,
stem biomass, leaf biomass, and total biomass increased by
15.41, 24.21, 13.05, and 17.31%, respectively, compared to
the plants with no calcium treatment (Table 1). However,
when excess calcium was applied, there was no significant
increase in the biomass of poplar seedlings compared to no
calcium treatment.

Photosynthetic Characteristics of Poplar
Seedlings
In general, the indicators of photosynthetic characteristics first
showed an increasing trend and then a decreasing trend
with increasing calcium concentration (Figure 3). With the
increasing gradient of calcium addition, the best value for
all photosynthetic indicators occurred in the treatments with
5 mmol·L−1 calcium, and there were significant differences
with other treatments (P < 0.05). The Pn, Gs, Ci, and Tr
levels increased by a maximum of 149.94, 191.67, 23.14, and
86.14%, respectively, compared to those in the absence of
calcium treatment. A similar increasing trend was also observed
for the indicators of chlorophyll-a, chlorophyll-b, leaf soluble
sugar, and leaf starch levels, which increased by 45.54, 45.80,
29.00, and 33.31%, respectively. However, when excess calcium
was applied, the photosynthetic capacity of poplar seedlings
was weakened.

Chlorophyll Fluorescence Parameters of
Poplar Seedlings
In general, the chlorophyll fluorescence parameters showed
an increasing trend in the beginning and then decreased
with increasing calcium concentration (Figure 4). With the
increasing gradient of calcium addition, the best values for
Fv/Fm and Fv/F0 ratios occurred in the treatments with 5
mmol·L−1 calcium, and there were significant differences with
other treatments (P < 0.05). The ratios increased by 2.57
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FIGURE 1 | Growth of poplar seedlings exposed to different calcium concentrations.

FIGURE 2 | Growth of poplar seedlings in different treatments. Each column represented the mean ± SE values, n = 3; different capital letters indicate significant

differences between treatments of calcium addition (P < 0.05).

and 16.01%, respectively, compared to no calcium treatment.
However, when the calcium concentration was 20 mmol·L−1,
the values of all the chlorophyll fluorescence parameters
were lower than those obtained without calcium treatment
(P < 0.05).

Stress Tolerance of Poplar Seedlings
In general, the indicators of antioxidant enzyme activities and
iWUE showed an increasing trend in the beginning and then
decreased with increasing calcium concentration (Figure 5).
With the increasing gradient of calcium addition, the best values
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TABLE 1 | Biomass of poplar seedlings in different treatments.

Calcium gradient (mmol·L−1) Root biomass (g) Stem biomass (g) Leaf biomass (g) Biomass (g)

0 8.50 ± 0.124B 9.13 ± 0.239BC 10.96 ± 0.146B 28.59 ± 0.079C

2.5 9.40 ± 0.147A 10.04 ± 0.100B 10.83 ± 0.052B 30.27 ± 0.167B

5 9.81 ± 0.091A 11.34 ± 0.164A 12.39 ± 0.037A 33.54 ± 0.231A

10 8.06 ± 0.015BC 9.32 ± 0.106BC 11.08 ± 0.008B 28.60 ± 0.104C

20 7.66 ± 0.040C 8.71 ± 0.154C 8.78 ± 0.104C 25.15 ± 0.288D

Each column and table show the mean ± SE value, n = 3. Different capital letters indicate a significant difference between treatments of calcium addition (P < 0.05).

for SOD, CAT, POD, and iWUE occurred in the treatments with
5 mmol·L−1 calcium, and there were significant differences with
other treatments (P < 0.05). The parameters increased by 15.57,
84.19, 124.30, and 14.28%, respectively, when compared to no
calcium treatment. However, when the calcium concentration
was 20 mmol·L−1, the antioxidant enzyme activities and iWUE
were lower than those obtained without calcium treatment.

C, N, P, K, and Ca Absorption and
Distribution of Poplar Seedlings
The results showed that endogenous concentrations of C, N,
P, and K in the leaves, stems, roots, and the whole plant are
influenced by different Ca supply levels and showed an increasing
trend initially and then decreased (Figures 6A,B,D,E,G,H,J,K).
The 5 mmol·L−1 calcium treatment resulted in the highest
endogenous concentrations of C, N, P, and K, followed by 2.5
mmol·L−1 and 10 mmol·L−1 calcium treatments (except for
the best P content of leaves and stems was observed with the
2.5 mmol·L−1 and 10 mmol·L−1 concentrations). There were
significant differences in the concentrations of all other nutrient
elements in all other organs with different calcium treatments,
except for the N content of roots (P < 0.05). A different trend
was observed for the Ca concentration in plant organs; the
Ca accumulation rate in each tissue increased gradually with
an increase in the doses of Ca ions (Figures 6M,N). Without
Ca supply, the Ca concentration was significantly lower. The
10 mmol·L−1 and 20 mmol·L−1 Ca treatments led to a higher
accumulation of Ca in the leaves, stems, and whole plant, and
there are significant differences with other treatments except for
roots (P < 0.05).

The percentage of nutrient elements in each organ in all the
tissues reflects the distribution of nutrient elements in the trees
and the regularity of the migration of nutrient elements in these
tissues (Xing et al., 2021). The results showed that C, N, K, and Ca
in the 5 mmol·L−1 Ca treatment group were mainly distributed
in the leaves (Figures 6C,F,L,O), but P was mainly distributed in
the roots (Figure 6I). With the increase in the concentration of
Ca, the P, K, and Ca distribution rates of leaves first showed a
decreasing trend and then an increasing trend, and roots showed
an adverse trend. The N distribution rate of leaves first showed an
increasing trend and then a decreasing trend, and roots showed
a decreasing trend first and then an increasing trend, while there
was no significant change in the distribution rate of Ca in leaves,
stems, or roots. It is evident that an appropriate Ca supply could
promote the distribution of N to the leaf system and P and K

distribution to the root system, but since Ca is known to have
a low transference capacity in plants, the Ca distribution rate
was not significantly different between the different treatments,
except for the 0 mmol·L−1 treatment.

C:N:P Stoichiometry of Poplar Seedlings
The overall analysis results showed that (Figure 7) there
was no correlation between the concentration of exogenous
calcium and C/N, C/P, and N/P ratios of poplar roots or
between the concentration of exogenous calcium and the
C/P ratio of poplar leaves (P > 0.05). However, exogenous
calcium concentration had a significant negative correlation
with C/N (P < 0.05) and a significant positive correlation
with N/P (P < 0.05) ratio in the leaves of poplar seedlings,
and there was a significant negative correlation between
exogenous calcium concentration and the C/N, C/P, and
N/P ratios in stems (P < 0.05). With increasing exogenous
calcium concentration, C/P in leaves gradually increased,
while C/P in leaves and C/N, C/P, and N/P ratios in stems
gradually decreased.

DISCUSSION

Effect of Ca Supply Level on the Growth,
Photosynthesis, and Stress Tolerance of
Poplar Seedlings
Calcium is an essential nutrient for plant growth. Exogenous
calcium can regulate the expression of plant growth genes,
maintain cell function, promote plant growth and development,
and improve plant tolerance to the environment (Naeem et al.,
2017; Pathak et al., 2020). Previous studies showed that adding
calcium fertilizer could significantly increase the biomass of
Chinese cabbage, and when the calcium concentration was 600
mg·kg−1, the biomass of Chinese cabbage was the highest (Liu
et al., 2009). For Zoysia japonica, an increase in the above-
and below-ground fresh biomass was observed for all CaCl2
pretreatment groups, and the greatest increase was observed for
the 10 mmol·L−1 CaCl2 pretreatment group (Xu et al., 2013).
Foliar Ca2+ markedly improved maize growth, photosynthesis,
stomatal conductance, transpiration rate, and accumulation of
total soluble sugars (Naeem et al., 2018) and also improved
the quality of sweet cherries (Correia et al., 2019). The foliar
application of Ca2+ to sugar beet enhanced the plant biomass
(Hosseini et al., 2019), and calcium fertilizer promoted the
growth of poplar roots (Petrochenko et al., 2019). When plants
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FIGURE 3 | Photosynthetic characteristics of poplar seedlings in different treatments. Each column shows the mean ± SE value, n = 3. Different capital letters

indicate significant differences between treatments of calcium addition (P < 0.05).
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FIGURE 4 | Chlorophyll fluorescence parameters of poplar seedlings in different treatments. Fv/Fm ratio indicates the maximum photochemical efficiency, and Fv/F0

ratio indicates the potential photochemical efficiency. Each column represents the mean ± SE value, n = 3; different capital letters indicate significant differences

between treatments with different concentrations of calcium (P < 0.05).

are deficient in Ca, the cell wall cannot be formed, because the
cell division and formation are affected. Lysine degradation is
affected, leading to the accumulation of pipecolic acid at the
onset of this metabolic pathway and resulting in a decrease in
the accumulation of plant biomass and the possible development
of physiological diseases (Cinčerová, 1976; De Freitas et al.,
2016). However, excessive Ca not only results in cellular toxicity
and destroys normal biochemical metabolism, nutrient element
metabolism, and other processes in plants, but also has an
impact on plant morphology and alterations in the internal
structure, such as overly rigid cell walls (Tyler and Olsson,
2009; Conn et al., 2011; Cybulska et al., 2011). For example,
Ca deficiency or Ca overload in tomato plants reduces leaf size
and plant biomass (Hao and Papadopoulos, 2004). The present
study also showed similar results. When exogenous calcium
was applied to poplar seedlings, the biomass of each organ and
the total biomass of poplar seedlings first increased and then
decreased, reaching a maximumwhen the calcium gradient was 5
mmol·L−1. Therefore, the amount of calcium can influence plant
growth and biomass accumulation. The application of exogenous
calcium led to distinct changes in the levels of nutrients in leaves,
such as Mg, N, P, etc., which further led to an increase in the
photosynthetic pigment and photosynthetic product levels and
eventually enhanced plant growth and biomass.

Photosynthesis is the process by which green plants absorb
light energy, assimilate carbon dioxide and water, make raw
and processed materials, and release oxygen (Okafor and
Okeke, 2017). It is the basis for dry matter accumulation
in plants. Photosynthesis is affected by interactions with
various environmental factors, such as light, temperature,
water, and minerals (Ke, 2001; Feller and Vaseva, 2014;
Rubenovna and Ramazanovich, 2018). Chlorophyll is an

important photosynthetic pigment that absorbs and transforms
light energy (Kumara et al., 2021). Its content is closely
related to thephotosynthetic capacity of plants (Mohsenpour and
Willoughby, 2013). Chlorophyll fluorescence kinetics can be used
to monitor multiple photosynthetic reactions and reflect the
success of plants. Changes in chlorophyll fluorescence are closely
related to the absorption, transfer, dissipation, and distribution of
light energy. By measuring changes in chlorophyll fluorescence
parameters, the adaptability of plants to stressful environments
can be well identified (Peng et al., 2021; Zheng et al., 2021). When
Fv/Fm ratio is less than 0.8, it indicates that plants are under
stress and their growth and development are severely inhibited.
Calcium is involved in the process of electron transport and
phosphorylation in plant photosynthesis, which directly affects
the plant photosynthetic mechanism (Ferguson and Drobak,
1988). Several studies have established an essential role of Ca
in maintaining photosynthesis by modulating gas exchange in
leaves, PSII processes, carbohydrate metabolism, and expression
of chlorophyll synthesis-related genes (Zhang et al., 2019). For
example, the stress related to calcium deficiency reduces the
chlorophyll content of lettuce (Fan and Yin, 2002), and the net
photosynthetic rate, stomatal conductance, and other parameters
of potato plants showed a downward trend (Xin, 2008). An
appropriate amount of exogenous calcium enhanced the net
photosynthetic rate, stomatal conductance, intercellular CO2

concentration, maximum quantum efficiency of photosystem
II photochemistry, actual photochemical efficiency of PSII,
photochemical quenching coefficient, and non-photochemical
quenching coefficient (He et al., 2018). When the calcium
concentration was more, the plant height, biomass, net
photosynthetic rate, and chlorophyll content of tomato plants
decreased significantly (Zhou et al., 2012). Additionally, a
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FIGURE 5 | Effect of calcium on stress tolerance of poplar seedlings. POD, peroxidase; CAT, catalase; SOD, superoxide dismutase; iWUE, long-term water use

efficiency. Each column represented the mean ± SE values, n = 3; different capital letters indicate significant differences between treatments of calcium addition (P <

0.05).

transient increase in Ca causes short-term stomatal closure;
therefore, a high Ca concentration does not seem to be
directly related to transpiration (Xing et al., 2021). In addition,
other studies have found that calcium can affect leaf bud
differentiation. When the calcium concentration was 0, the
number of differentiated buds decreased, and the greatest
number was achieved at 2MS, but growth was inhibited at
4MS, at which concentration the number of green leaves
was moderate (Li and Liu, 2007). In our study, we found
that the photosynthetic characteristics of poplar seedlings were
significantly affected by the addition of calcium, and the
chlorophyll content, photosynthetic parameters, and chlorophyll

fluorescence parameters increased first and then decreased
with increasing calcium concentration. This is similar to
previous research results. Therefore, calcium at an optimal
level is critical for plant growth. It can affect the gas
exchange process related to photosynthesis by regulating
stomatal movement (Wang et al., 2019). Moreover, a proper
amount of calcium ions may improve the integrity and
stability of chloroplast structure, and enhance the activities of
Rubisco and PEP carboxylase enzymes, thus improving the
carboxylation efficiency of carbon dioxide and the activity of
ATPase on the membrane and thereby the photosynthetic level
of plants.
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FIGURE 6 | Effect of calcium on nutrient element absorption and distribution of poplar seedlings. Each column shows the mean ± SE value, n = 3. Different capital

letters indicated significant differences between treatments of calcium addition (P < 0.05).
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FIGURE 7 | Effect of calcium on C/N, C/P, and N/P ratios of poplar seedlings.

The parameters like POD, CAT, SOD, and iWUE were
measured to identify the resistance capacity of the plant to stress
conditions. iWUE reflects the energy conversion efficiency in
plant production, is an index used to measure the relationship
between crop yield and water consumption, and is also one of the
comprehensive indices used to evaluate plant growth suitability
under water deficit. In current forest ecology, the water use
efficiency (iWUE) of trees is very important in the study of
water resources and for the restoration of forest vegetation (Xi
et al., 2018). The antioxidant enzyme system can scavenge free
radicals in the cell and protect the cell membrane system from
damage. Some of the antioxidant enzymes often found in plants
are POD, SOD, and CAT (Guo et al., 2018). Previous studies
on Allium sativum and Pinus massoniana seedlings showed the
effects of elevated calcium concentration on the expression levels
of POD, SOD, and CAT. In Allium sativum, these antioxidant
enzymes first increased and then decreased. In contrast, in Pinus
massoniana needles, these antioxidant enzymes first decreased
and then increased at different growth stages (Li et al., 2013; Li
and Zhou, 2017). In addition, under some stress factors, such
as cadmium stress, suitable exogenous calcium can improve the
activities of SOD, POD, and CAT in plant seedlings (Siddiqui
et al., 2012), and optimal Ca supplementation upregulated the
activities of the assayed antioxidant enzymes and the contents
of non-enzymatic antioxidants (ascorbate, glutathione, and
tocopherol), thereby reflecting the amelioration of NaCl-induced
oxidative damage (Elkelish et al., 2019). Calcium is closely related
to plant water use efficiency; for example, a suitable concentration

of calcium fertilizer can increase iWUE, fresh yield, and fruit

quality of tomato (Hong-Bo et al., 2008; Yang et al., 2012).
The results showed that the iWUE and antioxidant enzyme

activity of poplar seedlings first showed an increasing trend and
then a decreasing trend, and reached maximum values when
the calcium concentration was approximately 5 mmol·L−1. At
this concentration, the stress resistance of poplar seedlings was
the best.

In conclusion, for poplar seedlings, when the concentration of

exogenous calciumwas 5mmol·L−1, the photosynthetic capacity,
stress resistance, and growth effect were maximum.

Effect of Ca Supply Level on the Nutrient
Absorption, Distribution, and Utilization,
and Stoichiometry of Poplar Seedlings
Nutrient elements play an important role in plant growth
and development by affecting plant physiological processes,
such as stomatal conductance, photosynthetic rate, and water
use efficiency, which can directly or indirectly affect plant
growth (Ma, 2017). In higher plants, interactions between
nutrients occur when the supply of one nutrient affects
the absorption, distribution, or function of another nutrient.
Interactions between nutrients can be assessed by examining
both the relationship between nutrient supply and growth
and the relationship between nutrient concentrations in plants
and growth (Robson and Pitman, 1983; Sevanto et al., 2020).
Currently, a large number of studies on the C, N, and P ecological
stoichiometry changes in plants focus on global changes, such
as elevated ozone levels (Shang et al., 2018), plant management
strategies (Heyburn et al., 2017; Chen and Chen, 2021), N
deposition (Huang et al., 2018), elevated CO2 concentrations (Du
et al., 2018), and their interactions. However, few studies have
been conducted that determined the effect of calcium on C, N,
and P ecological stoichiometry, and most studies that evaluated
the effect of calcium on plant growth are mainly focused on
cash crops, such as pepper (Capsicum annuum) (Akladious and
Mohamed, 2018), rice (Liang et al., 2021a), and tomato (Guo
et al., 2018). Therefore, it is of great significance to explore the
relationship between nutrient stoichiometry characteristics and
the growth of poplar seedlings to reveal suitable vigor theory and
select growth evaluation indices.

This study showed that N, P, K, and C levels in each
organ of poplar seedlings first increased and then decreased
with increasing application of exogenous calcium content, and
their maximum levels were reached when the concentration of
exogenous calcium was 5 mmol·L−1. In contrast, calcium levels
in each organ of poplar seedlings increased continuously with
increasing exogenous calcium content. These results are similar
to those of previous studies. For example, the addition of calcium
sulfate to nutrient solution significantly increased leaf K+, Ca2+,
and N levels in tomatoes (Tuna et al., 2007). Also, exogenous
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Ca2+ was shown to promote the absorption of K+ in poplar
roots after prolonged exposure to salinity and to retain K+/ Na+

homeostasis in roots (Sun et al., 2009). Another study showed
that foliar application of Ca2+ improved the photosynthetic
capacity of leaves, thus increasing the accumulation of C in
plants and enhancing dry matter production (Song et al., 2020).
After calcium treatment, the content of calcium and phosphorus
increased significantly (Niu et al., 2018). The reasons for these
findings may be as follows: An appropriate amount of Ca2+ can
maintain the integrity of the plant cell membrane and ensure
the selective permeability of the cell membrane, and when the
concentration of Ca2+ is appropriate, it can exhibit a synergistic
effect with other ions (such as N) to promote the absorption
of other nutrient elements. In addition, with the increase in
exogenous calcium content, the proportion of C in roots, stems,
and leaves did not change, while the proportion of N in leaves
first increased and then decreased, and the proportion of other
elements, such as P, K, and Ca, in leaves first decreased and
then increased.

In this study, the calcium content of poplar was found to be
positively correlated with the N/P ratio in leaves and negatively
correlated with the N/P ratio in stems. However, N/P < 14
indicates that plant growth in this study was mainly restricted by
N content. At the same time, the C/N ratio in the leaves and stems
of poplar and the C/P ratio in stems are significantly negatively
correlated with exogenous calcium content, indicating that leaves
need more N and stems need more N and P to fix C under the
conditions of calcium deficiency and that the NUE and PUE were
low. No correlation was found between exogenous calcium or
C/P in leaves and stoichiometry in roots.

CONCLUSION

Spatial heterogeneity of calcium affects the growth of poplar
seedlings in different regions. There is an optimal calcium
gradient that is most suitable for the growth of poplar
seedlings. The effects of calcium gradient were determined by
examining photosynthetic characteristics, water use efficiency,
and antioxidant enzyme activity, and the results showed that 5

mmol·L−1 calcium concentration is the most suitable condition
for the growth of poplar seedlings. Different nutrient elements

have different absorption centers. Exogenous calcium could
promote the absorption of nutrient elements and regulate the
transfer of nutrients between organs in plants. This could
change the stoichiometric characteristics of poplar seedlings;
for example, the N/P ratio in leaves of poplar seedlings could
be increased, thus improving photosynthesis and dry matter
accumulation of poplar seedlings, enhancing stress resistance,
and promoting growth. Once the calcium concentration was
over 10 mmol·L−1, the physiological indices of the poplar
seedlings were significantly reduced, showing that adverse
effects of calcium stress occurred due to excessive amounts
of exogenous calcium. Therefore, there is an optimal calcium
concentration for the growth of poplar seedlings. The results
of this study provide a theoretical basis for the later studies on
poplar plantations.
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