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Individual movements of the insect vector pine sawyer beetles were incorporated into

an individual-based model (IBM) to elucidate the dispersal of pine wilt disease (PWD)

and demonstrate the effects of control practices. The model results were compared

with the spatial data of infested pine trees in the Gijang-gun area of Busan, Republic

of Korea. Step functions with long- and middle-distance movements of individual

beetles effectively established symptomatic and asymptomatic trees for the dispersal

of PWD. Pair correlations and pairwise distances were suitable for evaluating PWD

dispersal between model results and field data at short and long scales, respectively.

The accordance between model and field data was observed in infestation rates at 0.08

and 0.09 and asymptomatic rates at 0.16–0.17 for disease dispersal. Eradication radii

longer than 20m would effectively control PWD dispersal for symptomatic transmission

and 20–40m for asymptomatic transmission. However, the longer eradication radii were

more effective at controlling PWD. Therefore, to maximize control effects, a longer radius

of at least 40m is recommended for clear-cutting eradication. The IBM of individual

movement patterns provided practical information on interlinking the levels of individuals

and populations and could contribute to the monitoring and management of forest pests

where individual movement is important for population dispersal.

Keywords: forest pests, dispersal model, forest management, dispersal of invasive species, asymptomatic rate,

control of pine wilt disease dispersal

INTRODUCTION

Populations cause critical damage to forests because of the vulnerability of spatially contagious
vegetation to disease occurrence (Bruce and Ruth, 2009). For example, pine wilt disease (PWD),
caused by the pinewood nematode Bursaphelenchus xylophilus, is a key pest of pine trees in East Asia
and Europe. PWD is vectored by the Japanese pine sawyerMonochamus alternatus (Mamiya, 1988;
Togashi, 1988), and the spread of the disease is complex, such as association among nematodes,
vectors, and host plants.

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.886867
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.886867&domain=pdf&date_stamp=2022-05-23
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:parkys@khu.ac.kr
mailto:tschon.chon@gmail.com
https://doi.org/10.3389/fpls.2022.886867
https://www.frontiersin.org/articles/10.3389/fpls.2022.886867/full


Xia et al. Simulating Pine Wilt Disease Dispersal

Modeling with PWD was initiated in conjunction with
biological invasion processes, such as emergence, survival,
dispersal, reproduction, and disease transmission (Togashi and
Magira, 1981; Togashi and Shigesada, 2006). The development
of the mechanistic models for PWD has two tracks. In one
track, mathematical structure models were used to address
overall disease transmission controlled by key parameters.
Deterministic population dynamics models have been originally
devised to investigate the range expansion of infected trees of
PWD (Yoshimura et al., 1999a; Takasu et al., 2000). Recently,
mathematical structure models have been extensively conducted
for PWD, regarding global transmission dynamics, system
stability and sensitivity, and optimal control strategies (e.g., Lee
and Kim, 2013; Lee, 2014; Khan et al., 2018, 2020, 2021).

The second track involves the construction of spatially
explicit models to present spatial heterogeneity with local rules
(e.g., individual behavior) for expressing the complex dispersal
processes of PWD. Two types of spatially explicit models have
been developed: lattice models and individual-based models
(IBMs). Regarding lattice models, Lee et al. (2007) proposed
a simulation model for PWD and the pine needle gall midge
based on cellular automata to illustrate the expansion of the
infested area during population dispersal under field conditions.
Considering the influence of infested neighborhoods and short-
and long-distance movements, Nguyen et al. (2017) developed
a lattice model to address the role of the asymptomatic carrier
in the spread of PWD. In addition, IBMs have been developed
to simulate PWD dispersal and are generally more flexible
in expressing behaviors at the individual level owing to the
incorporation of local rules and their link to the population
level. In the present study, we incorporated a new individual
movement pattern into an IBM. This study is a continuation
of the work reported by Takasu (2009) in which a theoretical
distribution pattern of movement was used in an IBM.

Although individual variation is an important factor in
an IBM (DeAngelis and Gross, 1992; Grimm and Railsback,
2005), specific individual movement patterns, per se, have
not been extensively incorporated into the model. Breckling
et al. (1997) devised an object-oriented modeling strategy to
depict the activity patterns of organisms in heterogeneous
environments. Strategic forager movements (e.g., hungry and
satiated exploration) were simulated in an IBM to generate
home range areas responding to the distribution of food
densities (South, 1999). Watkins and Rose (2017) linked
strategic movement patterns (e.g., restricted-area search and
kinesis) to an IBM to demonstrate individual fitness (i.e.,
egg production in prey-predator dynamics). Heinz et al.
(2007) incorporated individual movement patterns (e.g.,
correlated, spiral, and loop-like movements) specifically
into IBMs to characterize generic dispersal functions in
landscapes. The individual–population relationships were
further analyzed to reveal the functional relationship between
the parameters of the dispersal function and movement
details (Heinz et al., 2007). Usually, movement patterns are
situation-oriented (e.g., finding food) or theoretical (e.g.,
correlated random walk), and not spatially explicit in presenting
individual movements.

Regarding IBMs applied to PWD, Takasu (2009) linked vector
beetle mobility to demonstrate the importance of the Allee effect
by considering mechanistic interactions at the individual level.
The IBMs were further developed by incorporating the Lévy
flight of pine sawyer beetles to disperse PWD (Chon et al.,
2009). We aimed to incorporate spatially explicit movement
patterns of vector beetle individuals to introduce PWD expansion
in forests to evaluate control practices. Specifically, in this
study, (1) we hypothesized that individual movement patterns
of vector beetles would be over short and long distances,
(2) the individual movement patterns were incorporated into
IBM to reveal PWD dispersal at the population level with
symptomatic and asymptomatic transmissions, (3) model results
were evaluated by comparison with field data, and (4) the models
were used to recommend suitable control practices to minimize
PWD infestation.

MATERIALS AND METHODS

Field Data of Pine Wilt Disease
Spatial data of pine trees affected by PWD in the Gijang-
gun area (50 km2), Busan, the southeastern corner of the
Korean peninsula, were used for modeling (Figure 1). Data were
obtained from the National Institute of Forest Science, Republic
of Korea. The infested pine trees were individually identified
in a grid of 2m × 2m using a photo-scanning technique
(resolution of 20µm corresponding to 12 cm on the ground)
from November 2002 to November 2003 (Lee and Cho, 2006)
(Figure 1). Extensive control practices were conducted by clear-
cutting and infested trees were entirely burned for control at the
end of each year (Kwon et al., 2006). However, PWD was still
dispersed, even after extensive control, as shown in Figure 1.

Model Development
The model was developed according to IBM guidelines, such as
process overview, system definition, state variables, rules of life
events, and stochasticity (Grimm et al., 2006; Chon et al., 2009).

Process Overview
The IBM was designed to introduce the PWD dispersal by
incorporating individual life events of pine sawyer beetles (M.
alternatus), such as emergence, reproduction, movement, and
infestation. Individual movement patterns were hypothesized to
simulate visits to infested trees in the model. In addition, the
control practices of cutting down infested trees were applied to
the model, considering the extensive control practices conducted
at the end of each year in Republic of Korea (Kwon et al., 2011).

System Definition
The model was applied to field data with a width of 40 (= 4× 10)
km2 in two dimensions (Figure 1A), assuming that every single
tree is represented by a unit cell in a lattice of 2m × 2m. The
infested trees were individually recognized in a grid of 2m ×
2m from the high spatial resolution remote sensing data (Lee and
Cho, 2006) and the data were transformed to 2,000 × 5,000 cells
for 40 (= 4× 10) km2. The individual infested trees are presented
in a lattice map from 2002 to 2003 (Figure 1B). The red dots on
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FIGURE 1 | Study area in the Gijang-gun, Republic of Korea (A), locations of individual infested trees before eradication in 2002 and 2003 (B) and frequencies of

healthy and infected trees in 2002 and 2003 (C).

the map, representing infested trees, overlapped at some places
due to the aggregation of infested trees.

Considering that the beetles actively move from late May to
the beginning of November, the simulation period was 24 weeks
(Choi and Park, 2012), assuming 4 weeks in 1 month in this
model. The unit time step was defined as 1 week. The emergence
of the next generation was simulated in the year following
the control practices. Simulations were conducted over 2 years,
matching the field survey from November 2002 to November
2003 (Figure 1) to evaluate the model results with field data, and
additionally for 10 years to estimate control effects based on the
selected parameters.

Absorbing boundary conditions were adopted; once any
individual moved outside the study area, the individual
would never return to the study area again, being
considered either drowned in the sea or lost in the city.
The descriptions of the variables and parameters are provided in
Table 1.

State Variables
Individual sawyer beetles were considered an entity in the model.
Each individual’s position, age, and movement distance were
assigned as attributes. At the population level, the dispersal
of PWD, either symptomatic or asymptomatic transmission by
vector beetles, was presented as the predicted variable.

Initial Distribution
The field data of the infested trees were used as the input data
for the initial conditions (Figures 1A,B). Figure 1C shows the
frequency of healthy and infected tree densities per unit area
of 0.16 km2. A substantial proportion was similarly infected
between the 2 years with 33.2 and 34.08% of infestation in
2002 and 2003, respectively. Noteworthy, the proportion of
infected trees increased with an increase in total density; at a
total density of 0.9–1.0 (normalized) and a maximum density
of 38,130 trees per 0.16 km2, no healthy trees remained.
The proportion of areas without trees was 39% of the
study area. We assumed 10% of infested trees (Korea Forest
Service, 2003; Kwon et al., 2011) in November 2002 were
the asymptomatic trees originating in 2001 for simulation,
and the asymptotic trees were randomly selected at the
beginning of the simulation period. The consecutive simulation
results for the 2 years (2002 and 2003) before eradication
(i.e., November) were compared with the corresponding
field data.

Life Events
The life events of sawyer beetles were simulated, such as
emergence, reproduction, movement, and infestation (Kishi,
1995), to demonstrate vector dispersal and disease transmission
at the population level in the model.
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TABLE 1 | Component description in individual-based model (IBM) applied to the sawyer beetle transmitting pine wilt disease (PWD).

Component Subcomponent Description

System environment

Domain Space 2D, Lattice; 2,000 × 5,000 cells (unit: 2 × 2 m2 )

Time (t) 24-time steps per year (1 week/step)

Constraint Boundary Absorbing boundary

Variables

Individual level Beetle position x, y coordinates, 2D

Beetle status Healthy or infested

No. of movement 5

Lattice status Empty, Healthy, Symptomatic, Asymptomatic

Asymptomatic period 1 year

Number of beetle offspring 20 individuals/tree

Population level Beetle Number of individuals

Infested trees Number of trees (symptomatic or asymptomatic)

Life events Reproduction 20 progenies per tree

Emergence period Last week, May−1st week, Aug.

Dispersal distance Step functions

Asymptomatic trees Random selection according to asymptomatic rate

Control Eradication

Parameter and data

Initial conditions Position of symptomatic trees Randomly selected from field data

Parameters Infestation rate (beetle visit) 0.08–0.12

Asymptomatic rate 0.08–0.17

Control radius 0–35 cells

Output Population of infested trees Number of trees (Symptomatic/Asymptomatic)

Pair correlation of infested trees Coefficients (not normalized)

Pairwise distance of infested trees Frequency of distances

Emergence
Adult beetles emerged from dead (infested) pine trees in summer
according to the Gaussian distribution (σ2 = 3, µ = 5.5) in each
lattice (Naves et al., 2008):

f (x) =
1

√
2πσ

exp(
(x− µ)2

2σ 2
) (1)

where x is the number of adult beetles. At the beginning of each
year, the emergence time of each beetle was randomly assigned
within 1–10 time steps, from late May to early August.

The emerged beetles, F(n), from each tree were calculated as
follows (Yoshimura et al., 1999b; Takasu, 2009):

F(n) =
bn

1+ an
(2)

where n is the number of ovipositions, b is the net reproductive
success, and a is a parameter that controls the maximum
number of beetles emerging from a tree (Takasu, 2009). The
hyperbolic function of equation (2) shows that the emerged
beetles saturated as the number of oviposition n increased owing
to density-dependent mortality of the beetle larva within a tree.
In our model, we assumed 20 beetles emerging from a tree with

PWD in the simulation every year (Takasu, 2009), representing
reproduction for the simulation in the model.

Beetle Movement
Considering that nematodes cannot move and are carried mainly
by pine sawyer beetles, the movement of individual beetles plays
a key role in determining the dispersal of PWD (Park et al., 2013;
Choi et al., 2017; Lee et al., 2017). Therefore, we hypothesized that
spatially explicit movement patterns of beetle individuals would
contribute to PWD dispersal at the population level and would
subsequently play a key role in controlling PWD. Emerged beetles
dispersed to find trees for feeding ∼1 week after emergence in
the active period from May to November (Nguyen, 2010; Choi
and Park, 2012; Choi et al., 2019). Infested beetles can infest
healthy trees during these visits. Based on preliminary tests of
movements and the literature, we assumed that an adult beetle
could disperse five times randomly during the active period
based on the number of movements (Togashi, 1990; Kwon et al.,
2018).

Regarding the movement distance, short and long movements
of the beetle were incorporated into the model. Short- and long-
distance movements have been reported in the field and used
for modeling (Choi et al., 2017; Nguyen et al., 2017; Lee et al.,
2021). Spatially explicit movement of sawyer beetles has not
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been extensively reported. However, other studies have adopted
a theoretical distribution, such as Gaussian (Takasu, 2009) and
Lévy flight (Chon et al., 2009), as the dispersal kernel for sawyer
beetle movements.

The step-function movements were devised to generate the
movement patterns in this study (Figure 2). The probabilities
of short and long movements are presented according to step
functions; if a higher probability is given to a short distance, the
individuals will move more in short distances in nearby areas and
vice versa in wide areas. According to probabilities in association
with distance, movement patterns of “S (1–24 cells),” “M (14–31
cells),” and “L (17–39 cells)” are presented to indicate the short,
middle, and long distances, respectively (Figure 2). The pattern
“W” was separately assigned to the movement demonstrating a
wide range of possibilities, and the possibility of moving 10–13
cells in addition to the distance range covered by “M.” Different
maximum movement distances were assigned to each minimum
movement type (S, M, L, and W) with 30, 40, and 50 cells.
The distances and probabilities of movements were empirically
determined based on previous reports (Togashi and Magira,
1981; Yoshimura et al., 1999a; Choi et al., 2017; Lee et al., 2017)
and the experience of field experts. For simplicity, numbers 3,
4, and 5 (in 10 units) were used throughout the text and figures
instead of 30, 40, and 50 cells, respectively.

Infestation
Healthy trees were affected by PWD after visits by nematode-
carrying beetles. Most trees showed symptoms after infection in
the same year. However, some infested trees did not present with
symptoms of PWD in the same year but showed symptoms in the
following year. These trees were considered to be asymptomatic
carriers. These asymptomatic trees play an important role in the
spread of PWD the following year under field conditions (Futai,
2003; Nguyen et al., 2017).

Although all symptomatic trees were removed at the end
of each year according to the eradication protocols of the
government, some beetles still emerged in both infested and
non-infested areas. The proportion was low but sufficient to
cause further dispersal in the following years (Shin, 2008; Kwon
et al., 2011; Choi and Park, 2012), as shown in Figure 1.
Therefore, we hypothesized that asymptomatic trees would
contribute to PWDdispersal and incorporated both symptomatic
and asymptomatic infestations into the model. Asymptomatic
trees were determined by random choice among infested trees
according to an asymptomatic rate between 0.08 and 0.17 based
on field data (Shin, 2008; Nguyen et al., 2017), whereas the rest
of the infested trees were set to show symptoms in the current
year. The beetles moved randomly at an arbitrary angle with
the assigned movement distance in each movement to visit the
infested tree in a unit cell. If there was no infested tree, then the
movement was continued until the beetle found the tree with a
maximum of five movements (Table 1).

Determining Infested Trees
The infested tree was determined by applying the tree infestation
rate by beetles at each visit. A field study showed that a
proportion of pine trees that beetles attacked could survive the

disease (Yoshimura et al., 1999b). When the susceptible trees
had more visitors, the trees had a higher chance of infestation.
The lattice state was defined as empty, healthy, symptomatic, or
asymptomatic based on the infestation state (Table 1).

Control
Eradication of the infested trees was used as a control method
in this study and was carried out at the end of each year for
the simulation period. Symptomatic trees and all their neighbors
within the control radius (r) cells were cut down. The eradication
process was given as:

Tree(i, j) = 0; if

√

(i− x)2 +
(

j− y
)2 ≤ r (3)

where (x, y) indicates the position of a symptomatic and (i, j)
represents any cell in the spatial map.

The model was tested using different levels of r from 0 to 35
cells at intervals of five cells. When r = 0, cutting was conducted
only on the symptomatic trees (Table 1).

Output Data
The spatial dispersal pattern was analyzed using pairwise distance
and pair correlation density functions. The pairwise distance
(Law and Dieckmann, 2000; Nguyen et al., 2017) calculates the
distances from all possible pairs of infested trees between 2 years
of data:

Dij =
∑

M,N
i=1,j=1

√

(

x1,i − x2,j
)2 +

(

y1,i − y2,j
)2

(4)

where (x1,i, y1,j) and (x2,i, y2,j) are the coordinates of diseased
trees between the first and second years, respectively, andM and
N represent the total number of diseased trees each year. In this
study, data for the consecutive years of 2002 and 2003 were used
for calculating pairwise distance, considering that these last 2
years in the survey period had data for both symptomatic and
asymptomatic trees from the simulation, as stated above.

The pair correlation function, C(ξ , p), measures the degree
of association between the occurrence of infested trees across
two consecutive times and is expressed as a product of pairs of
densities of individuals at different locations, averaged over a
spatial region (Law and Dieckmann, 2000; Nguyen et al., 2017):

C(ξ , p) =
1

A

∫

p(x, t)[p(x+ξ , t + τ )− δx(x+ ξ )]dx (5)

where p(x, t) is the density of lattice i (or j) at position x (or x
+ ξ) at time t (or t + τ ), and ξ, δ, τ , and A represent the space
difference, time difference, Kronecker delta, and spatial region,
respectively. In this study, the time difference was considered to
be 1 year. Pearson’s correlation coefficients were calculated to
evaluate the fittings between the field data and model results for
both pairwise distance and pair correlation functions.

Stochasticity
Stochasticity was applied to themodel through life events, such as
emergence time and short- and long-movements with different
angles. In addition, symptomatic and asymptomatic trees were
randomly chosen as the initial conditions.
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FIGURE 2 | Examples of individual movement patterns composed of four-step function probabilities (S, M, W, and L) with maximum distance (40 cells in this case).

RESULTS

Pairwise Distance of Infested Trees
The dispersal of infested trees according to individual movement
patterns was evaluated using field data at the population level
between 2002 and 2003. Pairwise distances were compared
between the model output and field data according to movement
patterns (S, M, L, and W) at different maximum distances
(Figure 3). Overall, the pairwise distances were in accordance
with the field and model data across the different maximum
distances (r > 0.98, p < 0.001). The frequencies of pairwise
distances sharply increased to reach a peak at∼1,200m (arrow in
Figure 3 shown at S3 as an example of the peak). After the peak,
the distances slowly decreased to reach a minimal frequency
beyond 6,000m. Overall, the model results tended to slightly
overestimate compared with the field data as the distance was
longer than the peak distance of 1,200m (the dotted ellipse shown
in S4 in Figure 3 as an example). S3 showed the minimum
difference between the model results and field data among all
movement patterns (top left panel, Figure 3).

Pair Correlation
Subsequently, the pair correlation functions (not normalized)
according to the distances between infested trees were compared
between the model and field data between 2002 and 2003
(Figure 4). The model’s correlation coefficients were similar to
those of the field data (r > 0.95, p < 0.001). However, the

correlations decreased rapidly as distance increased. Although
rapidly decreasing, correlation coefficients remained at a
substantial level ∼100m, indicating spatial associations in
disease occurrence between the previous and current years in a
short distance.

Overall, the fittings between the field data and model
results for the pair correlation functions were close to M,
L, and W with maximum distances of 40 and 50 cells (r
> 0.982, p < 0.001) (Figure 4), compared with S at short
maximum distances. However, for some movement patterns,
the model results overestimated correlations (higher than
the model results) for distances less than ∼60m, while the
model results underestimated correlations (higher than the
model results) beyond this distance. This discrepancy was
more clearly observed with the S pattern and the maximum
distance of 30 cells (r = 0.951, p < 0.001) (S3, top left
panel, Figure 4).

When the degree of fitting was directly compared between
the pairwise distance (Figure 3) and correlation functions
(Figure 4), the pattern of discrepancy was comparable between
the two evaluation methods. For example, for pattern S3, the
pairwise distance from the model was fairly close between the
field data and model results with slight overestimation over a
relatively long-range, 3,000 – 6,000m. In contrast, the correlation
function obtained from the model was differentiated from the
field data in a short spatial scale, with overestimation at less than
60m and underestimation beyond 60 m.
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FIGURE 3 | Frequency of pairwise distances between all pairs of infested trees for the years of 2002 and 2003 according to different movement patterns comparing

model output (curves in different colors) and field data (blue curve). Pearson’s correlation coefficient was calculated between model output (curves in different colors)

and field data (blue curve). Movement patterns are explained in Figure 2. Numbers 3, 4, and 5 after the symbols, S, M, L, and W for the movement patterns were

used to present 30, 40, and 50 cells, respectively.

Considering the closest fitting for the pair correlation
function for the movement patterns M, L, and W, a maximum
distance of 50 cells was matched to M and W, whereas
40 cells were assigned to L, with the highest degree of
closeness in the correlation function between the field data
and model results for each movement pattern (Figure 4).
Compared with S3, the fittings by M5, W5, and L4 were
fairly close between the model results and field data for both
pairwise distances and pair correlations, except for a slight
overestimation in pairwise distances in the long-range after
the peak.

Notably, the pairwise distance and correlation functions have
different roles in fitting the field data by considering the spatial
scale. The pair correlation had higher values at short distances
(1–400m range), indicating the reliability of the fitting at short
distances. In contrast, pairwise distance represents fitting over a
broad range with a long distance (1–8,000m) (Figures 3, 4).

The results stated above can be summarized as follows.
First, the model fitting was closer to the real data according
to the correlation functions and pairwise distances. Second,
pairwise distance revealed the model fitting broadly on the
long scale, whereas the correlation function was more suitable
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FIGURE 4 | Pair correlation functions measuring the degree of association between the occurrence of infested trees for the years of 2002 and 2003 according to

different movement patterns in model (blue curve) and field (curves in different colors) data. Pearson’s correlation coefficient was calculated between model output

(curves in different colors) and field data (blue curve). Movement patterns are explained in Figure 2. Numbers 3, 4, and 5 after the symbols, S, M, L, and W for the

movement patterns were used to present 30, 40, and 50 cells, respectively.

for fitting to field data on a short scale. Third, the movement
patterns with long movements, such as M, L, and W, were
more closely fitted to the field data than S but there was no
notable difference among them. Fourth, the maximum distances
of 40 and 50 cells had a better fitting than the short maximum
distance of 30 cells.

Population Size According to Individual
Movement Patterns
Based on the closeness between model and field data, we selected
movement patterns (L4, M5, and W5), and the dispersal of
PWD was simulated at the population level. The asymptomatic
and infestation rates were optimally adjusted in combination
with 0.11–0.17 and 0.07–0.09, respectively, to fit the field
data. Changes in the population size of infested trees were
evaluated between the previous (2002) and current (2003) years
across different asymptomatic and infestation rates (Figure 5).

Overall, the absolute densities of infested trees were not in
accord with the simulation output and field data, as shown
by the substantial difference in the intercept between the
model results and field data (dotted lines, Figure 5). Instead,
the trends of density changes between the 2 years had some
meaningful results: the slopes in population densities were
comparable between model output and field data. Overall,
accordance between model and field data was observed in
infestation rates of 0.08 and 0.09, and high asymptotic rates
of 0.16–0.17 (Figure 5). However, the slopes were not in
accordance with the case of an infestation rate equal to
0.07 across different ranges of asymptotic rates (left panels,
Figure 5).

The overall optimum value of the infestation rate observed
was 0.09 in fitting the population of diseased trees in field
conditions compared with the infestation rates of 0.07 and 0.08,
since the increasing trend of the diseased population between 2
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FIGURE 5 | Changes in population size of infested trees according to different movement patterns (L4, M5, and W5) between the previous (1st) year and current (2nd)

year in combination with different infestation rates (0.07–0.09) and asymptomatic rates (0.11–0.17). Insets presenting asymptotic rates and field data. Numbers 4 and

5 after the symbols, M, L, and W for the movement patterns were used to present 40 and 50 cells, respectively.

years was more consistently observed in a narrower range across
different asymptomatic ranges with the infestation rate equal to
0.09 (right panels, Figure 5).

Control Effects
Control practices were conducted with different eradication
radii (r) between 10 and 70m. Simulations were run for 10
years separately for each movement pattern (L4, M5, and
W5). Figures 6, 7 show symptomatic and asymptomatic
population densities, respectively, according to different
parameters suggested in the previous section (infestation rate
equal to 0.09, asymptotic rates equal to 0.15, 0.16, and 0.17).
In total, 20 simulations were performed for each parameter

combination, and the averages are shown in Figures 6, 7.
Regarding symptomatic trees, if the radius was equal to or
longer than 20m, then the eradication practices led to control
effects across different parameter levels by showing low densities.
The longer radius elicited a more effective control effect. The
densities of infested trees were close to zero, mostly starting
with the 2nd year, without much difference in movement
patterns (Figure 6).

Regarding asymptomatic trees, an eradication radius
> 20m also showed a substantial decrease in the
densities of asymptomatic trees starting from the 2nd
year (Figure 7). In the last 10 years of simulation, the
densities approached zero across all different movement
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FIGURE 6 | Decrease in the population size of symptomatic trees across different radius levels in different asymptomatic rates as time progressed. Numbers 4 and 5

after the symbols, M, L, and W for the movement patterns were used to present 40 and 50 cells, respectively.

patterns and asymptotic rates. Furthermore, infestation
population size decreased with the increasing eradication
radius, more rapidly with a longer radius (Figure 7). In
contrast, with a control radius of 10m, the densities of
asymptomatic trees were invariably high across different
parameter levels.

Although there was some variability, the asymptomatic
densities decreased immediately after the 2nd year when the
control radius was equal to or > 40m (Figure 7). With a
shorter eradication radius of 20–30m, the densities decreased
by ∼50% between the 3rd and 5th years. Notably, the densities
of asymptomatic trees tended to decrease linearly as time
progressed when the radius was 20m. A radius of 30m showed
a rapid decrease in asymptomatic trees compared with a 20-m
radius within 3–4 years. Regarding maximum control, ∼87% of
infested trees would be controlled in the 2nd year if the radius
was equal to 70m, with an asymptomatic rate equal to 0.15
(Figure 7).

DISCUSSION

The present study demonstrated an individual-population
relationship, specifically interlinking individual movement
behavior to infested population dispersal. Individual movement
patterns were effectively incorporated into the IBM to
demonstrate the population dispersal of infested trees with
the symptomatic and asymptomatic transmission of PWD.
Evaluation with the pairwise distance and pair correlation
function (Figures 3, 4) suggested suitable movement types with
long-distance movement and high levels of maximum distances
(i.e., M5, L4, and W5).

Although previous IBM studies have been applied to PWD
using Gaussian distribution (Takasu, 2009) and Lévy flight
(Chon et al., 2009), this type of step function has never been
incorporated into IBMs. Pairwise distances and correlation
functions were specifically effective at different spatial scales
in presenting closeness to field data at the population level;
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FIGURE 7 | Decrease in the population size of asymptomatic trees across different radius levels in different asymptomatic rates as time progressed. Insets indicating

control radius (m). Numbers 4 and 5 after the symbols, M, L, and W for the movement patterns were used to present 40 and 50 cells, respectively.

the pair correlation function was effective at revealing the
model performance over short distances, while pairwise distance
represented the fitting at long distances in a broad range
(Figures 3, 4). These types of spatial fitting would suggest an
effective means of evaluating individual-population relationships
addressed by IBMs across spatial distances.

Pairwise distances were slightly overestimated by the model
beyond the peak at a distance of 1,200m across different
movement types (dotted ellipse in the middle subfigure of the
top row in Figure 3 as an example) compared with the field
data. These results indicated that simulated beetles moved more
broadly as they dispersed away from their initial positions
compared with the field data, but clear reasons for this
discrepancy were not found in the current study. Future studies
should be carried out on spatial analyses of simulatedmovements
of individuals in combination with field experiments.

Notably, the pair correlation function frequencies were
overestimated at distances < 80m and underestimated
at distances > 80m, as representatively observed with S3
(Figures 3, 4). It remains unclear why this type of discrepancy
was more strongly observed at short maximum distances for S3
and M3 but was not evident for M, L, and W over long distances

of 40 and 50 cells (Figure 4). Further studies are warranted to
carry out spatiotemporal analyses of the model results.

The IBM linked to individual movement patterns was effective
at finding suitable ranges for controlling PWD. The model
suggested that control practices using an eradication radius of
20m with an infestation rate equal to 0.09 and an asymptotic rate
of 0.15–0.17 across different movement patterns (M5, L4, and
W5) would be effective for both symptomatic and asymptomatic
transmissions (Figures 5, 6). Although short eradication radii
in the range of 20–40m would effectively control asymptomatic
transmission, it would take a longer time (i.e., several years)
to completely eradicate the PWD (Figure 7). Therefore, longer
radii, at least 40m, would be needed for clear-cutting eradication.
Overall, the model results are consistent with those reported
by Kwon et al. (2011) regarding the effectiveness of eradicating
all trees surrounding the infested trees. IBMs incorporating
individual movement patterns were informative for designing
control practices under field conditions.

The step function was compared with alternative functions
(e.g., Gaussian and exponential) regarding the probability of
determining different movement distances in the preliminary
tests. However, we could not produce similar patterns for PWD
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dispersal with these alternative functions. In particular, the sharp
peak at a short distance in pairwise distances (arrow in Figure 3

as an example) was unproduceable under similar simulation
conditions. A comparison of different movement types to reveal
population dispersion will be carried out in a future study. In
our model, the absolute densities could not be estimated close
to the actual values under field conditions (Figure 5). Numerous
factors would be involved in determining densities under field
conditions in a complex manner, such as reproduction of vector
beetles and nematodes, the transmission of PWD through trees
and vectors, environmental effects, and control efforts. Further
studies regarding additional modeling and field surveys are
warranted. Along with obtaining more detailed output from
IBMs, mathematical structure models could be developed to
simulate system stability realistically and provide optimal control
strategies for field conditions in the future (Khan et al., 2018,
2020, 2021).

CONCLUSION

Individual movements of the insect vector and pine sawyer
beetle, were incorporated into an IBM in 2m × 2m units to
elucidate the dispersal of trees infested with PWD and evaluate
forest pest control practices. Individual movement patterns over
short and long distances consisting of step functions were
effective at presenting the dispersal of vector beetles under field
conditions. After evaluating the field data for each infested
tree, a close-fitting between the model results and field data
was observed with pair correlation and pairwise distances.
Pair correlation effectively fitted PWD dispersal, presenting
correlational relationships over a short distance (i.e., 100m).
Pairwise distances were available for fitting the model results
and field data over a long-range (1–8,000m), including peaking
distances between infested trees. The accordance between model
and field data was observed through the simulation of infestation
rates at 0.08 and 0.09 and asymptotic rates at 0.16–0.17. An
eradication radius longer than 20m would effectively control
PWD dispersal for symptomatic transmission and one of 20–
40m would work for asymptomatic transmission. However, to
maximize the control effects, longer radii of at least 40m are

recommended for clear-cutting eradication. Further studies are
required to estimate absolute densities and analyze partially

observed over- and under-estimations in the pair correlation and
pairwise distances. Additional analyses on system stability and
optimized control strategies could be conducted with further
development of mathematical structure models coupled with the
accumulation of information from IBMs. IBMs incorporating
individual movement patterns effectively provided practical
information for pest management by interlinking information
on individual-population relationships and would contribute to
develop monitoring and managing strategies for forest pests
when individual movement is important for population dispersal.
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