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Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Sapporo, Japan

Remote sensing using unmanned aerial vehicles (UAVs) and structure from motion
(SfM) is useful for the sustainable and cost-effective management of agricultural fields.
Ground control points (GCPs) are typically used for the high-precision monitoring of
plant height (PH). Additionally, a secondary UAV flight is necessary when off-season
images are processed to obtain the ground altitude (GA). In this study, four variables,
namely, camera angles, real-time kinematic (RTK), GCPs, and methods for GA, were
compared with the predictive performance of maize PH. Linear regression models for
PH prediction were validated using training data from different targets on different flights
(“different-targets-and-different-flight” cross-validation). PH prediction using UAV-SfM at
a camera angle of –60◦ with RTK, GCPs, and GA obtained from an off-season flight
scored a high coefficient of determination and a low mean absolute error (MAE) for
validation data (R2

val = 0.766, MAE = 0.039 m in the vegetative stage; R2
val = 0.803,

MAE = 0.063 m in the reproductive stage). The low-cost case (LC) method, conducted
at a camera angle of –60◦ without RTK, GCPs, or an extra off-season flight, achieved
comparable predictive performance (R2

val = 0.794, MAE = 0.036 m in the vegetative
stage; R2

val = 0.749, MAE = 0.072 m in the reproductive stage), suggesting that this
method can achieve low-cost and high-precision PH monitoring.

Keywords: unmanned aerial vehicle, structure from motion, remote sensing, plant height, 3D structure analysis,
maize

INTRODUCTION

Remote sensing is a key technology for the sustainable management of agricultural
fields. Agricultural management based on remote sensing strengthens food production and
reduces natural resource use. Thus, remote sensing technologies have found applications,
such as growth monitoring, irrigation management, weed detection, and yield prediction

Abbreviations: CHM, crop height model; DSM, digital surface model; DTM, digital terrain model; GA, ground altitude;
GCP, ground control point; GNSS, global navigation satellite system; HC, highest-cost case; LC, low-cost case; LiDAR, light
detection and ranging; MAE, mean absolute error; MAPE, mean absolute percentage error; PH, plant height; RMSE, root
mean squared error; ROI, region of interest; RTK, real-time kinematic; SfM, structure from motion; UAV, unmanned aerial
vehicle.
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(Sishodia et al., 2020). Furthermore, the applications of remote
sensing in agriculture have gained widespread attention in recent
years (Weiss et al., 2020).

Unmanned aerial vehicles (UAVs) are commonly used for
the remote sensing of agricultural fields owing to their high-
resolution imagery and cost-effectiveness. Sensors (e.g., RGB
or multispectral cameras, laser scanning devices, etc.) and
processing strategies (e.g., vegetation index calculation, machine
learning, 3D structure analysis, etc.) have been combined to solve
problems in remote sensing applications (Tsouros et al., 2019).

Three-dimensional (3D) structural analysis is useful for
determining plant height (PH) and volume, which reflect the
growth and biomass of crops (Yao et al., 2019). Strategies for 3D
structure analysis include generating 3D models from multiview
aerial images of UAVs using structure from motion (SfM)
algorithms or obtaining 3D point clouds with light detection
and ranging (LiDAR) systems (Paturkar et al., 2021). The SfM
approach with UAV imagery (UAV-SfM) can be conducted
at a relatively low cost using normal RGB cameras to suit
the requirements of agricultural applications. The UAV-SfM
approach for monitoring growth or biomass has been applied to
various crops, such as wheat (Holman et al., 2016; Madec et al.,
2017; Volpato et al., 2021), barley (Bendig et al., 2013, 2014), rice
(Jiang et al., 2019; Kawamura et al., 2020; Lu et al., 2022), and
maize (Li et al., 2016; Ziliani et al., 2018; Tirado et al., 2020).

However, the UAV-SfM approach has a problem with regard to
balancing precision and cost. During the SfM process, matching
features over multiple images are detected, camera positions are
estimated, and dense point clouds are generated (Westoby et al.,
2012). Ground control points (GCPs), which are points whose
coordinates are known from ground surveys, are often used to
correct the camera positions. The coordinates of each aerial image
surveyed with the global navigation satellite system (GNSS) are
commonly recorded in the metadata of the image and can be
used for the SfM process. SfM analysis without GCPs often faces
coordinate errors owing to the uncertainty of GNSS (Wu et al.,
2020) or an SfM-specific distortion termed the central “doming”
effect (Rosnell and Honkavaara, 2012). However, the installation
and maintenance of GCPs on the ground require time and effort.
Additionally, annotation of GCPs on aerial images also takes time
if weeds or reflection of sunlight interfere with the auto-detection
algorithms for GCPs.

An orthomosaic (an orthographic image composed of
geometrically corrected aerial images) and a digital surface model
(DSM; a representation of elevation on the 3D model) are
constructed from the point clouds. When aerial images of an on-
season agricultural field are taken and processed, a DSM obtained
by the SfM process shows an elevation that includes the PH.
To extract PH from the DSM, data for ground altitude (GA),
such as that obtained from a digital terrain model (DTM; digital
topographic maps indicating ground surface), are necessary.

Ground altitude is mainly obtained by processing off-season
(pre-germination or post-harvest) images to create a DTM (Roth
and Streit, 2018; Ziliani et al., 2018; Jiang et al., 2019; Kawamura
et al., 2020) or by extracting the altitude of the soil surface in
the on-season DSM (Tirado et al., 2020). The former method
(processing off-season images) requires an extra flight, along

with the SfM process. In addition, the models obtained from
different flights generally deviate from each other owing to
the uncertainty of the coordinates and distortion of the 3D
models mentioned above. Such deviations cause errors in PH
prediction and affect reproducibility. Therefore, correction with
GCPs is crucial for this method. The latter method (extracting
soil altitude) requires the presence of a bare soil surface in the
seasonal DSM. However, this method may be difficult to apply
when the ground is fully covered by plants. To obtain GA in
plants, extracted soil coordinates were interpolated to generate a
DTM (Murakami et al., 2012; Gillan et al., 2014; Iqbal et al., 2017).
Such interpolation methods can achieve low-cost and accurate
PH predictions when adequate soil coordinates are extracted
for the interpolation algorithm. Although other sources, such
as airborne laser scanning (ALS), can be used to determine
the altitude of the terrain (Li et al., 2016), the applicable scope
is mostly restricted because of the equipment costs and time
demands for aerial scanning.

The precision of UAV-SfM analysis is determined by the
camera angles, real-time kinematics (RTK), and GCPs. SfM point
clouds generated from aerial images taken at diagonal camera
angles can have fewer errors that result from the “doming”
effect (James and Robson, 2014). Furthermore, UAVs equipped
with high-precision positioning systems using RTK-GNSS have
become increasingly popular, although the initial and operational
costs for RTK-UAVs remain higher. Finally, GCPs are generally
used to correct camera positions, as mentioned above. In addition
to these three parameters, methods for obtaining GA need to be
considered for PH prediction. Although comparative studies have
been conducted on one or a few of these variables (Holman et al.,
2016; Xie et al., 2021; Lu et al., 2022), their effects on the precision
of PH monitoring have not been fully investigated.

In this study, four variables, namely, camera angles, RTK,
GCPs, and methods for obtaining GA, were compared for PH
prediction in maize. Two existing methods for obtaining GA,
using off-season DSMs (method M1) and extracting the altitude
of the soil surface (method M2), were demonstrated (Figure 1).
In addition, an interpolation method for obtaining GA (method
M3) was considered, wherein the coordinates of the terrain
around the field were obtained and fitted to a polynomial surface.
The surface can then be used as a DTM, and the DTM subtracted
from a DSM provides a crop height model (CHM), representing
the PH of the crop (Chang et al., 2017). This method can achieve
high precision without GCPs, even when the inside of the field is
covered with plants.

MATERIALS AND METHODS

Data Collection and Structure From
Motion Process
The data were collected from the Hokkaido Agricultural Research
Center (Hokkaido, Japan). Two maize fields (Fields 1 and 2)
under variety tests were used in this study. An overview of these
two fields is presented in Figure 2. Field 1 was used for method
M3, and Field 2 was used for validation of PH prediction under
all conditions of camera angles, RTK, GCPs, and methods for
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FIGURE 1 | An overview of the SfM process and three methods for obtaining ground altitude (GA); methods M1, M2, and M3. A DSM is a digital surface model that
represents elevation on the 3D model, a DTM is a digital terrain model that represents elevation without plants, and a CHM is a crop height model that represents
plant height of crop.

obtaining GA. There were 42 plots (14 varieties) in Field 1 and
84 plots (21 varieties) in Field 2. Each plot had four rows, and
each row contained 18 plants. The row spacing was 0.75 m and
the in-row plant spacing was 0.18 m (7.41 plants per square
meter) in both fields.

Nine checkerboard square markers used as GCPs for the SfM
process were placed in Field 2. Eight GCPs were located around
the field and one GCP was located at the center of the field. The
locations of the GCPs are shown in Figure 2. The coordinates
of the GCPs were surveyed using D-RTK 2 (SZ DJI Technology,
Nanshan, Shenzhen, China).

The ground truth of PH was measured using rulers as the
height from the ground to the highest point of the plant at two
different growth stages. During the vegetative stage, the highest

point was at the apex of the top leaf, while during the reproductive
stage, the highest point was at the apex of the tassel. Actual
measurements were conducted in the middle two of the four rows
in each plot. The PH of five consecutively placed plants in each
row was measured and averaged. The average from one row was
regarded as one sample (PHmeasured). Subsequently, PHmeasured
was obtained from 84 rows in Field 1 and 168 rows in Field 2.
The schedule of the actual PH measurements and UAV image
acquisition is presented in Table 1.

A DJI Phantom 4 RTK (SZ DJI Technology) with a mounted
camera (lens: 8.8 mm focal length, sensor: 1” CMOS 20 M) was
used for image acquisition. The analysis region (35.5 m × 54
m) for the SfM process in each field was determined, as shown
in Figure 2. The flight plan was generated automatically using
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FIGURE 2 | An overview of two fields of maize used in this study. Light blue (Field 1) and orange (Field 2) solid lines show the plots. Dash lines show the analysis
region of each field. White circles around or in Field 2 show the locations of GCPs. Red rectangles show ROIs on rows (inner ROIs). Blue rectangles show ROIs
around the field (outer ROIs).

TABLE 1 | The schedule of data collection.

Stage Process Field 1 Field 2

Sowing 2021/5/12 2021/5/12

Pre-
germination

Image acquisition – 2021/5/14 4 flights
(4 conds. × 1 rep.)*

2021/5/17 8 flights
(4 conds. × 2 reps.)*

Vegetative
stage

Image acquisition 2021/6/28 3 flights
(3 reps.)

2021/6/30 12 flights
(4 conds. × 3 reps.)

Measurement 2021/6/28 2021/6/30

Reproductive
stage

Image acquisition 2021/8/4 3 flights
(3 reps.)

2021/9/2 12 flights
(4 conds. × 3 reps.)

Measurement 2021/8/6 2021/9/3

*Three repetitions of image acquisition in the pre-germination stage (Field 2) were conducted over 2 days: one rep on 2021/5/14, and the remaining two reps on
2021/5/17. The details of UAV image acquisition are shown in Supplementary Table 1 (Field 1) and Supplementary Table 2 (Field 2).

DJI GS RTK (SZ DJI Technology) to cover the analysis region
of each field with an adequate margin. The flight height was
25 m, the forward overlapping rate was 80%, and the side-
overlapping rate was 60%. For the flight in Field 1, the camera
angle (angles of a camera’s forward direction from a horizontal
plane) was –90◦, and RTK was not used. For the flight in
Field 2, the camera angle was set to –60◦ or –90◦ as shown
in Figure 3, and RTK was switched on or off. Therefore,
four flight conditions were applied. The details of UAV image
acquisition are shown in Supplementary Table 1 (Field 1) and
Supplementary Table 2 (Field 2).

In Field 1, three flight repetitions were conducted at each
growth stage. For Field 2, image acquisition was conducted
in three stages, namely, the pre-germination stage (for
obtaining off-season data of method M1), the vegetative
stage, and the reproductive stage. At each stage, 12 flights (four
conditions with three flight repetitions) were arranged using a
randomized block design.

The SfM process was conducted using the Agisoft Metashape
Professional 1.7.3 (Agisoft LLC, St. Petersburg, Russia). Three-
dimensional point clouds were generated from the image sets,
and orthomosaic images and DSMs were constructed. The
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FIGURE 3 | An illustration of the camera angle.

TABLE 2 | Parameters of the SfM process.

Process Parameter Setting

Aligning photos Accuracy High

Generic preselection Yes

Key point limit 40,000

Tie point limit 4,000

Building dense point cloud Quality High

Depth filtering modes Mild

Building digital elevation model Source data Dense cloud

Interpolation Enabled

Building orthomosaic Surface Digital elevation model

Blending mode Mosaic

Hole filling Enabled

parameters selected for the process are listed in Table 2. From
each image set of Field 2, another Metashape project file was
created for the GCP-corrected analysis. In the project file,
markers were set at the locations of nine GCPs, the coordinates
of GCPs by the ground survey were input, and the SfM process
was conducted in a similar manner. The conditions for the SfM
products are summarized in Supplementary Table 3.

Methods for Analysis of Digital Surface
Model
Each analysis row in each field was divided into three blocks.
Using QGIS Desktop 3.16.8, one polygon enclosing each field
(Field 1 or 2) and polygon enclosing blocks were created on
each orthomosaic image and written to a shapefile (the locations
of polygons are shown in Supplementary Figure 1). Regions of
interest (ROIs) in rows (inner ROIs, for all methods) and around
the field (outer ROIs, for method M3) were determined using
the shapefile. For the inner ROIs (red rectangles in Figure 2),
the coordinates were calculated with the locations of the plants
measured in the blocks. For outer ROIs (blue rectangles),
coordinates of 180 rectangular areas with a size of approximately
1 × 0.5 m (on the corner: 0.5 × 0.5 m) enclosing each field were
calculated. The coordinates were saved as CSV files. In Figure 2,
the locations of the ROIs are drawn on an orthomosaic according
to the coordinates used for visualization.

For method M1 (only Field 2), an off-season DSM was used
as the DTM, which was subtracted from the on-season DSM.
For each on-season DSM, an off-season DSM under the same

conditions and repetition was applied; thus, the same number of
CHMs (24 CHMs for Field 2) were obtained.

The 90th–99th percentiles have often been applied as
representative values of PH (Holman et al., 2016; Malambo et al.,
2018; Tirado et al., 2020), as they express height (altitude of
the highest point) better than a mean and are subjected to less
noise than a maximum. In this study, the size of an inner ROI
was approximately 2,500 pixels, and noises that were blobs of
adjacent 30 pixels or smaller were observed on a DSM (Figure 4).
Therefore, to exclude noise less than 2% of the ROI (50 pixels),
the 98th percentile was used in this study. For the CHMs, the 98th
percentile from the inner ROIs was calculated as PHSfM.

For method M2 (only Field 2), the 2nd and 98th percentiles
from the inner ROIs were calculated as the altitude of the ground
and plant apex, respectively. These percentiles were applied for
the same reason mentioned above. The difference between the
2nd and 98th percentiles was obtained as PHSfM.

For method M3 (Fields 1 and 2), a DTM was obtained by
polynomial fitting with the coordinates of the terrain around the
field on an on-season DSM. The median altitude was calculated
from each outer ROI as the z-coordinate of the area, and the
center of gravity of the rectangle was calculated as the x and
y-coordinates. A total of 180 points (x, y, z) were fitted to an
n-dimensional polynomial surface (1) using the least squares
method.

z =
n∑

k = 0

k∑
i = 0

akixk−iyi (1)

where n is the dimension of the polynomial surface, k and i are the
indices for summation, and aki is the parameter to be estimated.
This polynomial surface was used as the DTM. This DTM was
subtracted from the original DSM to obtain a CHM. On the
CHMs, the 98th percentiles from the inner ROIs were calculated
as PHSfM (PH obtained from UAV-SfM analysis).

The dimension of the polynomial (n) was set to 0–4 for
data from Field 1. The dimension that achieved the strongest
correlation between the measured PH (PHmeasured) and PHSfM
in Field 1 was applied for a comparative study of Field 2.

The analysis in this and the following sections were conducted
using Python 3.6.8 and QGIS.

Correlation Analysis and
Cross-Validation of Regression Models
The Pearson correlation coefficient (r) between PHmeasured and
PHSfM in each dataset and the bias ( PHSfM − PHmeasured) were
calculated. For each condition, the three coefficients obtained
from the repetitions were averaged.

Cross-validation of the linear regression models to predict
PHmeasured from PHSfM was conducted using data from Field 2.
As the SfM point clouds from different flights could deviate from
each other, validation with different target data on a different
flight’s point cloud was needed (“different-targets-and-different-
flight” validation) to ensure that a regression model from one
flight can be applied to as training data to unknown data. The
168 data points from Field 2 were divided into three groups (the
grouping in Field 2 is shown in Figure 2). A linear regression
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FIGURE 4 | An example of noises in point clouds. (A) A point cloud with noises (some points floating over plants). (B) A DSM with noises (an extremely high area
near the center). The DSM is shown in grayscale; when the pixel is white, the altitude is high.

model (2) was fitted with the least-squares method using data
from two groups (112 training data points).

PHmeasured = a × PHSfM + b (2)

where a and b are the parameters to be estimated (a: slope and
b: intercept, respectively). A total of 56 data points from different
flight repetition groups were used for validation. There were six
flight repetitions and three groups for training and validation;
thus, 18 sets of validations were conducted for each condition
(all sets of flight repetitions and sample groups for cross-
validation are shown in Supplementary Table 4). The coefficient
of determination (R2), mean absolute error (MAE), root mean
squared error (RMSE), and mean absolute percentage error
(MAPE) were calculated using the validation data (equations of
these evaluation metrics are shown in Supplementary Table 5).

RESULTS

Consideration of Method M3
A summary of the measured PH (PHmeasured) is provided in
Table 3. The range of the measured PH was 0.632–1.190 m
in the vegetative stage and 2.18–3.14 m in the reproductive
stage. The standard deviations in Fields 1 and 2 were 0.075
and 0.102 m in the vegetative stage and 0.126 and 0.181 m in
the reproductive stage, respectively. These results indicate high
variability in PH in the fields.

The DSM of Field 1 shows ground inclination, with the
northeast being lower and the southwest being higher (Figure 5).
The CHM calculated from the 0 dim (flat) DTM left the
inclination, as the 0 dim DTM cannot model such a tilted plane.
The CHM calculated from the 1 dim (plane) DTM did not leave
the inclination but left the central bulge. The 2 and 3 dim DTMs
fitted better to the true terrain. The CHMs from the 2 and
3 dim DTMs left neither the inclination nor bulge inside the
ground ROIs. The 4 dim DTM, however, overfitted the sample

points of the ground, and thus, the CHM from the DTM was
strongly distorted.

The mean correlation coefficients (r) between PHmeasured and
PHSfM on the CHMs of Field 1 from the three flight repetitions
are summarized in Table 4. The correlation was stronger with the
3 dim DTM in both growth stages. Thus, the 3 dim DTM was
applied to method M3 in validation with Field 2.

Comparative Correlation Analysis
Between PHmeasured and PHSfM on All
Conditions
PHSfM of Field 2 was calculated for 24 conditions that differed
in the four parameters, namely, camera angles, RTK, GCPs,
and methods for obtaining GA (method M1: using off-season
DSM, M2: extracting altitude of the soil surface, and M3: fitting
coordinates of the terrain around the field to a polynomial
surface). The correlation coefficients (r) between PHmeasured and
PHSfM were compared at each growth stage (vegetative stage,
Table 5; reproductive stage, Table 6).

In the vegetative stage (Table 5), the correlation was stronger
when a camera angle of −60◦ (diagonal) and method M3 were
applied, even without RTK or GCPs. Using method M1, the
correlation was stronger when RTK or GCPs were present. With

TABLE 3 | Descriptive statistics of measured PH.

Vegetative stage Reproductive stage

Field 1 Field 2 Field 1 Field 2

Date of measurement 28-Jun 30-Jun 6-Aug 3-Sep

Number of samples 84 168 84 168

Mean (m) 0.809 0.898 2.73 2.68

Minimum (m) 0.634 0.632 2.47 2.18

Maximum (m) 0.982 1.190 3.05 3.14

Standard deviation (m) 0.075 0.102 0.126 0.181
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FIGURE 5 | An example of the process involved in method M3. (A) A digital surface model (DSM) of Field 1. Blue rectangles show ROIs around the field (outer ROIs).
(B) Digital terrain models (DTMs) fitted to polynomial surfaces. Blue points show coordinates of the outer ROIs and meshes show the fitted DTMs. “n dim” shows the
dimension of the polynomial surface. (C) Crop height models (CHMs) calculated as the difference between DSM and DTMs. These figures were created with the
dataset of rep. 1 on Field 1 in the vegetative stage.

method M2, although the correlation was strong at a −90◦
(nadir) camera angle, it was weak at −60◦. The bias (PHSfM −

PHmeasured) was negative (−0.07 to−0.09 m) for the highest four
conditions in correlation coefficients. PHSfM tended to be lower
than PHmeasured.

In the reproductive stage (Table 6), for both methods M1
and M3, the correlation was strong with −60◦ camera angle and
RTK. When RTK and GCPs were not applied, the correlation was
stronger using method M3. In the M2 method, the correlation
was weak. PHSfM tended to be lower than PHmeasured during the
reproductive stage (bias = approx. −0.2 to −0.3 m under higher
correlation coefficient conditions).

Cross-Validation of Plant Height
Regression Models
A linear regression model was necessary for PH prediction with
UAV-SfM because PHSfM tended to be lower than PHmeasured.
Simple regression models for PH prediction were trained and
the “different-targets-and-different-flight” cross-validation was
conducted under all conditions (vegetative stage: Table 7,
reproductive stage: Table 8). In the reproductive stage, method
M2 was omitted because the correlation between PHmeasured and
PHSfM was weak (Table 6).

TABLE 4 | Correlation coefficients (r) between PHmeasured and PHSfM on the
CSMs of Field 1.

Dimension of polynomial surface 0 dim 1 dim 2 dim 3 dim 4 dim

Vegetative stage 0.469 0.776 0.832 0.839 0.153

Reproductive stage 0.346 0.816 0.866 0.873 0.272

Each value is the mean of 3 flight repetitions. 3 dim (bolded) was highest in the
correlation.

In the vegetative stage (Table 7), the coefficient of
determination of the validation data (R2

val) was high when
the −60◦ camera angle and method M3 were applied, as was the
correlation coefficient between PHmeasured and PHSfM (Table 5).
Even in the “Low-cost case (LC)” (camera angle: −60◦, RTK:
unused [−], GCPs: unused [−], method: M3), which can be
conducted with minimum equipment and without an extra flight,
the regression model showed a high predictive performance
(R2

val = 0.794, MAE = 0.036 m). In the “Highest-cost case (HC)”
(camera angle: −60◦, RTK: used [+], GCPs: used [+], method:
M1), which seems to achieve high-precision sensing with method
M1, the R2

val was 0.766, which was lower than that of LC. With
method M1, R2

val was high only when GCPs were used.
The predictive performance of HC was highest in the

reproductive stage (Table 8) (R2
val = 0.803, MAE = 0.063 m).

R2
val was also high when the camera angle was−60◦ and method

M3 was applied, including LC (R2
val = 0.749, MAE = 0.072

m). With method M1, the predictive performance was low when
GCPs were not used, similar to the vegetative stage. Although the
overall mean absolute errors in the validation data (MAEs) in the
reproductive stage were larger than those in the vegetative stage,
the mean absolute percentage errors (MAPEs) in the reproductive
stage were smaller (MAPE = 2–3% in the six highest conditions
in R2

val).
Examples of cross-validation, that is, scatterplots between the

measured PH (PHmeasured) and PH predicted by the regression
model from PHSfM on the validation data, are shown in Figure 6.
From 18 validation cases for each condition, the average case
(nearest to the mean in R2

val) was selected for the figure.

DISCUSSION

The correlation between PHmeasured and PHSfM was stronger with
a −60◦ camera angle than with −90◦, except for method M2
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TABLE 5 | Correlation analysis between PHmeasured and PHSfM in the vegetative
stage of Field 2.

Camera angle RTK GCP Method* r† Bias (m)†

1 −60◦ + + M3 0.914 −0.078

2 −60◦ + − M3 0.913 −0.080

3 −60◦ − + M3 0.906 −0.087

4 −60◦ − − M3 0.906 −0.087

5 −60◦ + + M1 0.903 −0.103

6 −60◦ + − M1 0.903 −0.135

7 −60◦ − + M1 0.896 −0.115

8 −90◦ + + M3 0.894 −0.055

9 −90◦ + − M3 0.891 −0.070

10 −90◦ − + M3 0.888 −0.058

11 −90◦ + + M2 0.886 −0.035

12 −90◦ − − M3 0.885 −0.077

13 −90◦ + + M1 0.885 −0.089

14 −90◦ + − M1 0.874 0.842

15 −90◦ − + M2 0.874 −0.040

16 −90◦ − + M1 0.874 −0.091

17 −90◦ − − M2 0.868 −0.058

18 −60◦ − − M1 0.856 −1.023

19 −90◦ + − M2 0.850 −0.052

20 −90◦ − − M1 0.810 0.334

21 −60◦ − − M2 0.539 −0.096

22 −60◦ − + M2 0.494 −0.095

23 −60◦ + − M2 0.333 −0.111

24 −60◦ + + M2 0.330 −0.106

*Method for obtaining ground altitude (GA); M1, using off-season DSM; M2,
extracting altitude of the soil surface; M3: fitting coordinates of the terrain around
the field to a polynomial surface.
†r is the correlation coefficient between PHmeasured and PHSfM, and bias is the
mean of the difference between PHmeasured and PHSfM (PHSfM − PHmeasured ). Each
value of r and bias is the mean of three flight repetitions.
The rows are sorted by r (bolded) in a descending order.

(Tables 5, 6). This tendency for a strong correlation of −60◦ was
observed even when GCPs were used. Therefore, the diagonal
camera angle could both suppress the “doming” effect and grasp
the 3D structures of the plants well with a lateral view. However,
in the vegetative stage using method M2, the soil surface in some
plots was difficult to image at a diagonal camera angle, and the
low accuracy of the GA appeared to result in a weak correlation.
In some examples, a DSM with a −60◦ camera angle had wider
plant areas than a DSM with a −90◦ camera angle and a hidden
soil surface (Figure 7). In the reproductive stage, the inner ROI
was mostly covered with plants, and thus, M2 was difficult to
apply with both−60◦ and−90◦ camera angles.

The R2
val ranks of the regression models differed from those

of the correlation coefficients (r) between PHmeasured and PHSfM
(Tables 5–8). For example, in the vegetative stage, the condition
with camera angle: −60◦, RTK: used [+], GCPs: unused [−],
and method: M1 scored high correlation coefficients (r = 0.903,
rank = 6; Table 5) and thus high goodness of fit for the
training data (R2

train = 0.814; Table 7). However, the regression
models had low predictive performance on “different-targets-
and-different-flight” validation data (R2

val = 0.401, rank = 17;
Table 7). Although a strong correlation in one flight leads to

TABLE 6 | Correlation analysis between PHmeasured and PHSfM in the reproductive
stage of Field 2.

Camera angle RTK GCP Method* r† Bias (m)†

1 −60◦ + + M1 0.907 −0.262

2 −60◦ + − M1 0.906 −0.306

3 −60◦ + + M3 0.899 −0.227

4 −60◦ + − M3 0.899 −0.233

5 −60◦ − + M1 0.894 −0.267

6 −60◦ − + M3 0.886 −0.232

7 −60◦ − − M3 0.883 −0.236

8 −90◦ + − M1 0.869 0.790

9 −90◦ + + M1 0.863 −0.210

10 −60◦ − − M1 0.862 −1.181

11 −90◦ + − M3 0.846 −0.212

12 −90◦ + + M3 0.845 −0.166

13 −90◦ − + M1 0.843 −0.208

14 −90◦ − + M3 0.829 −0.167

15 −90◦ − − M3 0.824 −0.213

16 −90◦ − − M1 0.809 0.045

17 −90◦ + − M2 0.327 −1.745

18 −90◦ + + M2 0.316 −1.736

19 −60◦ + − M2 0.281 −1.821

20 −60◦ − − M2 0.259 −1.836

21 −60◦ + + M2 0.257 −1.790

22 −90◦ − − M2 0.243 −1.783

23 −90◦ − + M2 0.229 −1.769

24 −60◦ − + M2 0.208 −1.828

*Method for obtaining ground altitude (GA); M1, using off-season DSM; M2,
extracting altitude of the soil surface; M3, fitting coordinates of the terrain around
the field to a polynomial surface.
†r is the correlation coefficient between PHmeasured and PHSfM, and bias is the
mean of the difference between PHmeasured and PHSfM (PHSfM − PHmeasured ). Each
value of r and bias is the mean of three flight repetitions.
The rows are sorted by r (bolded) in a descending order.

high goodness of fit for the training data, the model showed low
predictive performance on unknown data from different flights.

The predictive performance on unknown data was higher with
the M1 and GCP methods or with method M3 (Tables 7, 8).
With method M1, GCPs seemed to prevent the deviation
between 3D models from different flights and contributed to
the high predictive performance. For method M3, the predictive
performance was not affected by such deviation, even without
GCPs. The ground surface was determined for each on-season
flight by using method M3. In this process, the effect of the overall
deviation was reduced.

The contribution of RTK positioning to the precision of
PH monitoring was restricted in this study, although only
small effects were observed. With RTK used [+], GCPs
unused [−], and method M1 applied, the R2

val was lower
despite some improvement by a diagonal (−60◦) camera
angle (Tables 7, 8). Although RTK positioning installed
on UAVs enables centimeter-level precision on a DSM
(Forlani et al., 2018), the differences in PH were also at the
centimeter level. Moreover, SfM photogrammetry based on
RTK positioning has larger vertical errors than horizontal
errors (Forlani et al., 2018; Štroner et al., 2020). A previous
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TABLE 7 | Evaluation metrics on cross-validation of PH regression models in the vegetative stage of Field 2.

Camera angle RTK GCP method* R2
train† R2

val† MAE (m)† RMSE (m)† MAPE†

1 −60◦ − + M3 0.820 0.799 0.036 0.044 4.08

2 −60◦ − − M3 (LC)‡ 0.820 0.794 0.036 0.045 4.14

3 −60◦ − + M1 0.801 0.786 0.037 0.046 4.17

4 −60◦ + + M3 0.835 0.770 0.038 0.047 4.36

5 −60◦ + − M3 0.832 0.769 0.038 0.047 4.34

6 −60◦ + + M1 (HC)‡ 0.815 0.766 0.039 0.048 4.36

7 −90◦ − + M3 0.786 0.758 0.038 0.049 4.38

8 −90◦ − − M3 0.782 0.756 0.039 0.049 4.43

9 −90◦ + − M3 0.793 0.745 0.039 0.049 4.42

10 −90◦ + + M3 0.799 0.737 0.040 0.050 4.56

11 −90◦ + + M2 0.783 0.729 0.041 0.051 4.63

12 −90◦ + + M1 0.781 0.728 0.041 0.051 4.61

13 −90◦ − + M2 0.762 0.722 0.041 0.052 4.61

14 −90◦ − + M1 0.762 0.720 0.042 0.052 4.69

15 −90◦ − − M2 0.753 0.703 0.042 0.053 4.74

16 −90◦ + − M2 0.727 0.669 0.043 0.057 4.83

17 −60◦ + − M1 0.814 0.401 0.063 0.073 7.14

18 −60◦ − + M2 0.253 0.200 0.065 0.090 7.32

19 −60◦ − − M2 0.317 0.167 0.063 0.091 7.04

20 −60◦ + − M2 0.146 −0.045 0.077 0.102 8.65

21 −60◦ + + M2 0.142 −0.066 0.077 0.103 8.71

22 −60◦ − − M1 0.731 −40.07 0.582 0.585 65.78

23 −90◦ + − M1 0.764 −74.45 0.774 0.776 87.23

24 −90◦ − − M1 0.658 −99.50 0.791 0.796 88.84

*Method for obtaining ground altitude (GA); M1, using off-season DSM; M2, extracting altitude of the soil surface; M3, fitting coordinates of the terrain around the field to
a polynomial surface.
†R2

train and R2
val are the coefficients of determination for the training and validation datasets, respectively. MAE is the mean absolute error, RMSE is the root mean

squared error, and MAPE is the mean absolute percentage error of the validation data. Each value represents the mean of the 18 validation cases.
‡LC means “Low-cost case” (camera angle: −60◦, RTK: unused [−], GCPs: unused [−], method: M3), and HC means “Highest-cost case” (camera angle: −60◦, RTK:
used [+], GCPs: used [+], method: M1).
The rows are sorted by R2

val (bolded) in a descending order.

TABLE 8 | Evaluation metrics on cross-validation of PH regression models in the reproductive stage of Field 2.

Camera angle RTK GCP Method* R2
train† R2

val† MAE (m)† RMSE (m)† MAPE†

1 −60◦ + + M1 (HC)‡ 0.821 0.803 0.063 0.078 2.36

2 −60◦ + + M3 0.810 0.791 0.066 0.081 2.47

3 −60◦ + − M3 0.808 0.781 0.067 0.083 2.52

4 −60◦ − + M1 0.799 0.771 0.068 0.085 2.55

5 −60◦ − + M3 0.785 0.753 0.071 0.089 2.67

6 −60◦ − − M3 (LC)‡ 0.782 0.749 0.072 0.089 2.70

7 −90◦ + + M1 0.745 0.640 0.086 0.105 3.23

8 −90◦ + + M3 0.718 0.601 0.091 0.111 3.40

9 −90◦ − + M1 0.712 0.597 0.089 0.112 3.32

10 −90◦ + − M3 0.721 0.592 0.093 0.113 3.47

11 −90◦ − − M3 0.680 0.576 0.093 0.115 3.48

12 −90◦ − + M3 0.691 0.562 0.093 0.116 3.48

13 −60◦ + − M1 0.821 0.548 0.097 0.115 3.64

14 −60◦ − − M1 0.746 −14.240 0.637 0.644 23.83

15 −90◦ + − M1 0.756 −15.510 0.608 0.619 22.74

16 −90◦ − − M1 0.653 −49.841 1.115 1.122 41.62

*Method for obtaining ground altitude (GA); M1, using off-season DSM; M3, fitting coordinates of the terrain around the field to a polynomial surface.
†R2

train and R2
val are the coefficients of determination for the training and validation datasets, respectively. MAE is the mean absolute error, RMSE is the root mean

squared error, and MAPE is the mean absolute percentage error of the validation data. Each value represents the mean of the 18 validation cases.
‡LC means “Low-cost case” (camera angle: −60◦, RTK: unused [−], GCPs: unused [−], method: M3), and HC means “Highest-cost case” (camera angle: −60◦, RTK:
used [+], GCPs: used [+], method: M1).
The rows are sorted by R2

val (bolded) in a descending order.
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FIGURE 6 | Scatterplots between measured PH (PHmeasured) and PH
predicted by the linear regression model from PHSfM on validation data.
“Low-cost case (LC)” is the condition with camera angle: −60◦, RTK: unused
[−], GCPs: unused [−], method: M3; and “Highest-cost case (HC)” is the
condition with camera angle: −60◦, RTK: used [+], GCPs: used [+], method:
M1. In each set of analysis conditions (LC or HC) and stage (vegetative or
reproductive), the nearest to the mean in R2

val was selected from 18 validation
cases.

FIGURE 7 | A comparison of DSMs with −60◦ and −90◦ for the camera
angle. The DSMs are shown in grayscale; when the pixel is white, the altitude
is high.

study on a paddy field under similar conditions of UAV
image acquisition reported a 0.031 m vertical coordinate
error (MAE) with a −60◦ camera angle and 2.10 m with
a −90◦ camera angle on UAV-SfM point clouds with RTK
without GCPs (Fujiwara et al., in press). A slight vertical
deviation of point clouds with RTK positioning may cause low
predictive performance for different flight data. For UAV-SfM
reproducibility between different flights, GCPs seem to be more
reliable than RTK.

In this study, the regression models in the two growth
stages were trained separately. In contrast, a common model
across growth stages scored a high coefficient of determination
(R2) in several studies (Madec et al., 2017; Tirado et al.,

2020; Lu et al., 2022). Considering that data from multiple
growth stages have high variance, the proportion of the
variation explained by the model could be large. That is,
when the data obtained from an early stage (e.g., PH = 0.5–
1 m) and from a later stage (e.g., PH = 2–3 m) are mixed
and fitted to a model, a high coefficient of determination is
expected. However, errors such as MAE and RMSE may be
larger than those specific to the growth stage. Stage-specific
models are important for simultaneous evaluation. In this
study, PH prediction of centimeter-level accuracy was made
possible by separating the models from the vegetative and
reproductive stages. Strategies should be selected by considering
the target and accuracy.

With method M3, the coordinates of the terrain are extracted
only around a field, and thus, this method is applicable to
a field covered with plants. In this study, although the trial
fields had passages without plants (Figure 2), these passages
were not used as GA. This was because of the assumption
of production fields without such a passage. It was shown
that method M3 worked when the inside of the field was
covered with plants.

In this study, all outer ROIs were used for polynomial fitting
because bare soil was always visible, that is, weeds were few.
When such bare soil areas around a field are unavailable, it may be
better to eliminate some outer ROI areas. For a field completely
covered with plants without any margin, applying method M3
would be difficult. In such a situation, method M1 with RTK,
GCP, or both may be more suitable.

The shapefiles for ROIs were created on each orthomosaic in
this study; thus, the horizontal deviation of the 3D models did
not affect the predictive performance. However, when common
ROIs in a field are used for different flights, such horizontal
deviations can cause errors. To reduce the cost of creating
ROIs on time-series datasets, high-precision positioning with
GCPs or RTK could be beneficial, regardless of the method
used to obtain GA.

Three-dimensional structural analysis with UAV-SfM is
applicable to PH monitoring, yield prediction (Bendig et al.,
2014; Li et al., 2016; Roth and Streit, 2018; Jiang et al., 2019;
Karunaratne et al., 2020), and lodging detection (Chu et al., 2017;
Yang et al., 2017). Moreover, PH data from UAV-SfM, such as the
mean, percentiles, and coefficient of variation, can be combined
with RGB and multispectral data for crop-monitoring systems
(Li et al., 2016; Jiang et al., 2019; Karunaratne et al., 2020).
The PH obtained using a high-precision and low-cost method is
the basis for advanced demonstrations. The UAV-SfM methods
demonstrated in this study can be applied to various targets and
analytical strategies.

In this study, to evaluate the predictive performance of
unknown data from another flight, a “different-targets-and-
different-flight” cross-validation was conducted. It was suggested
that method M1 with GCPs and method M3 could build
regression models with the goodness of fit to unknown data.
Particularly, with method M3, the predictive performance was
high on “LC” without the use of GCPs or RTK. Therefore,
this could work as a high-precision and low-cost method
for general analysis based on UAV-SfM. Three-dimensional
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structural analysis using this method may prove useful for remote
sensing of production fields.
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