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Estimation of the amino acid content in maize leaves is helpful for improving

maize yield estimation and nitrogen use efficiency. Hyperspectral imaging

can be used to obtain the physiological and biochemical parameters of

maize leaves with the advantages of being rapid, non-destructive, and high

throughput. This study aims to estimate the multiple amino acid contents

in maize leaves using hyperspectral imaging data. Two nitrogen (N) fertilizer

experiments were carried out to obtain the hyperspectral images of fresh

maize leaves. The partial least squares regression (PLSR) method was used

to build the estimation models of various amino acid contents by using the

reflectance of all bands, sensitive band range, and sensitive bands. The models

were then validated with the independent dataset. The results showed that (1)

the spectral reflectance of most amino acids was more sensitive in the range

of 400–717.08 nm than other bands. The estimation accuracy was better by

using the reflectance of the sensitive band range than that of all bands; (2) the

sensitive bands of most amino acids were in the ranges of 505.39–605 nm

and 651–714 nm; and (3) among the 24 amino acids, the estimation models

of the β-aminobutyric acid, ornithine, citrulline, methionine, and histidine

achieved higher accuracy than those of other amino acids, with the R2,

relative root mean square error (RE), and relative percent deviation (RPD) of

the measured and estimated value of testing samples in the range of 0.84–

0.96, 8.79%–19.77%, and 2.58–5.18, respectively. This study can provide a

non-destructive and rapid diagnostic method for genetic sensitive analysis

and variety improvement of maize.
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Abbreviations: N, nitrogen; PLSR, partial least squares regression; CV, coefficient of variation;
MVP, major vault protein; PC, personal computer; NDVI, normalized difference vegetation index;
Ala, alanine; GABA, γ-aminobutyric acid; BABA, β-aminobutyric acid; Arg, arginine; Asp, aspartic
acid; Cit, citrulline; Glu, glutamic acid; Gly, glycine; His, histidine; Ile, isoleucine; Leu, leucine; Lys,
lysine; Met, methionine; Orn, ornithine; Phe, phenylalanine; Pro, proline; Sar, sarcosine; Ser, serine;
Thr, threonine; Trp, tryptophan; Tyr, tyrosine; Gln, glutamine; Val, valine; Asn, asparagine; PRESS,
prediction error of square sum; RMSE, root mean square error; RE, relative root mean square
error; RPD, relative percent deviation; SD, standard deviation; PCR, principal component regression;
SVM, support vector machine; SPA, successive projection algorithm; CARS, competitive adaptive
reweighted sampling; ISIC, instability index between classes.
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Introduction

Maize is one of the most important crops in the world
(Long et al., 2017; Khanal et al., 2018; Shu et al., 2021).
Nitrogen (N) is one of the most important nutrient elements
in maize growth (Smil, 2002; Xu et al., 2021). The nitrogen
translocation in maize leaves was mainly in the form of
glutamine (Perchlik and Tegeder, 2018). The maize yield is
correlated well with the amino acids in leaves, such as glutamine,
glutamate, alanine, aspartate, and asparagine at the grain
filling stage (Cañas et al., 2017). Therefore, accurate and rapid
estimation of amino acid contents in maize leaves is of great
significance in improving maize yield estimation and nitrogen
use efficiency.The spectrophotometry, chemical analysis, and
mass spectrometry are the main methods for determining the
amino acid content. These methods can estimate a variety
of amino acids and have the advantages of high sensitivity
and accuracy. However, all of them need to damage samples
and require complex sample processing, low throughput, and
high price. The hyperspectral imaging technology provides
a new method for estimating physiological and biochemical
parameters of crops with the advantages of being rapid, high
throughput, and non-destructive (Li et al., 2019; Mao et al.,
2020). Hyperspectral imaging technology has been used for
high-throughput screening of crop phenotypic traits (Zhu et al.,
2020; Wang et al., 2021).

Hyperspectral imaging technology can acquire the spectral
and spatial information of research objects at the same time
(Zhu et al., 2019; Liu et al., 2020). Compared to digital or
multispectral imaging, the advantage of hyperspectral imaging
is that it can obtain hundreds of narrow bands with high
spectral resolution and convenient operation. Changes in
various chemical components of research objects will lead to
variations in the reflectance of sensitive bands. Therefore, the
spectral reflectance can quickly estimate agricultural products’
physiological and biochemical parameters (Pandey et al., 2017).
The hyperspectral imaging technology has been widely applied
and performed well in the non-destructive estimation of food
and plant physicochemical properties (Yang et al., 2019; Huang
et al., 2021), including meat, fruit, vegetation, and crop. Studies
have shown that hyperspectral imaging has achieved satisfactory
results in determining protein and amino acid content (Zhang
et al., 2015; Egesel et al., 2016; Caporaso et al., 2018). To the
best of our knowledge, little information has been conducted on
applying hyperspectral imaging to molecular and biochemical
parameters in plant leaves. Particularly, the research on the
application of hyperspectral data in estimating the amino acid
contents in fresh maize leaves is very limited.

Therefore, the study aimed to explore the feasibility of
estimating various amino acid contents in fresh maize leaves
using hyperspectral imaging data. Considering that the amount
of nitrogen fertilizer will greatly affect the amino acid content in
maize leaves, we conducted two independent experiments with

variable N fertilizer applications. First, the sensitive band range
and sensitive bands of each amino acid were selected by the
coefficient of variation (CV) and partial least squares regression
(PLSR) coefficient tests. Then, the models of 24 amino acid
contents were established based on the reflectance of all bands,
sensitive band range, and sensitive bands, respectively. Finally,
the samples that were not involved in model construction were
used to verify the model accuracy of each amino acid.

Experimental design and data
acquisition

In this study, two experiments were conducted for different
N applications. The Pika-L hyperspectral imager (Resonon,
United States) collected the hyperspectral images of maize
leaves. The 24 amino acid contents in maize leaves were
determined by liquid chromatography-mass spectrometry (LC-
MS).

Experimental design

(1) Exp1: different N application rates
Four inbred lines with great differences in nitrogen

use efficiency were selected as the test varieties, including
CIMBL123, CML422, 526018, and CIMBL78. The sensitivities
of these varieties were as follows: CIMBL123 has a low soil
and plant analyzer development (SPAD) value and yield with
low nitrogen fertilizer. CML422 has a high SPAD value and
yield with low nitrogen fertilizer. 526,018 has a low SPAD
value and yield with high nitrogen fertilizer. CIMBL78 has a
high SPAD value and yield with high nitrogen fertilizer. Maize
seedlings were cultured in a complete nutrient solution with
major vault protein (MVP) stone in the greenhouse until they
had two outward leaves and one heart leaf. Then, three N
fertilizer application rates were set up as follows: complete N
treatment (N concentration was 5 mmol/L), 1/2 N treatment
(N concentration was 2.5 mmol/L), and 1/4 N treatment (N
concentration was 1.25 mmol/L). Before the V7 stage, 1.5 L
nutrient solution was poured three times. A volume of 1 L
nutrient solution was poured at the jointing stage and the male
powder dispersing stage.

We collected leaf samples at the V6 stage and the filling
stage. The 6th fully unfolded leaf and the leaf under the
ear were cut off, and the hyperspectral images were obtained
immediately. The veins and yellow areas of the leaves were then
removed, and the remaining leaves were placed in tinfoil bags,
frozen in liquid nitrogen, and stored in the refrigerator at –80◦C
for the amino acid content determinations. Six replicates were
taken for the different N application experiments. A total of 144
samples were collected in Exp1.

(2) Exp2: N starvation treatment

Frontiers in Plant Science 02 frontiersin.org

https://doi.org/10.3389/fpls.2022.885794
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-885794 July 28, 2022 Time: 16:41 # 3

Shu et al. 10.3389/fpls.2022.885794

Two inbred lines, namely, CIMBL123 and CML422, were
selected as the test varieties. The Center for Crop Functional
Genomics and Molecular Breeding of China Agricultural
University provided all the test varieties. The maize seedlings
were cultured in deionized water. In the early stage, the seedlings
were cultured with a complete nutrient solution. The seedlings
were treated with a low N treatment (0.05 mmol/L) when they
had two leaves and one heart.

Leaf samples were collected every 3 days for a total of
13 times. The second fully expanded leaf was cut off from
top to bottom, and the hyperspectral images were obtained
immediately. The veins and yellow areas of the leaves were then
removed, and the remaining leaves were placed in tinfoil bags,
frozen in liquid nitrogen, and stored in the refrigerator at –80◦C
for the various amino acid content determinations. Six replicates
were taken for the different N application experiments. A total
of 146 samples were collected in Exp2.

Hyperspectral images acquisition

The hyperspectral images of maize leaves were collected
after each sampling. The Pika-L imaging spectrometer was
used to obtain the hyperspectral images. Pika-L images provide
the band range of 400–1,000 nm with a total of 300 spectral
channels and 900 spatial channels. The spectral resolution was
2.1 nm. The pixel size is 5.86 µm with a field of view of 17.6◦.
This equipment has the advantages of low astigmatism, low
distortion, and a high signal-to-noise ratio.

A hyperspectral image acquisition system was designed and
is shown in Figure 1. The system was mainly composed of
Pika-L, a personal computer (PC), a halogen lamp, a mobile
carrier platform, a stepper motor, a speed controller, and
a blade flattening device. A halogen lamp provided stable
light similar to sunlight to obtain a stable hyper-spectrum
of leaves. The power of the halogen lamp is 220 W. To
reduce the influence of the external environment on image
quality, the hyperspectral image acquisition of maize leaves
was carried out in a relatively stable dark room. Each leaf
was spread flat on the platform. The hyperspectral image
of the leaf was obtained directly above the leaf using the
Pika-L spectrometer. Before the experiment, the hyperspectral
imaging system was turned on and preheated for 30 min. The
parameters of this system were set as follows: exposure time
was 4.35 ms, and the speed of the electronically mobile carrier
platform was 6 mm/s.

Preprocessing of hyperspectral images

The hyperspectral images obtained include green leaves
and the background. The normalized difference vegetation
index (NDVI) can be used to separate green leaves from the

background. NDVI is calculated by the reflectance of the near-
infrared band and the red band (Formula 1) (Thenkabail et al.,
2000). This study set a threshold (NDVI > 0) to distinguish
the leaf pixels from the background pixels. The average
hyperspectral reflectance of green leaf pixels was obtained to
estimate the content of amino acids in maize leaves.

NDVI =
rnir−rred
rnir+rred

(1)

where rnir and rred are the reflectance of 780 nm and
660 nm, respectively.

Amino acid data collection

The amino acid content was determined using LC-MS.
The liquid chromatography used was ACQUITY UPLC I-Class
(Waters, United States). Mass Spectrometer adopted the Q
Exactive Focus system (Thermo Fisher, United States). Thermo
Xcalibur 4.0 was used for data analysis. The measurement
process includes the following processes: (1) Sample processing.
The leaf samples were ground into powder and freeze-dried. The
20-mg freeze-dried powder was weighed as a subsample, adding
1 ml of water. Then the subsample was shaken by an ultrasonic
crusher for 30 min. The subsample was centrifugally rotated for
10 min at 14,000 rpm/min.

(2) Sample derivatization. A volume of 10 µl of supernatant
was taken, 50 µl of borate buffer solution and 20 µl derivative
solution were added, the resultant solution was placed at room
temperature for 1 min and then derived on an oscillator at
55◦C for 10 min.

(3) Suction and filtration. The derived sample was cooled
to room temperature and then filtered using a 1-ml syringe and
filter membrane. (4) Bottling and measuring sample. The filtered
sample was transferred to the glass bottle, the sample on the
machine was tested, and the data were exported. (5) Drawing the
standard curve of amino acids. The standard sample of amino
acids was diluted to different concentrations. The peak values
of molecular ions varied gradually with the increase of solution
concentration, showing a linear relationship. (6) Calculating
the reference value of amino acids. The Thermo Xcalibur4.0
software was used to process the mass spectrogram. The types
of amino acids were determined according to the retention time
and mass-charge ratio, and the peak values of molecular ions
were recorded. Finally, the contents of various amino acids were
obtained by putting the ion peak value into the equation of the
standard curve of various amino acids.

There were 24 amino acids in maize leaves, including
alanine (Ala), γ-aminobutyric acid (GABA), β-aminobutyric
acid (BABA), arginine (Arg), aspartic acid (Asp), citrulline (Cit),
glutamic acid (Glu), glycine (Gly), histidine (His), isoleucine
(Ile), leucine (Leu), lysine (Lys), methionine (Met), ornithine
(Orn), phenylalanine (Phe), proline (Pro), sarcosine (Sar),
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FIGURE 1

Hyperspectral images acquisition system.

serine (Ser), threonine (Thr), tryptophan (Trp), tyrosine (Tyr),
glutamine (Gln), valine (Val), and asparagine (Asn).

Materials and methods

Data preprocessing

Savitzky-Golay filter was used to remove noise from the
hyperspectral reflectance. Savitzky-Golay filter is one of the
commonly used filtering methods in spectral preprocessing
and can improve the smoothness of the spectrum and
reduce the noise interference (Dai et al., 2017). Due to the
different magnitude of various amino acid contents, z-score
standardization was used to deal with the amino acid content.

Model construction

The estimation models of the 24 amino acid contents were
constructed based on the reflectance of all bands, sensitive band
range, and sensitive bands with the PLSR method. The PLSR,
proposed by Herman Wold in the 1970s, cannot only reduce
the dimension of the data but also solve the collinearity between
the bands (Wu and He, 2014). In this study, the leave-one-out
cross-validation was used to determine the number of principal
components. We calculated the predicted residual error sum
of squares (PRESS) of the predicted value of n–1 principal
component and selected the principal components with the
lowest PRESS for regression modeling. For all models, 70% (203)
of the samples were used as the training set to construct the
model, and the remaining 30% (87) were used as the test set to
evaluate the model’s accuracy. To eliminate the random error,
the modeling process was repeated 100 times, and the average
result of the 100 repetitions was taken as the final result.

Sensitive bands screening

Hyperspectral data contain hundreds of bands. Data
redundancy and multicollinearity need to be addressed. Studies
have shown that only using sensitive bands to establish the
model can not only reduce the computational burden but also
improve the accuracy and stability of the model (Wan et al.,
2020). In this study, the reflectance of maize leaves was obtained
at 400–1,000 nm. The greater the reflectivity variability of this
band, the more sensitive it is to amino acids. The CV (Equation
2) was used to determine the sensitive band range of each amino
acid.

CV =
SD

Mean
x100% (2)

where SD and mean represent the standard deviation and mean
value, respectively.

Using the selected sensitive band range, we constructed the
PLSR model of each amino acid and performed the regression
coefficient test of the model. When screening sensitive bands,
we referred to the study by Meng et al. (2013). Taking the band
reflectance of the two regions as input variables, the estimation
models of amino acids in maize leaves were established based on
PLS regression. The regression coefficient was used to quantify
the correlation between the band and the model. The larger
the absolute value of the regression coefficient, the stronger the
correlation between the band and the model. The absolute values
of the regression coefficients of each band were sorted from
small to large. The bands were removed one by one, and the
model was then reconstructed. The reconstructed model was
evaluated according to the PRESS. The band was counted when
the PRESS value of the model was at its minimum. The above
process was repeated 100 times. The bands with frequencies
greater than 80 Hz used in modeling with the minimum model
PRESS were taken as the sensitive bands of that amino acid.
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Model evaluation

The evaluation indices of the model include the
determination coefficient (R2), root mean square error
(RMSE), relative root mean square error (RE), and relative
percent deviation (RPD). The average values of R2, RMSE, RE,
and RPD with test set for 100 times were used to evaluate the
performance and stability of models.

R2
= 1−

∑
i (
∧
yi− yi)

2

∑
i (
−
yi− yi)

2 (3)

RMSE =

√√√√ 1
m

m∑
i=1

(yi−
∧
yi)

2

(4)

RE =

√√√√ 1
m

m∑
i=1

(yi−
∧
yi)

2
×

100%
−
yi

(5)

RPD =
SD

RMSE
(6)

where m is the number of samples, yi ,
−
yi ,
∧
yi are the measured

and the predicted values of various amino acid contents of
sample i, and SD represents standard deviation.

Results and analysis

Statistics of different amino acid
contents

The descriptive statistics for the entire sample are reported
in Table 1. The descriptive statistics of the data included
range, standard deviation (SD), and CV. The mean values of
Sar, Ala, Glu, and Ser were relatively large, indicating that
these amino acid contents in the samples were relatively high.
The CV of Gln, Asn, Ser, and Gly was larger than the other
amino acids, which may be that these amino acids were more
sensitive to N treatment.

Figure 2 shows the comparison of various amino acid
contents in maize leaves of two inbred lines sampled at the
early and later stages of the nitrogen starvation experiment. In
Figure 2, the early and later stages refer to the first three and
the last three samples in the nitrogen starvation experiment,
respectively. It can be seen that the contents of various amino
acids of the two inbred lines in the later stage were lower than
those in the early stage. The contents of alanine, γ-aminobutyric
acid, arginine, glutamic acid, proline, sarcosine, threonine, and
tyrosine in the later stage were significantly lower than those in
the early stage.

Estimation models using the
reflectance of all bands

With the spectral reflectance of all bands as the independent
variable and the amino acid contents as the dependent variable,
we established the PLSR model of 24 amino acid contents. The
validation results of the model using the test set are shown
in Table 2. The estimation accuracies of β-aminobutyric acid,
ornithine, citrulline, methionine, and histidine were the best,
with R2, RE, and RPD of the test set in the range of 0.84–0.95,
9.68%–20.38%, and 2.52–4.95. The models of sarcosine, alanine,
glutamic acid, proline, threonine, aspartic acid, and leucine had
relatively good estimation accuracy, with R2, RE, and RPD of
the test set in the range of 0.57–0.73, 23.23%–39.75%, and 1.53–
1.95. The performance of the other amino acid models was
relatively poor.

Estimation models using the
reflectance of the sensitive band range

Figure 3 shows the CV value of the spectral reflectivity of
each sample (A) and all samples (B). The CV and variation range
of the samples were large in the range of 400–717.08 nm and
small in the range of 717.08–1,100 nm. We further constructed
and validated the PLSR model of each amino acid based on
the reflectance in the ranges of 400–717.08 nm and 717.08–
1,100 nm, respectively. The results are shown in Table 3. The
estimation model of citrulline was relatively good when using
the reflectance in the range of 717.08–1,100 nm, while the
estimation models of most other amino acids performed well
when using the reflectance in the range of 400–717.08 nm.
Therefore, the bands in the range of 400–717.008 nm were more
sensitive to various amino acids than those in the range of
717.08–1,100 nm.

Estimation models using the
reflectance of sensitive bands

The specific sensitive bands of various amino acids were
further screened in the range of 400–717.08 nm. We established
the PLSR model of each amino acid using the reflectance in
the range of 400–717.08 nm and performed the regression
coefficient test of the model. Figure 3 shows the usage frequency
of each band in 100 times modeling. The dark colors indicate the
more times the band appeared and the more important the band
was. As seen in Figure 4, the sensitive bands of most amino acids
were mainly concentrated in the ranges of 505.39–604.95 nm
and 651.21–714.10 nm.

Table 4 shows the validation results of PLSR model using
test set for each amino acid based on the sensitive bands.
The estimation accuracies of methionine, ornithine, sarcosine,

Frontiers in Plant Science 05 frontiersin.org

https://doi.org/10.3389/fpls.2022.885794
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-885794 July 28, 2022 Time: 16:41 # 6

Shu et al. 10.3389/fpls.2022.885794

TABLE 1 Descriptive statistics of various amino acid contents in fresh leaves for the whole datasets (µ mol/L).

Category Max Min Mean SD CV (%) Category Max Min Mean SD CV (%)

BABA 64.08 0.06 7.00 6.60 94.29 Ile 66.41 0.06 8.16 7.41 90.81

Orn 11.24 0.49 5.55 4.40 79.28 GABA 51.17 0.06 10.00 8.06 80.60

Cit 16.51 0.04 4.91 3.85 78.41 Arg 19.55 2.98 7.94 3.73 46.98

Met 10.55 0.03 4.20 3.05 72.62 Tyr 40.10 2.46 9.86 5.97 60.55

His 34.40 0.39 6.49 4.56 70.26 Gln 224.48 0.09 20.93 31.58 150.88

Sar 788.29 3.75 149.96 134.36 89.60 Asn 167.89 0.03 13.11 20.83 158.89

Ala 770.64 3.75 145.37 126.77 87.21 Val 112.95 4.29 19.28 13.27 68.83

Glu 678.80 3.25 166.38 113.28 68.09 Lys 101.42 0.99 13.80 7.22 52.32

Pro 52.69 1.06 10.14 6.82 67.26 Phe 48.76 2.11 9.87 5.10 51.67

Thr 131.36 0.88 21.71 15.35 70.70 Trp 51.27 1.30 8.69 6.90 79.40

Asp 207.79 4.27 41.14 28.85 70.13 Ser 622.39 1.55 63.71 87.94 138.03

Leu 72.26 2.23 12.92 8.71 67.41 Gly 520.43 3.48 35.23 51.36 145.78

SD, standard deviation; CV, coefficient of variation.

FIGURE 2

The contents of various amino acids in the leaves of two inbred lines at the early and later stages of nitrogen starvation treatment. ∗ and ∗∗

represent significance at the 0.05 and 0.01 probability level (p < 0.05 and P < 0.01).

TABLE 2 Evaluation results of PLSR model using test set for various amino acid contents based on the reflectance of all bands.

Category R2 RMSE (µ mol/L) RE (%) RPD Category R2 RMSE (µ mol/L) RE (%) RPD

BABA 0.95 0.80 9.68 4.95 Ile 0.54 2.56 31.50 1.48

Orn 0.94 0.77 9.87 4.64 GABA 0.50 3.90 41.56 1.43

Cit 0.92 0.96 15.95 3.74 Arg 0.49 2.48 29.34 1.42

Met 0.87 1.01 20.19 2.91 Tyr 0.49 2.61 30.44 1.42

His 0.84 1.30 20.38 2.52 Gln 0.45 13.37 71.94 1.37

Sar 0.73 53.97 39.75 1.95 Asn 0.45 11.15 90.00 1.37

Ala 0.70 50.62 39.41 1.86 Val 0.44 4.88 30.02 1.36

Glu 0.69 54.69 36.00 1.82 Lys 0.43 3.29 23.56 1.33

Pro 0.68 2.38 23.23 1.79 Phe 0.43 2.42 25.84 1.34

Thr 0.68 5.55 27.02 1.80 Trp 0.40 2.94 39.50 1.30

Asp 0.58 15.09 38.72 1.56 Ser 0.37 26.05 55.03 1.27

Leu 0.57 3.54 29.30 1.53 Gly 0.32 17.88 66.75 1.23
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FIGURE 3

The coefficient of variation (CV) values of different samples (Left) and all samples (Right) in various bands. V7 and DAS15 represent the samples
obtained at two sampling dates under different N treatments, respectively. N stress represents the samples obtained in the N starvation
treatment experiment. V7 indicates that the maize is in the stage of the seventh fully unfolded leaf; DAS15 means the 15th day after maize silk.

TABLE 3 Evaluation results of PLSR model using test set for various amino acid contents based on the reflectance of band ranges.

Category 400–717.08 nm 717.08–1,100 nm

R2 RMSE (µ mol/L) RE (%) RPD R2 RMSE (µ mol/L) RE (%) RPD

BABA 0.96 0.75 9.19 5.16 0.96 0.76 9.23 5.13

Orn 0.94 0.73 9.22 4.91 0.95 0.67 8.48 5.48

Cit 0.92 0.95 15.69 3.82 0.93 0.92 15.75 3.90

Met 0.88 0.98 19.48 3.03 0.88 0.99 19.77 3.01

His 0.84 1.27 19.77 2.58 0.82 1.36 21.16 2.45

Sar 0.73 53.59 39.84 1.94 0.68 57.19 42.16 1.81

Ala 0.70 51.09 39.81 1.87 0.65 55.56 42.62 1.71

Glu 0.71 52.28 34.12 1.88 0.65 56.81 37.72 1.72

Pro 0.67 2.38 23.23 1.77 0.65 2.44 23.94 1.71

Thr 0.68 5.55 27.02 1.81 0.66 5.77 28.02 1.75

Asp 0.55 15.50 39.38 1.52 0.53 15.82 40.19 1.47

Leu 0.61 3.37 27.94 1.62 0.52 3.76 31.08 1.46

Ile 0.52 2.60 31.91 1.47 0.44 2.83 34.75 1.34

GABA 0.54 3.76 39.91 1.49 0.47 3.99 42.53 1.39

Arg 0.52 2.38 28.50 1.45 0.44 2.59 30.72 1.35

Tyr 0.51 2.54 29.86 1.45 0.45 2.67 31.19 1.38

Gln 0.54 12.72 67.38 1.51 0.31 15.44 84.06 1.22

Asn 0.44 10.79 91.25 1.35 0.41 1.79 96.38 1.30

Val 0.46 4.79 29.52 1.38 0.37 5.05 31.59 1.27

Lys 0.45 3.21 23.06 1.36 0.41 3.35 23.8 1.31

Phe 0.46 2.40 25.36 1.37 0.43 2.44 26.00 1.33

Trp 0.42 2.79 38.06 1.33 0.41 2.89 39.31 1.31

Ser 0.42 25.56 53.44 1.32 0.32 27.64 57.69 1.22

Gly 0.34 17.36 66.25 1.24 0.28 17.92 67.75 1.19
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FIGURE 4

The usage frequency of each band in 100 times of modeling.

alanine, and asparagine were improved compared with the
models constructed with the reflectance in the range of 400–
717.08 nm. However, the estimation accuracies of alanine,
histidine, threonine, tryptophan, citrulline, β-aminobutyric
acid, and aspartic acid were almost unchanged, and those
of other amino acids were relatively decreased. In summary,
when modeling with the reflectance of the sensitive bands,
the estimation accuracies of 11 amino acids by test set
were improved or equivalent to that of the model using the
reflectance of band range.

Optimal estimation result of each
amino acid content

The evaluation results of the optimal model for each amino
acid and the bands used are summarized in Table 5. It generally
suggests that the model estimation accuracies of β-aminobutyric
acid, ornithine, citrulline, methionine, histidine, and sarcosine
using test set were relatively high, with R2 more than 0.7.
Among the 24 amino acids, five amino acids obtained the
best estimation accuracy based on the reflectance of sensitive
bands. A total of 15 amino acids obtained the best estimation
accuracy based on the reflectance of the sensitive band range,
of which 14 amino acids used the reflectance in the range
of 400–717.08 nm.

Figure 5 shows the results of testing one model randomly
selected from 100 PLS regression models by the optimal
estimation method. The predicted values of histidine, sarcosine,
glutamic acid, and alanine were close to the measured values.
The measured and predicted values of threonine, proline,
leucine, and aspartic acid also matched well.

Discussion

In recent years, spectral technology is a rapidly developed
and widely used non-destructive testing technology. Amino
acids can help to promote plant growth and metabolism,
enhance leaf photosynthesis, and improve crop resistance to
diseases and insect pests (Liu et al., 2021). The research on the
application of hyperspectral data in estimating the 24 amino
acid contents in fresh maize leaves is very limited. We obtained
the sensitive band range and sensitive bands of each amino
acid through the CV and PLSR coefficient tests, respectively.
The R2 of the estimated and measured value of amino acid
content was up to 0.96, among which 11 amino acids had an
R2 of more than 0.6.

The physiological and biochemical traits in crop growth,
such as nitrogen content, enzyme content, protein content,
amino acid content, and photosynthesis rate (Sofonia et al.,
2019), can reflect the growth status of the plant and be
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TABLE 4 Evaluation results of PLSR model using test set for various amino acid contents based on the reflectance of sensitive bands.

Category R2 RMSE (µ mol/L) RE (%) RPD Category R2 RMSE (µ mol/L) RE (%) RPD

BABA 0.95 0.77 9.19 4.91 Ile 0.46 2.79 34.56 1.37

Orn 0.95 0.69 8.79 5.18 GABA 0.47 3.95 42.00 1.38

Cit 0.92 0.98 16.55 3.72 Arg 0.48 2.51 29.78 1.39

Met 0.90 0.91 19.03 3.30 Tyr 0.44 2.74 32.03 1.35

His 0.84 1.30 20.20 2.52 Gln 0.38 15.13 79.25 1.28

Sar 0.73 53.05 39.69 1.94 Asn 0.46 10.99 91.06 1.36

Ala 0.70 50.53 39.69 1.85 Val 0.36 5.18 32.19 1.26

Glu 0.67 56.88 37.16 1.75 Lys 0.32 3.61 25.84 1.22

Pro 0.59 2.67 25.95 1.58 Phe 0.44 2.44 25.72 1.35

Thr 0.65 5.80 28.16 1.71 Trp 0.42 2.86 38.69 1.33

Asp 0.54 15.79 39.97 1.48 Ser 0.36 27.36 57.00 1.26

Leu 0.55 3.65 30.22 1.50 Gly 0.32 17.64 67.69 1.22

TABLE 5 Summary of optimal estimate results of each amino acid content using the test set.

Category R2 RMSE (µ mol/L) RE (%) RPD Used bands

BABA 0.96 0.75 9.19 5.16 400–717.08 nm

Orn 0.95 0.69 8.79 5.18 Sensitive band

Cit 0.93 0.92 15.75 3.90 717.08–1,100 nm

Met 0.90 0.91 19.03 3.30 Sensitive band

His 0.84 1.27 19.77 2.58 400–717.08 nm

Sar 0.73 53.05 39.69 1.94 Sensitive band

Ala 0.70 50.53 39.69 1.85 Sensitive band

Glu 0.71 52.28 34.12 1.88 400–717.08 nm

Pro 0.68 2.38 23.23 1.79 400–1,100 nm

Thr 0.68 5.55 27.02 1.80 400–1,100 nm

Asp 0.58 15.09 38.72 1.56 400–1,100 nm

Leu 0.61 3.37 27.94 1.62 400–717.08 nm

Ile 0.54 2.56 31.50 1.48 400–1,100 nm

GABA 0.54 3.76 39.91 1.49 400–717.08 nm

Arg 0.52 2.38 28.50 1.45 400–717.08 nm

Tyr 0.51 2.54 29.86 1.45 400–717.08 nm

Gln 0.54 12.72 67.38 1.51 400–717.08 nm

Asn 0.46 10.99 91.06 1.36 Sensitive band

Val 0.46 4.79 29.52 1.38 400–717.08 nm

Lys 0.45 3.21 23.06 1.36 400–717.08 nm

Phe 0.46 2.40 25.36 1.37 400–717.08 nm

Trp 0.42 2.79 38.06 1.33 400–717.08 nm

Ser 0.42 25.56 53.44 1.32 400–717.08 nm

Gly 0.34 17.36 66.25 1.24 400–717.08 nm

used to estimate crop yields. It is important to obtain crop
physiological and biochemical phenotypes accurately, quickly,
and cheaply. In terms of crop physiological phenotypes, the
main indices included fresh weight, dry weight, water content,
photosynthesis parameters (Vc, max, Jmax), and the internal
structure of leaves (Fu et al., 2019; Gerhards et al., 2019).
The main indices for crop biochemical phenotypes involved in
previous studies include nitrogen content, pigment (chlorophyll

a and b, carotenoid, anthocyanin), sucrose content, water
content, major elements, trace elements, and protein content
(Gu et al., 2018; Zhang et al., 2020). Caporaso et al. (2018)
used hyperspectral imaging and PLSR to predict single kernel
protein content and performed well with an R2 of 0.82. Zhang
et al. (2019) combined hyperspectral imaging with PLSR,
principal component regression (PCR), and support vector
machine (SVM) to detect starch content in rice. The R2 of the
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FIGURE 5

Scatterplot of the measured value against the predicted value of the various amino acid contents by the optimal estimation method using test
set. The caption above each subfigure is the name of the amino acid. V7 and DAS15 represent the samples obtained at two sampling times
under different N treatments. N stress represents the samples obtained in the N starvation treatment experiment. V7 indicates that the maize is
in the stage of the seventh fully unfolded leaf; DAS15 means the 15th day after maize silk.

prediction model reached 0.80. Amanah et al. (2021) used near-
infrared hyperspectral imaging to realize the non-destructive
detection of anthocyanin content in black rice seeds, and
the R2 of the best prediction model was 0.95. These studies
showed that hyperspectral technology had high feasibility in
the physiological indexes of crops. We also modeled the 24
amino acid contents in maize leaves. Some of them have high
accuracy and are consistent with the above research results.
Similar to the above study, we also determined the sensitive
bands of each amino acid through the regression coefficient
test of PLSR. The difference is that before determining the
sensitive band, the full spectra were divided into two regions
through the CV of band reflectance, which helped reduce the
redundancy of spectral information and narrow the spectral
range for subsequent screening of sensitive bands for sensitive
bands to increase the computation amount of model operation.

Nitrogen transfer in plants usually occurs in the form
of amino acids. The proportion of amino acids produced by
leaf photosynthesis varies with different amounts of nitrogen
application. Crop plants mainly absorb nitrate-nitrogen (NO3-)
and ammonium-nitrogen (NH4+). NH4+, absorbed by roots,
synthesizes glutamate under the action of glutamine synthetase
and then forms amino acids by glutamate synthetase and amino
acid transferase. The absorbed NO3- forms NO2- under the
catalysis of nitrate reductase. Most of the absorbed NO2- is
transformed to NH4+ by nitrite reductase and transported to
the leaf to synthesize glutamate and amino acids. The amount

of nitrogen applied is closely related to the proportion of
various amino acid contents in leaves. Therefore, it is feasible to
use hyperspectral information to diagnose various amino acid
contents in leaves.

PLSR is the most widely used traditional regression
modeling method (Fu et al., 2021). Considering that the
sensitive spectral band of amino acids in leaves was unclear, we
first used all bands to analyze the modeling effect of various
amino acids. We then reduced the spectral range by the spectral
reflectance CV of all samples. It is found that the sensitivity
of 400–717.08 nm reflectance to the content of various amino
acid contents was much higher than that of 717.08–1,100 nm
reflectance. Different N treatments led to great differences in
some amino acid contents in leaves. We divided the spectrum
into two regions, which helped to reduce the redundancy of
spectral information and to narrow the spectral range for
subsequent screening of sensitive bands. It is determined that
the sensitive bands of most amino acids are mainly concentrated
in the ranges of 505.39–604.95 nm and 651.21–714.10 nm. This
progressive feature band screening method effectively improves
the accuracy of amino acid-sensitive bands. Many studies have
shown that hyperspectral information can effectively retrieve
leaf nitrogen and chlorophyll content, and sensitive bands of
chlorophyll content are mainly around 500 nm and 670 nm
(Wang et al., 2015; Silva-Perez et al., 2018). The characteristic
bands of most amino acids were mainly concentrated in the
ranges of 505.39–604.95 nm and 651.21–714.10 nm, which may
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be mainly caused by the influence of various pigments in maize
leaves, especially the chlorophyll content.

There are relatively few studies on the non-destructive
detection of the amino acid content in leaves by spectral
spectroscopy. N stress experiments were carried out under
suitable moisture and light conditions, and our study had no
water stress. However, we have only analyzed the amino acids
in maize leaves. With hyperspectral imaging, it is necessary
to carry out further studies to prove the feasibility of non-
destructive detection of the amino acid content on the leaves
of more vegetation types. The models based on the reflectance
of the sensitive band range or sensitive bands performed better
than those using the reflectance of all bands, showing that
selecting sensitive bands helped to effectively improve the
accuracy of model estimation. There are many methods to
choose sensitive bands, such as successive projection algorithm
(SPA) (Shorten et al., 2019), competitive adaptive reweighted
sampling (CARS) (Gu et al., 2019), and instability index
between classes (ISIC) (Zhang et al., 2018). Next, we will
compare and analyze the similarities and differences between
the bands obtained by different band screening methods and
their impacts on the accuracy of the estimation model. Studies
show that machine learning performs better than traditional
regression in crop estimation (Chlingaryan et al., 2018; Yue
et al., 2018). We will try to use a machine learning algorithm
in the follow-up research further to improve the accuracy
and stability of the model. The different contents of various
amino acids will also lead to different responses in the narrow
hyperspectral band, and the screening of sensitive bands helps
estimate the content of some amino acids. This study found
that imaging hyper-spectrum can estimate the amino acid
contents in maize leaves, which can guide more researchers
to study this topic. Of course, we are still exploring this
area, and we need to test further the ability of hyperspectral
technology to non-destructively estimate amino acid contents in
the leaves of other crops.

Conclusion

This study used hyperspectral imaging data to estimate
the 24 amino acid contents in maize leaves. The sensitive
band range and sensitive band of each amino acid were
selected by the CV and PLSR coefficient tests, respectively.
We found the spectral reflectance of various amino acids
varied greatly in the range of 400–717.08 nm. The regression
coefficient test of PLSR found that the sensitive bands of
most amino acids were in the ranges of 505.39–604.95 nm
and 651.21–714.10 nm. The model estimations of the 24
amino acid contents were constructed and validated based
on the reflectance of all bands, sensitive band range, and
sensitive bands. We selected the optimal estimation method
for each amino acid. The estimation accuracy of the content

of β-aminobutyric acid, ornithine, citrulline, methionine, and
histidine was better than other amino acids, with R2, RE,
and RPD of the test set in the range of 0.84–0.96, 8.79%–
19.77%, and 2.58–5.18. The estimation accuracies of the
content of sarcosine, alanine, glutamic acid, proline, threonine,
leucine, and aspartic acid were normal, with R2, RE, and
RPD of the test set in the range of 0.58–0.73, 23.23%–
39.69%, and 1.56–1.94. The performance of the other amino
acid models was relatively poor. This study can provide a
reference for monitoring the traits of breeding materials based
on hyperspectral technology.
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