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Pollinators are attracted to vibrant flower colors. That is why flower color is the key agent 
to allow successful fruit set in food or ornamental crops. However, black flower color is 
the least attractive to pollinators, although a number of plant species produce black 
flowers. Cyanidin-based anthocyanins are thought to be the key agents to induce black 
color in the ornamental and fruit crops. R2R3-MYB transcription factors (TFs) play key 
roles for the tissue-specific accumulation of anthocyanin. MYB1 and MYB11 are the key 
TFs regulating the expression of anthocyanin biosynthesis genes for black color 
accumulation. Post-transcriptional silencing of flavone synthase II (FNS) gene is the 
technological method to stimulate the accumulation of cyanidin-based anthocyanins in 
black cultivars. Type 1 promoter of DvIVS takes the advantage of FNS silencing to produce 
large amounts of black anthocyanins. Exogenous ethylene application triggers anthocyanin 
accumulation in the fruit skin at ripening. Environment cues have been the pivotal regulators 
to allow differential accumulation of anthocyanins to regulate black color. Heat stress is 
one of the most important environmental stimulus that regulates concentration gradient 
of anthocyanins in various plant parts, thereby affecting the color pattern of flowers. 
Stability of black anthocyanins in the extreme environments can save the damage, 
especially in fruits, caused by abiotic stress. White flowers without anthocyanin face more 
damages from abiotic stress than dark color flowers. The intensity and pattern of flower 
color accumulation determine the overall fruit set, thereby controlling crop yield and human 
food needs. This review paper presents comprehensive knowledge of black flower 
regulation as affected by high temperature stress, and the molecular regulators of 
anthocyanin for black color in ornamental and food crops. It also discusses the black 
color-pollination interaction pattern affected by heat stress for food and ornamental crops.
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INTRODUCTION

Flower color is one of the most conspicuous attributes of 
angiosperms. Since antiquity, flower petal color has been the 
key to pollinator attraction. Although most of the angiosperms 
produce vibrant color flowers that are more attractive to 
pollinators, a few species generate black color in the flowers. 
Apparently, the black color is not much attractive to the 
pollinators, but it is not out of need. Both plants and pollinators 
are benefitted by black color. Heat stress and high temperature 
are closely associated with black color impacts on plants, 
pollinators, and pollination strategies. The most prevalent 
pigments to paint flowers black are the anthocyanins.

Anthocyanins are widely distributed in nature (Wu and 
Prior, 2005) and give attractive colors to flowers, grains, and 
fruits (Kong et  al., 2003; Escribano-Bailón et  al., 2004). 
Anthocyanins are important chemotaxonomic and quality 
indicators in plants and their antioxidant ability gains much 
interest for health (Kong et  al., 2003; Março and Scarminio, 
2007; Salehi et  al., 2020; Paun et  al., 2022). They are helpful 
to cure age-induced oxidative stress, cardiovascular disorders, 
and inflammatory responses (Hassellund et  al., 2013). It is 
believed that anthocyanin is synthesized at cytosolic surface 
of endoplasmic reticulum (ER), and it accumulates in the 
vacuole (Han et al., 2022). MRP (multidrug resistance-associated 
protein), MATE (multidrug and toxic compound extrusion), 
and GST (glutathione S-transferase) are mainly responsible for 
the transport of anthocyanin from cytoplasm to vacuole 
(Hu et  al., 2016; Han et  al., 2022).

Anthocyanins are sugar-containing equivalents (3-glucosides) 
of anthocyanidins (Mekapogu et  al., 2020). They are water-
soluble glycosides and acylglycosides derived from anthocyanidins 
(Wu et al., 2004). Anthocyanidins possess two aromatic benzene 
rings which are separated by an oxygenated heterocycle (Noda 
et  al., 2000; Mekapogu et  al., 2020). Petal color is mainly 
determined by the number of hydroxyl groups in the B-ring. 
An increase in hydroxyl groups causes color shift to blue (Noda 
et  al., 2000). Six anthocyanidins are widely distributed in 
vegetables and fruits, including malvidin, petunidin, peonidin, 
cyanidin, delphinidin, and pelargonidin (de Pascual-Teresa 
et al., 2002; Di Paola-Naranjo et al., 2004; Lohachoompol et al., 
2008). The most abundant anthocyanidins in flowers include 
pelargonidin, delphinidin, and cyanidin (Mekapogu et al., 2020). 
Cyanidins usually impart magenta (reddish-purple) color and 
delphinidins appear purple or blue-red (Yang et al., 2022). 
Cyanidin causes purple-red color in chrysanthemum flowers 
(Kawase and Tsukamoto, 1976; Noda et  al., 2000). Violet 
transgenic flowers of chrysanthemum are due to delphinidins, 
such as delphinidin 3-(3″,6″-dimalonyl) glucoside and delphinidin 
3-(6″-malonyl) glucoside (Noda et  al., 2013).

High accumulation of cyanidin-based anthocyanins is 
responsible for black color in ornamental crops (Deguchi et al., 
2013, 2015). Three TF families (MYBs, bHLHs, and MBW) 
regulate the genes involving anthocyanin biosynthesis (Zhao 
et  al., 2013). The PeMYB11 is the major R2R3-MYB TF that 
regulates the black color production (Hsu et  al., 2019). The 
FNS and IVS are the key genes involving the biosynthesis and 

regulation of black anthocyanins. Non-pigmented flowers face 
more damages from abiotic stress than pigmented flowers. Dark 
color flowers get more favor in the dry conditions than light 
color flowers (Sullivan and Koski, 2021). High temperature 
upregulates the expression of most of the anthocyanin 
biosynthesis genes (Zhang et  al., 2019). Moreover, dark petal 
color increases the internal flower temperature (Tikhomirov 
et al., 1960), attracting more pollinators during winter. Therefore, 
this review curtails the black color regulation by anthocyanins, 
the impact of black color on plant-pollinator interactions and 
the association of temperature fluctuations with color intensity.

IMPACT OF HIGH TEMPERATURE ON 
ANTHOCYANIN GRADIENT AND COLOR 
FORMATION

Biosynthesis of anthocyanins is affected by biotic and abiotic 
factors, such as nutrients, light, water stress, and temperature 
(Ubi, 2004). High temperature affects the biosynthesis of 
anthocyanins. The biosynthesis pathway of anthocyanin can 
be  divided in two phases. The early biosynthesis is regulated by 
genes such as CHS (chalcone synthase), CHI (chalcone isomerase), 
F3H (flavanone 3-hydroxylase), F3′H (flavanone-3′-hydroxylase) 
and F3′5′H (flavanone-3′5′-hydroxylase). The late biosynthesis is 
regulated by genes such as ANS (anthocyanin synthase), DFR, 
and UGFT (UDP-glycose: flavonoid 3-O-glycosyltransferase; 
Figure  1A). High temperature (35°C) significantly upregulates 
the expression of PAL1, ANS, 3GT, CHS2, UA5, DF4R, CHI, 
UA3GT2, and UA3GHT5, causing increase in anthocyanin contents 
in strawberries (Zhang et  al., 2019; Figure  1B). High storage 
temperature improves UA3GT2, a UDP-glucose: anthocyanidin 
3-O-glucosyltransferase (UGAT) gene correlated with high-
temperature induced anthocyanin accumulation (Zhang et  al., 
2019). Recently, MATE TT12 is thought to involve cross-membrane 
anthocyanin transportation in strawberry, cotton and radish (Gao 
et  al., 2016; Chen et  al., 2018; M’mbone et  al., 2018). High 
temperature upregulated the expression of six MATE TT12 genes 
in strawberry, thereby increasing anthocyanidin levels from 
endoplasmic reticulum to vacuole (Figure  1B). This further 
deepens the fruit color. High temperature upregulates MATE 
genes, MATE TT2, MATE DTX1, in strawberry (Zhang et al., 2019).

However, high temperature stress also causes low accumulation 
of pigments in apple (Palmer et  al., 2010; Lin-Wang et  al., 
2011), by repressing the expression of anthocyanin biosynthesis 
genes and enzymes (Iglesias et  al., 1999; Ban et  al., 2007; 
Palmer et al., 2010; Lin-Wang et al., 2011). Decrease in orchard 
temperature improves the apple skin color, suggesting that 
anthocyanin biosynthesis is influenced by change in temperature 
(Iglesias et  al., 2002, 2005).

High temperature activates the expression of anthocyanin 
degradation genes, such as laccase-9 and laccase-14, and it 
also stimulates the degradation of anthocyanins by enhancing 
the POD (Peng et  al., 2017). Thus, high ambient temperature 
causes both accumulation and degradation of anthocyanin at 
the same time (Niu et  al., 2017).

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Ahmad et al. Black Flower Anthocyanins

Frontiers in Plant Science | www.frontiersin.org 3 April 2022 | Volume 13 | Article 885176

Heating magnitude and duration has a strong influence on 
the stability of anthocyanins (Patras et al., 2010). High ambient 
temperature may instigate loss of fresh color after harvesting, 
causing dark red appearance of strawberries leading to serious 
economic losses (Peng et  al., 2017). Exposure of elderberry 
to 95°C caused 50% loss of anthocyanin contents (Sadilova 
et  al., 2006). Researchers have documented that an arithmetic 
increase in temperature causes logarithmic anthocyanin 
destruction (Havlíková and Míková, 1985; Drdak and Daucik, 
1990; Rhim, 2002). Exposure of blueberries to 95°C for 3 min 
causes 43% loss of anthocyanins (Brownmiller et  al., 2008). 
However, anthocyanin from black carrot were comparatively 

stable up to 90°C (Rhim, 2002; Kırca et  al., 2006), probably 
due to di-acylation of anthocyanin structure. Acylation protects 
anthocyanin from hydration, thereby making it more stable 
(Goto et al., 1979; Brouillard, 1981). High temperature of 95°C 
causes 53% degradation of cyanidin-3-glucoside in blackcurrant 
extract (Rubinskiene et  al., 2005). Cyanidin-3-rutinoside  
is the most stable anthocyanin at 95°C in blackcurrant 
(Rubinskiene et  al., 2005).

Temperature affects the expression of flower color (Dela 
et  al., 2003). High temperature causes poor flower color in 
flowers, such as chrysanthemum (Stickland, 1974; Nozaki et al., 
2005, 2006), carnation (Maekawa and Nakamura, 1977), petunia 

A

E

B

C

D

FIGURE 1 | Summary of black color anthocyanin accumulation pathways (A); effect of high temperature on molecular regulation of deep color anthocyanins (B); 
the key genetic regulators of black color anthocyanin accumulation in the flower petals (C); the common effects of heat stress on plant anthocyanins (orange color 
shows more susceptibility towards heat stress and the green color shows stability towards heat stress; D); and the proposed pathway of black anthocyanin 
generation through induced gene silencing (E).
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(Shvarts et al., 1997), rose (Shisa and Takano, 1964; Dela et al., 
2003), Kangaroo Paw (Ben-Tal and King, 1997), and lily (Lai 
et  al., 2011). High temperature (32°C) causes decrease in 
anthocyanin contents in petunia flowers (Shvarts et  al., 1997), 
as anthocyanin synthesis is inhibited by elevated temperature 
conditions (Yamagishi et  al., 2010; Lai et  al., 2011).

HEAT STRESS AFFECTS ANTHOCYANIN 
BIOSYNTHESIS AND ACCUMULATION

Anthocyanins significantly affect the performance of plants 
during abiotic stress (Rausher, 2008; Sullivan and Koski, 2021). 
Anthocyanin helps plants in their tolerance against abiotic 
stress and presents an important biological event during ripening 
of fruits, such as strawberry, plum, cherry, red orange, and 
grape (Shin et  al., 2007; Flores et  al., 2015; Carmona et  al., 
2017; Martínez-Romero et  al., 2017). Anthocyanins act as 
photoreceptors, anti-oxidants, and osmoregulators, making plants 
tolerant against abiotic stress (Gould, 2004).

White flowers without anthocyanin face more damages from 
abiotic stress than pigmented flowers (Figure  1D). Dark color 
flowers get more favor in the dry conditions than light color 
flowers (Sullivan and Koski, 2021). Drier Clarkia xantiana flowers 
accumulate more anthocyanin contents as compared to unpigmented 
morphs (Warren and Mackenzie, 2001; Vaidya et al., 2018). High 
reproductive success of pigmented Ipomoea purpurea was observed 
under heat stress as compared to unpigmented morphs (Coberly 
and Rausher, 2003). An increase in global temperature may cause 
decline in floral pigmentation in the case if decreased pigmentation 
allow proper functioning of heat-sensitive reproductive parts (van 
der Kooi et  al., 2019). However, increased drought conditions 
may support pigmented morphs (Warren and Mackenzie, 2001).

The most important issue of natural colorants is their low 
stability under high temperature (Oancea, 2021). However, 
anthocyanins are comparatively more stable to heat stress 
(Albuquerque et  al., 2021). The main anthocyanin structure 
contains 2-phenylbenzopyrylium heterocycle C-15 skeleton called 
anthocyanidin or aglycon. This skeleton contains ▬OCH3 or 
▬OH groups (Oancea, 2021). Presence of ▬OH group reduces 
stability and increases blue color, while the presence of ▬OCH3 
groups elevates stability and redness (Albuquerque et al., 2021). 
Changes in the structure of anthocyanins is caused by fluctuation 
in the number of ▬OH groups, intensity of methylation of 
▬OH groups, the number, and nature of attached sugar moiety 
to the phenolic molecules (McGhie and Walton, 2007; Patras 
et  al., 2010). Degradation is mainly caused by breakage of 
covalent bonds, oxidation or heat-triggered increase of oxidation 
reactions. Opening of pyrylium ring and the formation of 
chalcone is the first step of anthocyanin degradation stimulated 
by heat stress (Palamidis and Markakis, 1975; Patras et  al., 
2010). Upon heating, the anthocyanin decomposes into chalcone 
structure (Adams, 1973).

Increasing temperature negatively affects the stability of 
cyanidin-3-O-rutinoside and cyanidin-3-O-glucoside in black 
rice (Sui et al., 2014). Some anthocyanins, such as pelargonidin-
3-O-glucoside and cyanidin-3-O-glucoside from strawberries 

and blackberries, are more susceptible to heat (Shahidi, 2012). 
However, the methoxylation and acylation increase anthocyanin 
stability against heat stress (Shahidi, 2012). Acylated anthocyanins 
are generated after the acylation of glycosyl groups of 
anthocyanins with organic acids, thereby increasing heat stability. 
Diacylated anthocyanins provide significantly high blue color 
stability to red cabbage at 50°C as compared to non-acylated 
anthocyanins (Fenger et al., 2020). Thus, acylation of anthocyanins 
is essential in technological applications to produce colorants 
with prolonged half-life. However, extreme heat stress (95°C) 
causes decomposition of acylated anthocyanins in black carrot 
(Sadilova et  al., 2007). Acylated anthocyanins are present in 
flowers and vegetables, while non-acylated anthocyanins are 
mostly distributed in fruits (Vidana Gamage et  al., 2021; 
Figure  1D). In black carrot, acylated anthocyanins remain 
stable to temperature increase of 20–50°C than non-acylated 
anthocyanins from blackberry (Zozio et  al., 2011).

Heat stress increases the anthocyanin contents of purple 
wheat (De Leonardis et  al., 2015; Li et  al., 2018). Increased 
accumulation of anthocyanins was stimulated by upregulation 
of drought stress-related genes (Castellarin et  al., 2007; Cui 
et  al., 2017; Massonnet et  al., 2017). Under water drought 
conditions, higher contents of anthocyanins were observed in 
apple (Kilili et  al., 1996; Mills et  al., 1996), strawberry (Ikeda 
et  al., 2011; Rugienius et  al., 2015), pomegranate (Laribi et  al., 
2013) and apricot (Torrecillas et  al., 2000; Pérez-Pastor et  al., 
2007). Increase in temperature increases anthocyanin contents 
of dark red jujube (Jiang et  al., 2020). However, draught  
also negatively affects anthocyanin accumulation due to  
reduced photosynthesis, causing poor color development 
(Bahar et  al., 2011).

Anthocyanin degradation due to high temperature causes 
gradual color loss of Malus profusion fruits in summer (Rehman 
et  al., 2017). High temperature treatment of more than 33°C 
significantly reduced the concentration of cyanidin 3-galactoside. 
This reduction is caused by the downregulation of anthocyanin 
biosynthesis genes (MpUFGT, MpDFR, MpLDOX, MpCHS, and 
MpMYB10; Steyn et  al., 2004; Ubi et  al., 2006; Rehman et  al., 
2017). High temperature also stimulated the generation of H2O2 
by enhancing the activities of MDA, SOD, and cell sap pH 
(Rehman et al., 2017). Moreover, the expression of anthocyanin 
transport genes (MpVHA-B1 and MpVHA-B2) was also reduced.

TRANSCRIPTION FACTORS FOR 
ANTHOCYANIN FORMATION AND 
COLOR SCHEMES

Anthocyanin biosynthesis is regulated by a number of transcription 
factor families, including MYB (v-myb avian myeloblastosis viral 
oncogene homolog), bHLH (basic helix–loop–helix), WRKY, CPC, 
and WD40 (WD40-repeats proteins; Herrera Valderrama et  al., 
2014; Bai et al., 2017). R2R3-MYB TFs play key roles in providing 
the specificity for the downstream genes, causing tissue-specific 
accumulation of anthocyanin (Koes et al., 2005; Feller et al., 2011; 
Hichri et  al., 2011; Petroni and Tonelli, 2011). The bHLH TFs 
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essentially regulate the activity of R2R3-MYB partner by promoting 
its transcription or stabilizing the protein complexes (Hernandez 
et  al., 2004). The WDR proteins physically interact with bHLH 
and MYB TFs to regulate the biosynthesis of anthocyanins (Zhang 
et  al., 2003). Thus, MBW (MYB, bHLH, and WD40) complex 
primarily regulates anthocyanin biosynthesis genes (Gonzalez 
et  al., 2008; Petroni and Tonelli, 2011). Most of the MYBs are 
positive regulators of anthocyanin biosynthesis (Jaakola, 2013). 
However, some MYBs repress it too, such as grapevine VvMYB4 
and strawberry FaMYB1 and FaMYB9 (Schaart et  al., 2013).

In the Phalaenopsis cultivar ‘Panda’, MYB TFs PeMYB7, 
PeMYB11, and miRNA156g and miR858 are responsible for 
purple spot formation in sepals (Zhao et al., 2019). The PeMYB11 
is the major R2R3-MYB TF that regulates the black color 
production (Hsu et  al., 2019; Figure  1C). A retrotransposon 
HORT1 (Harlequin Orchid RetroTransposon 1) causes very 
strong expression of PeMYB11, leading to extremely high 
anthocyanin accumulation in the harlequin flowers of 
Phalaenopsis (Hsu et  al., 2019; Zhao et  al., 2019). The miR156 
and miR858 are the key interference RNAs for PeMYB7 and 
PeMYB11 (Zhao et  al., 2019). High expression of anthocyanin 
biosynthesis pathway genes (PeCHI, PeANS, PeC4H, PeF3H, 
PeF3’H, Pe3HI, and Pe4CL2) was observed in spot tissues as 
compared to non-spot tissues (Figure 1B). Moreover, the ectopic 
MYB or bHLH expression causes dark purple color in transgenic 
plants, such as Leaf Color (bHLH) and Deep Purple (MYB) 
from petunia (Albert et  al., 2009, 2011).

The black color formation has been studied in a few fruits 
and vegetables, such as purple cauliflower (Brassica oleracea 
L. var. botrytis; Chiu et al., 2010), purple sweet potato (Ipomoea 
batatas; Mano et al., 2007), and blood oranges (Citrus sinensis; 
Butelli et  al., 2012). In blood oranges, insertion of a Copia-
like retrotransposon in the upstream region of a R3R3-MYB 
TF gene, Ruby, causes extreme accumulation of anthocyanin 
in the fruit (Butelli et  al., 2012). In the purple cauliflower, 
insertion of a Harbinger DNA transposon in the regulatory 
region of a R2R3-MYB TF encoding gene, Purple (Pr), causes 
upregulation of Pr, resulting in dark color accumulation (Chiu 
et al., 2010). Sweet potato purple color is caused by predominant 
expression of IbMYB1 (Mano et  al., 2007). Storage of 
strawberries at high temperature upregulated WRKY44, 
bHLH128, bHLH66, MYB39, and CPC, and downregulated 
WRKY33, WRKY14, WRKY6, MYB306, and bHLH130 (Zhang 
et  al., 2019; Figure  1B).

Therefore, high expression of the regulatory TFs in the 
biosynthesis pathway of anthocyanin may cause black flowers 
and fruits in plants. However, the detailed molecular mechanisms 
are yet to be  elucidated.

ROLE OF HORMONES IN DEEP 
COLORATION

Phytohormones, such as cytokinin, abscisic acid, jasmonate, 
and ethylene, play significant roles in color development through 
increasing anthocyanin accumulation (Jia et al., 2011; Colquhoun 
et  al., 2012; Merchante et  al., 2013). However, gibberellins and 

auxins reduce the biosynthesis of anthocyanins during fruit 
color development (Jaakola, 2013). Ethylene is the key hormone 
involving apple fruit ripening (Saure, 1990) and also a key 
regulator of anthocyanin development, because in the apple 
cultivar ‘Pink Lady’, anthocyanin biosynthesis is significantly 
correlated with ethylene production (Whale and Singh, 2007). 
Application of ethylene exogenously promotes the synthesis of 
anthocyanin in the fruit skin at ripening (Larrigaudiere et  al., 
1996; Li et  al., 2002). Suppression of MdACO1, an ethylene 
biosynthesis gene, caused poor red pigmentation in apple 
(Johnston et  al., 2009). Low temperature suppresses ethylene 
production, thereby affecting anthocyanin accumulation 
(Tromp, 1997; Tatsuki et  al., 2011).

DARK COLOR RELATIONSHIP WITH 
POLLINATION

In the drought- and heat-stressed conditions, plants with 
pigmented flowers can survive much better than anthocyanin-
free flowers (Grace and Logan, 2000; Warren and Mackenzie, 
2001; Steyn et  al., 2002). Arctic flowers with dark colors can 
reach higher temperatures as compared to light color flowers 
(Büdel, 1959; Tikhomirov et  al., 1960). Petals with dark and 
deep colors can absorb longer wavelengths of light more 
efficiently than light color petals, resulting in increased corolla 
temperature (Tikhomirov et  al., 1960; Figure  2).

Pollinators select flowers based on their color attributes such 
as hue and brightness (Caruso et al., 2010; Koski and Galloway, 
2020). It is evident that pollinators contribute to disparities 
in flower color among populations of the same species (Streisfeld 
and Kohn, 2007; Sobral et  al., 2015; Streinzer et  al., 2019). 
However, differences in pollinator communities are not sufficient 
to explain variation of color in a number of others (Schemske 
and Bierzychudek, 2007; Thairu and Brunet, 2015). Therefore, 
non-pollinator selection agents are also involved in flower color 
variations (Strauss and Whittall, 2006). Temperature can be  a 
selective factor affecting flower color (Coberly and Rausher, 
2003; Lacey and Herr, 2005; Koski and Galloway, 2018). Thus, 
large scale flower color patterns are associated with climatic 
gradients (Arista et  al., 2013; Koski and Ashman, 2015; Koski 
and Galloway, 2018). For example, dark color flowers are able 
to warm reproductive structures more efficiently than light 
color flowers. They can absorb a lot more solar radiation, 
thereby increasing their reproductive success in low temperature 
climates (Lacey et al., 2010). Warm flowers get more pollinator 
visitation in cold environments (Norgate et al., 2010; Figure 2). 
Dark colors also favor plant in drought conditions (Warren 
and Mackenzie, 2001). For example, heavily pigmented Boechera 
stricta are produced in low populations due to increased drought 
tolerance of pigmented morphs (Vaidya et  al., 2018).

Heat absorption provides benefits to both reproductive organs 
of flowers and pollinators. Basking in the flowers can help 
insects to elevate their body temperature (Hocking and Sharplin, 
1965; Kevan, 1975; Heinrich, 1979; Herrera, 1995). Bees prefer 
flowers with warm nectar (Dyer et  al., 2006) and this choice 
becomes stronger with decreasing ambient temperature  

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Ahmad et al. Black Flower Anthocyanins

Frontiers in Plant Science | www.frontiersin.org 6 April 2022 | Volume 13 | Article 885176

(Norgate et  al., 2010). Warm flowers provide high quality 
reward to pollinators compared with low temperature flowers 
(Figure  2). For example, sugar production and nectar volume 
are increased with increasing temperature up to 38°C (Petanidou 
and Smets, 1996). Dark colored flowers absorb more light and 
emit it as heat (van der Kooi et  al., 2019). Very dark flowers 
show high intra-floral temperature (Jewell et al., 1994; MCKEE 
and Richards, 1998; Figure  2). Plants developing at low 
temperature produce dark color spikes that are up to 2.6°C 
warmer in full sun (van der Kooi et  al., 2019). Anthocyanin 
pigments regulate flower color plasticity (Lacey and Herr, 2005; 
Stiles et  al., 2007; Anderson et  al., 2013). This plasticity in 
response to temperature exists in most of Plantago species 
(Anderson et  al., 2013). The Lotus corniculatus flowers with 
dark keel are 6°C warmer than light-keeled flowers (Jewell 
et  al., 1994). Purple Ranunculus glacialis flowers are warmer 
and make more seeds than white flowers (Ida and Totland, 2014).  
However, no temperature difference was found in several  
color polymorphic species (MCKEE and Richards, 1998;  
Sapir et  al., 2006; Mu et  al., 2010; Shrestha et  al., 2018; 
Kellenberger et  al., 2019).

BLACK ANTHOCYANINS

A few flowering and fruit plants with dark-purple to black 
colors certainly catch consumers’ eyes. They contain very high 
contents of anthocyanins with high antioxidant activity 
(Jayaprakasha and Patil, 2007; Kelebek et  al., 2008). Blood 
orange contains activities to reduce cardiovascular risk factors 
(Paredes-López et al., 2010; Pascual-Teresa et al., 2010), oxidative 
stress (Bonina et  al., 2002) and protect DNA against oxidative 
damage (Guarnieri et al., 2007). Eye catching purple cauliflowers 
are potent source of nutrition with health-promoting effects 
(Chiu et  al., 2010). Only a few black anthocyanins have been 
isolated so far.

Five anthocyanin pigments are identified in blackberries, 
including cyanidin 3-rutinoside, cyanidin-3-(malonyl) glucoside, 
cyanidin-3-xyloside, cyanidin 3-glucoside, and cyanidin-3-
dioxalyglucoside (Cho et al., 2004; Jordheim et al., 2011). Dark 
purple color of eggplant is due to anthocyanin nasunin 
(dalphinidin-3-(p-coumaroylrutinoside)-5-glucoside; Noda et al., 
2000; Table  1). Nagai (1921) reported that the accumulation 
of black pigment in soybean seeds is caused by anthocyanin. 

FIGURE 2 | Flower color relationship with heat absorption and pollinators. Dark color flowers absorb sun light with longer wavelengths, which causes increase in 
the internal temperature of flowers that attract more pollinators in the winter season and allows better pollination. The light color flowers, however, absorb shorter 
wavelengths of light and do not provide much warm flowers as compared to dark color flowers.
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Yoshikura and Hamaguchi (1969) identified anthocyanins, 
cyanidin-3-monoglucoside and delphinidin-3-monoglucoside, 
responsible for black seeds. The Cyanidin-3-(p-coumaroyl)-
diglucosdie-5-glucoside is the most abundant anthocyanin in 
black carrot, responsible for deep purple color (Nath et al., 2022).

Higher amount of melanin pigment was found in the black 
seed coat of rapeseed (Zhang et  al., 2008). Black rice is an 
important health-promoting food due to abundance of 
anthocyanins and thermal degradation is a major issue to food 
industry (Hou et  al., 2013). Four anthocyanins are identified 
in black rice, including cyanidin-3-rutinoside, peonidin-3-
glucoside, cyanidin-3-glucoside, and cyanidin-3,5-diglucoside. 
Cyanidin-3-glucoside is a major anthocyanin found in black 
rice and blackberry (Hou et  al., 2013; Figure  1A). In purple 
barley, the most abundant anthocyanin is cyanidin 3-glucoside 
(Glagoleva et al., 2022) The black Phalaenopsis flowers are 
important breeding sources to induce color variation in 
floriculture crops. The harlequin/black Phalaenopsis flowers 
contain black spots on petals, appearing as a new color in 
1996 (Chen, 2004; Hsu et  al., 2019).

The Tulipa julia contains black portion on the lower side 
of petals and a hybrid tulip ‘Queen of the Night’ contains 
highly saturated violet color which appears black under specific 
light conditions (Markham et  al., 2004; Figure  2). A study 
on 107 tulip cultivars identified five selections with black flowers 
(Shibata and Ishikura, 1960). Delphinidins were the predominant 
anthocyanins, including delphinidin (50%), cyaniding (29%) 
and pelargonidin (21%). For black ‘Queen of the Night’ tulip, 
tulipanin (delphinidin-3-glucorhamnoside) was the most 
prominent delphinidin glycoside. A p-coumroyltriglycoside of 
delphinidin is responsible for black color of Viola cultivar ‘Jet 
Black’ (Takeda and Hayashi, 1965). Violanin, delphinidin-5-
O-glucoside-3-O-[4-p-coumaroylrhamnosyl(1-6)glucosie] is the 
black anthocyanin in the black pansy, Viola tricolor (Goto 
et  al., 1978; Table  1). Lisanthius nigrescense is unique for its 
black color corolla (Markham et  al., 2004). HPLC analysis 
showed the presence of one major and one minor anthocyanin. 
The anthocyanins [delphinidin-3-O-rhamnol(1-6)galactoside and 

its 5-O-glucoside] comprised 24% of dry weight of petals.  
The high anthocyanin level is thought to be  responsible for  
complete absorption of both visible and UV wavebands  
(Markham et  al., 2004).

Two major anthocyanins (cyanidin 3-O-glucoside and 
3-O-rutinoside) were found in the back flowers of Cosmos 
atrosanguineus cultivar ‘Choco Mocha’ (Amamiya and Iwashina, 
2016; Table  1). Total anthocyanin contents of black flower 
cultivars ‘Brown Rouge’ and ‘Choco Mocha’ were 3–4  
folds higher than that of red flower cultivar ‘Noel Rouge’  
(Amamiya and Iwashina, 2016).

In most black cultivars, high accumulation of cyanidin-based 
anthocyanins was induced by post-transcriptional silencing of 
DvFNS (flavone synthase II) gene (Deguchi et  al., 2013, 2015). 
Cyanidin-based anthocyanins impart more black color to dahlia 
flowers than pelargonidin-based anthocyanins (Deguchi et  al., 
2016). The 3-(6″-malonylglucoside)-5-glucoside was the key 
cyanidin anthocyanin causing black flowers by lowering petal 
lightness and chroma (Deguchi et  al., 2016). Abolishment of 
competition for substrate between flavone biosynthesis and 
anthocyanin biosynthesis may be  related to increased 
accumulation of anthocyanin (Deguchi et  al., 2016).

The black flower color of dahlia (Dahlia variabilis) is caused 
by high accumulation of cyanidin-based anthocyanins (Deguchi 
et  al., 2013; Table  1). The black dahlia cultivars have strong 
Type 1 promoter of DvIVS with high expression levels 
(Figure 1C). However, the expression of DvFNS was significantly 
low in all black cultivars. Surprisingly, DvFNS suppression 
occurs in a post-transcriptional manner in black cultivars. 
Artificial silencing of FLS or FNS causes increased accumulation 
of anthocyanins in petunia (Davies et  al., 2003). Therefore, 
silencing of DvFNS causing flavone absence abolishes the 
competition for substrates (Figure  1E). The substrate destined 
for the synthesis of flavone becomes available for anthocyanidin 
synthesis. Then using Type 1 promoter of DvIVS helps black 
cultivars to synthesize high amounts of anthocyanidin from 
large substrate including the new portion as well, leading to 
black color appearance (Deguchi et  al., 2016; Figure  1E).

TABLE 1 | Major deep color anthocyanins in flowering and food crops.

Crop Major anthocyanin Color References

Blackcurrant Cyanidin-3-rutinoside Black Rubinskiene et al., 2005
Black Berry Cyanidin-3-glucoside Black Hou et al., 2013
Black Rice Cyanidin-3-glucoside Black Hou et al., 2013
Barley Cyanidin-3-glucoside Purple Glagoleva et al., 2022
Eggplant Dalphinidin-3-(p-coumaroylrutinoside)-5-glucoside) Dark Purple Noda et al., 2000
Black carrot Cyanidin-3-(p-coumaroyl)-diglucosdie-5-glucoside) Dark Purple Nath et al., 2022
Soybean Cyanidin-3-monoglucoside Black Yoshikura and Hamaguchi, 1969
Soybean Delphinidin-3-monoglucoside Black Yoshikura and Hamaguchi, 1969
Tulip Delphinidin-3-glucorhamnoside Black Shibata and Ishikura, 1960
Pansy Delphinidin-5-O-glucoside-3-O-[4-p-coumaroylrhamnosyl(1-6)glucosie] Black Goto et al., 1978
Lisanthius nigrescense Delphinidin-3-O-rhamnol(1-6)galactoside Black Markham et al., 2004
Cosmos atrosanguineus Cyanidin 3-O-glucoside and 3-O-rutinoside Black Amamiya and Iwashina, 2016
Dahlia 3-(6″-malonylglucoside)-5-glucoside Black Deguchi et al., 2016
Phalaenopsis Cyanidin Black Hsu et al., 2019
Chrysanthemum Cyanidin Purple Red Noda et al., 2000
Chrysanthemum Delphinidin 3-(3″,6″-dimalonyl) glucoside Violet Noda et al., 2013
Chrysanthemum Delphinidin 3-(6″-malonyl) glucoside Violet Noda et al., 2013
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CONCLUSION AND FUTURE 
PERSPECTIVES

Black flower color is very rare in the nature and only a few 
species produce black flowers. A number of studies tried to 
justify the causes and benefits of black color in the plants. 
So far, the studies have found that anthocyanins are the key 
components of black color accumulation, especially the cyanidin-
type of anthocyanins are the most important to drive black 
color. R2R3-MYB TFs, especially MYB11, are the key regulators 
of black anthocyanin accumulation in plants. Artificial induction 
of black color can be achieved through FNS silencing, allowing 
increased synthesis of black anthocyanins using IVS promoter. 
The major benefit of black color is the greenhouse effect it 
generates by absorbing long wavelengths of light, thereby 
providing warmth inside petals and warm nectar to attract 
more pollinators during the winter. Therefore, during extreme 
winter conditions, deep color of flowers helps plant attract 
more visitors than light color flowers, that increases the chances 
of pollination and helps plant survive during harsh conditions.

The best future aspect of black anthocyanins is their stability 
against temperature extremes and this can be used at industrial 
level to induce color stability in food products. Moreover, the 
ornamental flowers with deep color can withstand a long time 
without color deterioration. Besides, breeding plans can 
be  adjusted for crops growing in extreme winter conditions 
with difficult pollination breeding. New varieties with greater 

ability of absorbing long wavelengths of light and deep color 
flowers would get maximum chances of survival.
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