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Ubiquitination, a widespread mechanism of regulating cellular responses in plants, is one 
of the most important post-translational modifications of proteins in many biological 
processes and is involved in the regulation of plant disease resistance responses. Predicting 
ubiquitination is an important technical method for plant protection. Traditional ubiquitination 
site determination methods are costly and time-consuming, while computational-based 
prediction methods can accurately and efficiently predict ubiquitination sites. At present, 
capsule networks and deep learning are used alone for prediction, and the effect is not 
obvious. The capsule network reflects the spatial position relationship of the internal 
features of the neural network, but it cannot identify long-distance dependencies or focus 
on amino acids in protein sequences or their degree of importance. In this study, 
we investigated the use of convolutional neural networks and capsule networks in deep 
learning to design a novel model “Caps-Ubi,” first using the one-hot and amino acid 
continuous type hybrid encoding method to characterize ubiquitination sites. The sequence 
patterns, the dependencies between the encoded protein sequences and the important 
amino acids in the captured sequences, were then focused on the importance of amino 
acids in the sequences through the proposed Caps-Ubi model and used for multispecies 
ubiquitination site prediction. Through relevant experiments, the proposed Caps-Ubi 
method is superior to other similar methods in predicting ubiquitination sites.

Keywords: protein ubiquitination, site prediction, capsule network, hybrid encoding, plant protection

INTRODUCTION

Ubiquitination is an important post-translational modification of proteins, consisting of the 
covalent binding of ubiquitin to a variety of cellular proteins. Ubiquitin was discovered in 
1975 by Goldstein et  al. (1975); it is a small protein composed of 76 amino acids (Wilkinson, 
2005). Ubiquitination is the process of covalently binding the lysine of a substrate protein to 
an ubiquitin molecule, which is catalyzed by a series of enzymes. Three enzymes are involved 
in this process: E1 activation, E2 conjugation, and E3 ligation. Ubiquitination modification 
plays a very important role in basic reactions such as signal transduction, diseases, DNA 
repair, and transcriptional regulation (Hicke, 2001; Pickart, 2001; Haglund and Dikic, 2005; 
Hicke et  al., 2005). Due to the important biological characteristics of ubiquitination, identifying 
potential ubiquitination sites aids in the understanding of protein regulation and molecular 
mechanisms. Determining ubiquitination sites based on traditional biological experimental 
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techniques such as mass spectrometry (Peng et  al., 2003) and 
antibody recognition (Gentry et  al., 2005) is costly and time-
consuming. Therefore, it is necessary to develop a method 
that can accurately and efficiently recognize protein 
ubiquitination. In recent years, some calculation methods have 
been developed to predict potential ubiquitination sites. Huang 
et  al. (2016) used amino acid composition (AAC), a position 
weighting matrix, amino acid pair composition (AAPC), a 
position-specific scoring matrix (PSSM), and other information 
to develop a predictor called UbiSite using a support vector 
machine (SVM). Nguyen et al. (2016) used an SVM to combine 
three kinds of information: AAC, evolution information, and 
AAPC to develop a predictor. Qiu et  al. (2015) developed a 
new predictor called “iUbiq-Lys” to apply to sequence evolution 
information and a gray system model. Chen et  al. (2013) also 
applied SVM to build a UbiProber predictor. Wang et  al. 
(2017b) introduced physical–chemical attributes into an SVM 
to develop the ESA-UbiSite predictor. Radivojac et  al. (2010) 
developed the predictor UbPred using a random forest algorithm. 
Lee et  al. (2011) developed UbSite using efficient radial basis 
functions. All of those machine learning-based methods and 
predictors have promoted the development of ubiquitination 
site prediction research and achieved good prediction 
performance. However, most of them rely on artificial feature 
selection, which may lead to imperfect features (Wang et  al., 
2017b), and their datasets are small despite the large volume 
of accumulated biomedical data.

Deep learning, the most advanced machine learning 
technology, can handle large-scale data well. It has multilayer 
networks and nonlinear mapping operations, which can fit the 
complex structure of data well. In recent years, deep learning 
has been developed rapidly (Wang et  al., 2017a) and has been 
successfully applied in various fields of bioinformatics (Sun 
et al., 2017; Shaw et al., 2019). In using evolutionary information 
on proteins, there are predictions of ATP-binding sites using 
two-dimensional convolutional neural networks and position-
specific scoring matrices (Kusuma and Ou, 2019; Le et  al., 
2019). Some methods based on deep learning have been used 
for ubiquitination site identification. For example, Fu et  al. 
(2019) applied one-hot and composition of k-spaced amino 
acid pairs encoding methods to develop DeepUbi with text-
CNN. Liu et  al. (2021) used deep transfer learning methods 
to develop the DeepTL-Ubi predictor for multispecies 
ubiquitination site prediction. He et  al. (2018) established a 
multimodel predictor using one-hot, physical–chemical properties 
of amino acids, and a PSSM.

Although various ubiquitination site predictors and tools 
have been developed, there are still some limitations, and their 
accuracy and other performance elements must be  further 
improved. In this study, a deep learning model, “Caps-Ubi,” 
is proposed that uses a capsule network for protein ubiquitination 
site prediction. In Caps-Ubi, the protein fragments are first 
passed through one-hot and amino acid continuous methods 
to encode them. Then three convolutional layers and the capsule 
network layer are used as a feature extractor to obtain the 
functional domains in the protein fragments and finally to 
obtain the prediction results. Relative to existing tools, the 

prediction performance of Caps-Ubi is a significant improvement. 
Researchers can use the predictor to select potential ubiquitination 
candidate sites and perform experiments to verify them, which 
will reduce the range of protein candidates and save time.

MATERIALS AND METHODS

Benchmark Dataset
The ubiquitination dataset came from the largest online protein 
lysine modification database, PLMD 3.0, which contains 20 
protein lysine modifications. The database has 53,501 proteins 
and 284,780 protein lysine modification sites, including 25,103 
proteins and 121,742 ubiquitination sites. To eliminate errors 
caused by homologous sequences, we  used CD-HIT (Huang 
et  al., 2010) to filter out homologous sequences with sequence 
similarities greater than 40%. We obtained 12,100 proteins and 
54,586 ubiquitination sites after filtering, which were used as 
a positive sample set. Based on these 12,100 protein sequences 
with annotation information, 427,305 non-ubiquitinated sites 
were extracted from the proteins as a negative sample set for 
model training. These negative sample sequences were filtered 
by CD-HIT-2D, and the sequences that were more than 50% 
homologous to the positive samples were filtered out, and 
320,083 non-ubiquitinated sites were obtained after filtering. 
Since there are only 54,586 positive sample sets and 320,083 
negative sample sets, the difference between positive and negative 
samples is nearly 8 times. If such a data distribution is used 
to input the model for training, the model will not be  able 
to fully learn the data features of the positive samples, and 
the obtained prediction results will tend to be  in the negative 
sample set. To establish a balanced training model, we randomly 
selected the same data as the positive sample set and selected 
90% of it as the training and validation sets and 10% as the 
independent test set. Finally, 53,999 data points on ubiquitination 
sites and 50,315 data points on nonubiquitination sites were 
obtained. The final data division is shown in Table  1.

Input Sequence Coding
The coding method directly determines the quality of its 
prediction results; a good feature can extract the correlation 
between the ubiquitination feature and the targets from peptide 
sequences (Plewczynski et al., 2005). After encoding the protein 
sequence, the sequence information is converted into digital 
information, and then deep learning is performed on it. In 
this study, two methods were used to encode the amino acid 
sequence around the protein ubiquitination site; namely, one-hot 
encoding and amino acid continuous encoding.

TABLE 1 | Data on protein ubiquitination sites.

Dataset No. of positive data No. of negative data

Training 44,214 44,214
Validation 4,913 4,913
Testing 5,459 5,459
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One-Hot Encoding
The one-hot encoding method was adopted for protein fragments. 
There are 20 common amino acids. In this paper, each protein 
fragment is coded into an m × k two-dimensional matrix, where 
k represents the size of the dictionary, and m represents the 
number of amino acids in each sequence, i.e., the length of 
the input sequence. When the length of the input sequence 
does not reach the window length, padded with “-” to the 
left or right of the protein fragment and treat it as another 
amino acid. Therefore, each amino acid is actually represented 
by a one-dimensional vector with a length of 21. Only the 
position corresponding to this amino acid is 1, and the other 
positions are 0. The one-hot encoding is shown in Figure  1.

Continuous Coding of Amino Acids
The continuous amino acid coding method (Venkatarajan and 
Braun, 2001) was proposed by Venkatarajan; the coding uses 237 
physical–chemical properties to quantitatively characterize 20 amino 
acids. They used five main components to characterize the changes 
in 237 physico-chemical properties of amino acids. In this paper, 
each amino acid is represented by a six-dimension vector, wherein 
the first five-dimension represents the five principal components 
as shown in Table  1 of Venkatarajan and Braun (2001), and the 
last one-dimension represents the gap in the input protein fragment 
with a length of m. The gap is represented by a dash“-,” meaning 
that when the sequence length does not reach the window length, 
the bit is coded as 1; otherwise, it is 0. Finally, each protein 
fragment is coded into an m × 6 two-dimension matrix. This 
continuous coding scheme can comprehensively consider the 
physical and chemical properties of protein amino acids and has 
a smaller dimension than that of one-hot coding. The smaller 
input dimension will lead to a relatively simple network structure, 
which is beneficial to avoid overfitting.

Capsule Network
In a CNN, the pooling layer can extract valuable information 
from the data, but some location information is lost (Dombetzki, 

2018). Additionally, a CNN outputs scalar values in neurons, 
and the information represented by scalar neurons is limited 
and cannot reflect the spatial position relation of the internal 
features of the neural network. To solve the problems of scalar 
neurons, in 2017 Hinton proposed a deep learning architecture 
called a capsule network (Sabour et  al., 2017). The primary 
building module of a capsule network is the capsule (Hinton 
et  al., 2011), which is a set of neuron vectors. The length of 
the capsule represents the probability of the existence of an 
entity; the longer the capsule is, the greater the probability, 
and the direction of the capsule represents the state of the 
entity. The capsule network provides a unique and powerful 
deep learning building block that can better model the complex 
relationships within a neural network. A CNN uses scalar input 
activation functions, such as the rectified linear activation function 
ReLU, a sigmoid, and a tanh, and the capsule network uses 
an activation function called a squash. The calculation equation is
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where v j  is the output of capsule j,  and sj is the weighted 
sum of the input vectors of capsule j . This function compresses 
the vector length to the interval [0,1], which can be  regarded 
as a kind of compression and reallocation of the vector length. 
In addition to the first-layer capsule network, the input of the 
capsule sj is obtained by the weighted sum of the prediction 
vector ( ˆ j iu ) located in the lower-layer capsule, and the prediction 
vector ( ˆ j iu ) is passed through the lower layer. The capsule 
is calculated by multiplying its output ui( )  and the weight 
matrix ( wij ):
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FIGURE 1 | Schematic diagram of one-hot encoding of protein fragments.
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where cij  is the coupling coefficient, which is obtained by a 
softmax transformation from bij ; its calculation equation is
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In Eq. (4), the sum of the coupling coefficients of all capsules 
and capsule i  in the previous layer is 1. The coupling coefficient 
is obtained through a dynamic routing mechanism; the 
pseudocode is shown in Table  2.

The loss function of the capsule network is the margin loss 
function, and the calculation equation is

( ) ( ) ( )2 2
max 0, 1 max 0, ,k k k k kL T m V T V ml+ -= - + - -

 
(5)

where K  is the number of categories, TK  is the real label 
ubiquitinated to 1 and nonubiquitinated to 0, and kV  is the 
output length of the kth capsule, which is the probability of 

predicting the kth class. The boundary m+  is 0.9, which is 
a penalty for false-positives, and the lower boundary m-  is 
0.1, which is a penalty for false negatives. l  is a proportional 
coefficient of 0.5, which is used to control the loss caused 
when some categories do not appear to prevent the capsule 
vector length of all categories from being reduced in the early 
stage of training, and the total loss is the sum of the 
losses of K categories .

Architecture Design
As shown in Figure  2, the structure of the proposed model 
contains two identical subnetworks that process one-hot and 
amino acid continuous encoding modes. After training in their 
respective network model, the two models merge the features 
as the final output. Each subnetwork consists of the same 
three 1D convolutional layers (Conv1, Conv2, and Conv3) and 
a capsule network layer. The first convolutional layer (Conv1) 
of the network is a 1D convolution kernel, which comprises 
256 convolution kernels with a size of 1 and a step size of 1 
that use the ReLU activation function. A convolution kernel 
with a length of 1 first appears in the Network in Network 
(Lin et  al., 2013); a convolution kernel with a length of 1 can 
reduce the complexity of the model and can make the network 
deeper and wider. Applied in this study, it acts as a feature 
filter and can pool features in two encoding modes. The second 
convolutional layer, Conv2, is a conventional convolutional layer 
with 256 1D convolution kernels with a length of 7 and a 
step size of 1, which functions as a local feature detector to 
extract the protein sequence input and convert it to corresponding 
local features. Conv2 is understood as the functional domain 
characteristics of the protein, and its output is used as the 
input of the next layer, Conv3. The third convolutional layer, 
Conv3, has 256 1D convolution kernels with a size of 11 and 
a step size of 1. The activation function used is ReLU and a 
dropout mechanism with a random deletion rate of 0.3. The 
dropout mechanism is used to prevent the model from overfitting 
and to increase the generalization ability of the model. These 

TABLE 2 | The pseudocode of a dynamic routing mechanism.

ROUTING ( ˆ j iu , r, l)

Input: ˆ j iu , r, l
Output: vj

for all capsules i in layer l and capsules j in layer 
(l + 1):
bij←0.
for r iterations do:
for all capsules i in layer l:
ci←softmax ( ib )
end for
for all capsules j in layer (l + 1):

ˆj ij j is c u¬S

vj←squashing ( js )
end for
for all capsules i in layer l and capsules j in layer 
(l + 1):
bij←bij+ ˆ . jj iu v
end for
return jv
end for

end for

FIGURE 2 | Network structure of the proposed model.
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two convolutional layers are used to increase the feature 
representation ability of the capsule network and convert the 
original features of protein fragments into more advanced and 
abstract features. Then the local features of Conv2 are used 
as the input of the PrimaryCapsule network layer. The dimension 
of each capsule in PrimaryCapsule is 8, the step size is 1, the 
convolution kernel length is 20, and the squash activation 
function is used. The last layer of LabelCapsule is a capsule 
with a dimension of 10, which is used to represent the two 
states of the input protein fragment: the input sequence is the 
ubiquitination site or non-ubiquitination site, and finally the 
output of the two subnetworks is merged as the final 
prediction result.

Model Training
For model training, we used the Adam (Kingma and Ba, 2014) 
optimization algorithm. Adam automatically adjusts the learning 
rate of the parameters, improve the training speed, and improve 
the stability of the model. The learning rate was 0.003, the 
first-order estimated exponential decay rate was 0.9, and the 
exponential decay rate estimated by the second moment was 
0.999. The dynamic routing mechanism was consistent with 
that in the original paper (Dombetzki, 2018). The number of 
routing iterations was 3, and the boundary loss function was 
used as the loss function of the model. The boundary loss 
function form is shown in Eq. (5). Since the data samples of 
the input model are about 100,000, and due to the limitation 
of computing resources, all the data cannot be  input into the 
model for training at one time. The size of each data block 
(batch_size) is 124. The training of the entire training set is 
completed once called an epoch, and the early stopping 
mechanism is used during the training process. When the loss 
of the validation set does not decrease after 10 epochs, the 
entire training process is terminated, and the final model tends 
to be  stable at 50 epochs, that is, the epoch of this model is 
50. The deep learning framework used by this model was 
Keras 2.1.4. Keras is a highly modular deep learning framework 
based on Theano and written in Python; it supports both 
CPU and GPU. The programming language was Python 3.5, 
and the model was trained and tested on a Windows 10 system 
equipped with an Nvidia RTX 2060 GPU.

RESULTS

Model Evaluation and Performance 
Indicators
A confusion matrix is a visual display tool used to evaluate 
the quality of classification models. Each row of the matrix 
represents the actual condition of the sample, and each column 
represents the sample condition predicted by the model. There 
are four values in the matrix, as shown in the following 
equations, where FN is the number of false negatives, FP is 
the number of false-positives, TN is the number of true negatives, 
and TP is the number of true positives. The following indicators 
based on the confusion matrix are usually used to evaluate 
the prediction of the model performance:

 
,n

TPS
FN TP

=
+  

(6)

 
,p

TNS
TN FP

=
+  

(7)
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(9)

Sn stands for sensitivity, which is the evaluation of the 
prediction performance of negative samples; Sp is the specificity, 
which is the evaluation of the prediction performance of positive 
samples; Acc is the accuracy, which is the evaluation of the 
accuracy of the model; and MCC is Matthew’s correlation 
coefficient, which is the overall evaluation of the model. The 
receiver operating characteristic (ROC) curve and the area under 
the curve (AUC) for the ROC curve are usually used to evaluate 
the pros and cons of binary classifiers. AUC is defined as the 
area under the ROC curve bounded by the coordinate axis. 
A classifier with a larger AUC value has a higher accuracy rate.

Experimental Results
First, we  performed many experiments on the selection of the 
window size of protein fragments. Because the correlation 
information between amino acids had a direct effect on the 
prediction results, we needed to determine an appropriate window 
size. Previous studies have directly used empirical values such 
as 21, 33, or 49. However, different data models and classifiers 
tend to have different window sizes. Therefore, a window length 
of n was selected from a range of 21–75, and we  performed a 
series of experiments using different window lengths. For each 
window length, we encoded all training data into two input modes 
and trained their respective subnetworks. According to the prediction 
results of the validation set, we selected each appropriate window 
size. Figure  3 shows the performance of various window sizes 
in one-hot and amino acid continuous encoding modes.

In Figure  3, the abscissa represents the window length, 
and the ordinate represents the accuracy of the model. Figure 3 
shows that when the window length was 51, the two encoding 
modes had the highest accuracy. Therefore, we set the window 
length of this model to 51. That is, take lysine K as the center, 
give 25 amino acids to the left and right, and fill in with “-” 
when the sequence length does not reach the window length.

To compare the performance of the model under different 
encoding schemes, we  compared the capsule network and the 
CNN to similar hierarchical structures of capsule networks 
and the same training set size. The CNN structure replaced 
only the PrimaryCapsule layer with the Conv3 layer. We  set 

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Luo et al. Caps-Ubi for Ubiquitination Site Prediction

Frontiers in Plant Science | www.frontiersin.org 6 May 2022 | Volume 13 | Article 884903

TABLE 3 | Comparison of various coding schemes.

Feature Model Acc (%)1 Sn (%)2 Sp (%)3 AUC4 MCC5

One-hot CapsNet 89.51 93.70 85.31 0.96 0.80
CNN 84.93 86.39 82.93 0.93 0.70

Amino acid continuous CapsNet 90.06 91.88 88.23 0.96 0.80
CNN 83.83 85.25 82.41 0.91 0.68

One-hot and amino 
acid continuous

CapsNet 90.47 93.66 87.27 0.96 0.81
CNN 84.67 82.62 86.72 0.93 0.70

1Accuracy of the model
2Sensitivity of the model.
3Specificity of the model.
4Area under curve.
5Matthew’s correlation coefficient.

the LabelCapsule layer to a 128 × 1 fully connected layer. The 
comparison results are shown in Table  3.

From Table  3, it can be  concluded that the capsule 
network’s accuracies were 5.39, 7.43, and 6.85% percentage 
points higher than those of CNN under the one-hot, amino 
acid continuous, and combined one-hot and amino acid 
continuous types, indicating that the capsule network 
internally expressing the hierarchical relation modeling 
aspect has more advantages than CNN. Among them, the 
performance under the combined one-hot and amino acid 
continuous encoding modes is the best on the capsule 
network: this proposed Caps-Ubi model achieved an accuracy, 
sensitivity, specificity, area under curve, and Matthew’s 
correlation coefficient of 91.23%, 93.11%, 89.34%, 0.96, and 
0.83, respectively. The proposed Caps-Ubi was obtained 
from balanced data. The ROC curve of Caps-Ubi on the 
test set is shown in Figure  4, demonstrating that it was 
very close to the real situation.

When we  used balanced data to train the model on an 
experimentally verified ubiquitination dataset and a nonubiqui 
tination dataset (Fu et  al., 2019), the ratio of positive peptides 
and negative peptides was 1:8, so we  tested Caps-Ubi using 
natural-distribution data. The test results are shown in Table 4. 
According to the test results, the performance was slightly 
worse than that under the balanced data.

Comparison to Other Methods
In the past 10 years, many researchers have contributed to 
the prediction and research of protein ubiquitination sites. 
Therefore, we compared the proposed model to other sequence-
based prediction tools. The corresponding data and results 
are shown in Table  5, which shows that the performance 
of the Caps-Ubi model exceeded that of the best-performing 
deep learning model DeepUbi and several other prediction 
models. Among them, machine learning-based predictors 

FIGURE 3 | Accuracy of the verification set for various window lengths.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Luo et al. Caps-Ubi for Ubiquitination Site Prediction

Frontiers in Plant Science | www.frontiersin.org 7 May 2022 | Volume 13 | Article 884903

improve accuracy by adding new features. In this study, 
we  propose a deep learning model Caps-Ubi, which has 
good performance on large datasets and learns deeper features. 
The accuracy, sensitivity, specificity, area under the curve, 
and Matthew’s correlation coefficient of Caps-Ubi were 2.36, 
3.31, 1.24, 0.05, and 0.05 respectively, several percentage 
points highe r than those of DeepUbi.

CONCLUSION

In this study, a new deep learning model for predicting 
protein ubiquitination sites is proposed, using one-hot and 

amino acid continuous coding modes. We  used the largest 
available protein ubiquitination site dataset, and the 
experimental results above verify the efficacy of this model. 
Operation of the model involves four main steps: encoding 
protein sequences, constructing convolutional layers, 
constructing a capsule network layer, and constructing an 
output layer. The capsule network introduces a new building 
block for deep learning. Relative to CNN, the capsule 
network, which uses a dynamic routing mechanism to update 
parameters, requires more training time, but the time required 
for prediction is similar. The capsule network can also 
characterize the complex relationships among amino acids 
in various sequence positions and can be  used to explore 

FIGURE 4 | Receiver operating characteristic curve of Caps-Ubi and CNN on the test set.

TABLE 4 | Results of testing Caps-Ubi under natural-distribution data.

Protein fragment Acc (%)1 Sn (%)2 Sp (%)3 AUC4 MCC5 Positive–negative 
ratio

1,000 53.75 0.08 0.99 0.70 0.19 1:8

10,000 53.30 0.12 0.95 0.59 0.12 1:8

1Accuracy of the model.
2Sensitivity of the model.
3Specificity of the model.
4Area under curve.
5Matthew’s correlation coefficient.
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the internal data distribution related to biochemical 
significance. The proposed Caps-Ubi prediction tool will 
facilitate the sequence analysis of ubiquitination and can 
also be used to identify other post-translational modification 
sites in proteins. In the future, we  will study other features 
that may better extract sample attributes to construct 
deeper models.
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