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Affected by various environmental factors, citrus will frequently suffer from

diseases during the growth process, which has brought huge obstacles to

the development of agriculture. This paper proposes a new method for

identifying and classifying citrus diseases. Firstly, this paper designs an image

enhancement method based on the MSRCR algorithm and homomorphic

filtering algorithm optimized by Laplacian (HFLF-MS) to highlight the disease

characteristics of citrus. Secondly, we designed a new neural network DS-

MENet based on the DenseNet-121 backbone structure. In DS-MENet, the

regular convolution in Dense Block is replaced with depthwise separable

convolution, which reduces the network parameters. The ReMish activation

function is used to alleviate the neuron death problem caused by the ReLU

function and improve the robustness of the model. To further enhance

the attention to citrus disease information and the ability to extract feature

information, a multi-channel fusion backbone enhancement method (MCF)

was designed in this work to process Dense Block. We use the 10-fold

cross-validation method to conduct experiments. The average classification

accuracy of DS-MENet on the dataset after adding noise can reach 95.02%.

This shows that the method has good performance and has certain feasibility

for the classification of citrus diseases in real life.

KEYWORDS

citrus disease detection, depthwise separable convolution, ReMish, multi-channel
fusion backbone enhancement method, DS-MENet, image enhancement

Introduction

Citrus is one of the important economic crops in China It is rich in vitamin
C, which is good for human health (Pujari et al., 2013). In recent years, affected
by various environmental factors, citrus diseases have occurred frequently, causing
huge economic losses. Therefore, the control of citrus diseases plays a very important
role in citrus production. At present, the identification methods for citrus diseases
in China are as follows (Zhang et al., 2018): (1) vegetable farmers roughly judge the
disease type based on planting experience. (2) Professional technicians identify citrus
pathogens. (3) They inhibit the development of citrus diseases by applying pesticides.
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The common problem of the first two methods is that it
consumes a lot of manpower and time, and the efficiency is
low. The third method will leave pesticides on the surface
of citrus, causing environmental pollution. It can be seen
that the traditional citrus disease detection methods cannot
better ensure the quality of citrus and promote the economic
development of agriculture. Therefore, it is necessary to develop
a new citrus disease detection method to quickly and accurately
identify and classify citrus diseases at an early stage and take
effective disease control measures, thereby ensuring the quality
and yield of fruits and reducing the economic losses caused by
diseases to agricultural development.

As mentioned earlier, methods for artificially identifying
citrus diseases generally suffer from inefficiencies and low
accuracy. In recent years, the emergence and development
of computer vision have brought new research directions for
citrus disease detection. Machine learning is a commonly used
technical means in computer vision, which is to improve the
system’s performance by means of calculation and using existing
experience. Support vector machine (SVM), cascaded Adaboost,
and artificial neural network (ANN) are more commonly used
methods in machine learning, of which the use of the cascaded
Adaboost method can improve the recognition accuracy to
more than 94% (Zhang et al., 2018). However, this method is
only suitable for citrus disease images with simple backgrounds,
and there are certain limitations in applying this method to
complex backgrounds, such as actual farmland. In 2012, the
research group of Hinton (Krizhevsky et al., 2012) proposed
to use the deep convolutional neural network AlexNet for
image recognition on the ImageNet dataset, which greatly
reduced the classification error rate and set off a wave of
deep learning. In recent years, deep learning has shown certain
advantages in image recognition and classification, object
detection, and other fields (Lin et al., 2021). In the study of
citrus disease identification, deep learning can achieve high
recognition accuracy (Pan et al., 2019); this is because the
convolutional neural network (CNN) feature extraction layer
can automatically learn features from citrus samples and extract
useful feature information, but the acquisition of citrus disease
images under different environmental conditions and the use
of different network models for recognition will bring different
classification results. Therefore, the main problems in the
research are: (1) the process of image shooting will be interfered
with by environmental factors such as light and background,
resulting in poor original image quality of citrus, blurring,
uneven brightness, and low color contrast, making it difficult to
distinguish citrus disease characteristics. If the image is directly
sent to the network for training without image preprocessing,
the ability of the network to extract citrus disease features will
be greatly weakened, resulting in low recognition accuracy. (2)
There is a high similarity between some citrus diseases, such as
citrus canker and citrus anthracnose. Traditional convolutional
neural networks have difficulty distinguishing accurately, and
the network model needs to be improved to improve the
network’s ability to extract feature information.

To solve the problem wherein the disease characteristics are
not obvious due to the interference of environmental factors
such as external light in the process of shooting citrus images,
some literature proposes to use Laplace filtering to enhance
the edge information of the image and improve the clarity
of the image. Experiments show that this method can better
improve the phenomenon of image blur (Yao et al., 2017).
The MSRCR algorithm (Rahman et al., 1996) is suitable for
color image enhancement. It can enhance the details of dark
parts by compressing the dynamic range of the image, but it is
prone to color distortion. Dong et al. (2018) used homomorphic
filtering to process the image, corrected the problem of uneven
illumination of the image, and improved the visual effect of
the image with low illumination, but the method was also
prone to the phenomenon of over-enhancement, resulting in
the image brightness being too high and some details being
lost. Therefore, based on the ideas and advantages of the three
algorithms of MSRCR, homomorphic filtering, and Laplacian
filtering, this paper proposes an image enhancement algorithm
for citrus diseases by HFLF-MS. First, we apply Laplacian
filtering to the high-frequency components generated by the
Homomorphic filtering; it is named Homomorphic Filtering
Algorithm Optimized by Laplacian Filter (HFLF). Secondly, the
images are processed separately using the MSRCR algorithm
and the above-mentioned HFLF algorithm. Finally, the two
images processed by the two algorithms are weighted and fused.
The HFLF-MS algorithm can effectively improve the clarity and
contrast of the image, enhance the details of the disease in the
dark part, alleviate the problem of uneven brightness of the
image, and provide a basis for the subsequent parts.

To solve the problems of traditional convolutional neural
networks in image recognition and classification, Zhang
et al. (2018) proposed a deep learning model for citrus
canker disease classification, which was improved based on
lightweight AlexNet to achieve feature amplification and target
optimization. Experimental results show that the model can
efficiently and accurately classify citrus canker disease under
the training condition of a small dataset. However, as the
number of network layers deepens, the problem of gradient
disappearance or gradient explosion will become more and
more obvious, and in severe cases, the network will be stagnant,
and the weights cannot be updated. In addition, when some
citrus diseases have high similarities, higher requirements
are also placed on the ability of the network to extract
feature information. In this paper, a DS-MENet model was
constructed to take DenseNet-121 as the primary network
structure and replace traditional convolution in the Dense
Block with depthwise separable convolution to reduce network
parameters and reduce network running time. To alleviate
the problem of neuron death caused by the ReLU activation
function and improve the robustness of the model, an improved
activation function ReMish was proposed. A multi-channel
fusion backbone enhancement method (MCF) was proposed
to enhance the backbone of Dense Block. This method solved
the problem of low recognition accuracy caused by similar
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citrus disease characteristics, enhanced the attention to citrus
disease information and feature information extraction ability,
and improved the accuracy of citrus disease identification and
classification. Therefore, this paper proposes a citrus disease
identification method based on the combination of HFLF-MS
and DS-MENet, and its main contributions are as follows.

(1) An HFLF-MS image enhancement algorithm is proposed.
HFLF-MS first uses the MSRCR algorithm and the
Homomorphic Filtering Algorithm Optimized by
Laplacian (HFLF) algorithm to process the citrus disease
images, respectively, and then weights the two images to
form a new image. The MSRCR effectively enhances the
details and contrast of the dark parts of the image, and
the HFLF algorithm improves the clarity of the image
and alleviates the problem of uneven illumination. The
HFMS image enhancement algorithm can effectively
enhance the dark detail features, color contrast, and
sharpness of the image.

(2) The DS-MENet network model is proposed, which
replaces the traditional convolution in DenseBlock with
the depthwise separable convolution, which reduces the
network parameters and reduces the running time of the
network. A new activation function ReMish is proposed,
which alleviates the neuron death problem caused by
the ReLU function and improves the robustness of
the model. To enhance the network’s ability to extract
citrus disease features and improve the recognition and
classification accuracy of similar disease features, a multi-
channel fusion backbone enhancement method (MCF)
was proposed to enhance the last convolutional layer of
Dense Block. The core idea of this method is to group
the feature images according to the number of channels
and carry out convolution operations, respectively. In the
process of operation, the feature images obtained after
the convolution of two adjacent groups are fused as the
convolution input of the next group to reduce the loss of
the main feature information of the image.

(3) Compared with the traditional deep neural network model,
higher recognition and classification accuracy can be
obtained by using this method.

Related work

The identification and classification of citrus diseases
can be divided into two parts: image enhancement and
image recognition.

Image enhancement is a key technology in recognition and
classification work. The enhanced image effectively removes
or weakens useless information, making it easier for machines
to identify, and has been widely used in military and civilian

fields. Li and Liu (2015) improved the image enhancement
algorithm of the wavelet transform. The algorithm uses wavelet
transform to separate the image and performs bilateral filtering
and blurring transformation on low-frequency components
and high-frequency components, respectively, which effectively
enhances the image details. To improve the quality of low-
illumination images, Zhang et al. (2016) proposed an image-
enhancement algorithm based on K-means clustering. The
improved algorithm divided the image into blocks and carried
out histogram equalization of the information of each piece
of image, thus improving the contrast and clarity of the
image. Wei et al. (2019) proposed an image-enhancement
algorithm based on the idea of fusion under Retinex theory,
which performed MSR enhancement and single-scale Retinex
enhancement based on bilateral filtering in YCbCr and RGB
color space, respectively. Experimental results show that this
algorithm can obtain images with better edge information and
better detail information retention.

In the field of citrus disease image recognition, traditional
machine learning methods and deep learning-based automatic
feature extraction techniques have generally been used to
classify citrus diseases. For traditional machine learning
methods, handcrafted feature-extraction techniques with low
computational complexity are used in most of the literature and
have shown better performance (Janarthan et al., 2020). For
example, Pydipati et al. (2015) proposed a machine learning
method based on color symbiosis (CMM), created 4 feature
models containing 39 variable texture feature sets, and classified
these features using 4 methods. The classification accuracy
of citrus diseases by using a neural network based on a
back propagation algorithm and a neural network based on
a radial basis function was more than 90%. However, this
experiment was carried out in the laboratory with a controllable
background environment, and the algorithm may greatly reduce
the recognition accuracy if applied in the natural citrus
forest. Wetterich et al. (2016) combined fluorescence imaging
spectroscopy (FIS) and machine learning to accurately identify
citrus diseases with similar symptoms. Mishra et al. (2012) used
machine learning classification methods such as support vector
machines to classify citrus canopy reflectance spectral data
collected through near-infrared (VIS-NIR) spectroscopy. Deng
et al. (2016) studied a classification of citrus Huanglongbing
based on visible spectrum image processing and C-SVC (cost-
support vector classification), using PCA to reduce the extracted
features, and using the SVM classifier for classification. Good
results are achieved at low cost and low computational
complexity. However, due to the high variability of the canopy
reflectance spectrum, multiple measurements of a single tree
are required to obtain high classification accuracy. The main
disadvantage of the manual feature extraction method is
that the recognition accuracy is heavily dependent on the
manually extracted feature parameters, which leads to the
inability to achieve a high classification accuracy. In contrast,
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the automatic feature extraction technology based on deep
learning has shown higher advantages. Zhang et al. (2018)
proposed a deep learning model for citrus canker classification,
which successfully achieved feature enhancement and target
optimization, and used a small dataset for training and achieved
high classification accuracy. Pan et al. (2019) proposed a
mobile citrus disease diagnosis system, constructed six citrus
disease image datasets, and used a simplified densely connected
convolutional network (DenseNet) to identify and classify
citrus diseases. Zhang et al. (2021) proposed an improved
convolutional neural network combined with a state transfer
algorithm (STA) to identify the surface defects of citrus, and
the recognition accuracy of the trained model on the dataset
can reach relatively high accuracy. Elaraby et al. (2022) used
transfer learning to classify citrus diseases based on AlexNet
and VGG19, and the proposed method used a momentum
stochastic gradient descent algorithm (SGDM) for convergence
speed. Janarthan et al. (2020) proposed a patch-based framework
for citrus disease classification, consisting of an embedding
module, a clustering prototype module, and a simple neural
network classifier, which achieved promising results in terms
of accuracy, parameter size, and time efficiency. Rehman et al.
(2022) proposed a citrus disease classification method based on
transfer learning and feature fusion, using Whale Optimization
Algorithm (WOA) to obtain the best feature vector trained
by MobileNetv2 and DenseNet201 for classification, and
achieved high accuracy and computational efficiency. Sharif
et al. (2018) proposed an automatic classification method for
citrus diseases based on optimized weighted segmentation and
feature selection, in which the optimized weighted segmentation
algorithm extracted citrus lesions very efficiently, consisting
of PCA scores, entropy and precision covariance vectors
The hybrid feature selection method of can obtain the best
features for post-classification. Syed-Ab-Rahman et al. (2021)
proposed a two-stage deep CNN model. The two stages
are to extract the potential disease target area and use the
classifier to classify the potential target area. Effect. Xing
et al. (2019) proposed a lightweight citrus pest and disease
classification model based on Weakly DenseNet, using feature
reuse and data augmentation to reduce the similarity between
images, the algorithm improves parameter efficiency, and the
model’s lightweight features can also be used for mobile
application. In order to express the related research work more
intuitively, we have listed a table including research methods,
advantages and disadvantages. The specific details are shown in
Table 1.

Although deep learning has achieved success in the field of
citrus disease identification in the above studies, there is still
room for improvement in the identification accuracy, and the
training time of the model needs to be reduced as much as
possible. The existing citrus disease classification methods are
mainly based on samples with better image quality. However,
if citrus is photographed in real life, it is easily affected by
environmental factors such as light, the images generally have
the phenomenon of inconspicuous dark details, low color

contrast, and blurring. In addition, there is a high similarity
between samples of some categories of citrus diseases, such as
canker, scab, and anthracnose. These factors will increase the
difficulty of later identification and classification. To achieve a
more accurate classification of various diseases, it is necessary
to retain the original detailed information as much as possible
and strengthen the ability to extract image feature information.
Therefore, this paper proposes a citrus disease identification
method that combines HFLF-MS and DS-MENet, and the
working principle is shown in Figure 1. To improve the image
quality and make the citrus disease features more obvious,
the HFLF-MS algorithm is used to process the images. After
preprocessing, the images are sent to DS-MENet for training
and testing. In DS-MENet, depthwise separable convolution is
used to replace the traditional convolution in Dense Block to
reduce network parameters and model running time; the new
activation function ReMish is used to alleviate the neuron death
problem caused by the original ReLU function and enhance the
robustness of the model: the MCF method is used to enhance the
backbone of the Dense Block, improve the network’s ability to
extract citrus disease features, and preserve detailed information
to the greatest extent. Experimental results show that, compared
with modern convolutional neural network models, such as
AlexNet (Krizhevsky et al., 2012), ResNet50 (He et al., 2016),
ResNeXt (Gp et al., 2020), InceptionV4 (Tian et al., 2021),
MobileNetV3 (Tarek et al., 2022), EfficientNet (Chen et al.,
2021), DenseNet121 (Huang et al., 2017), and EfficientNetV2
(Sunil et al., 2022), the method presented in this paper has a
better recognition and classification effect on citrus diseases with
similar characteristics.

Materials and methods

Data acquisition

Data collection is an indispensable part of citrus disease
identification and classification. The data set in this paper
comes from field shooting and the Internet. The citrus images
taken on the spot are from the National Citrus Virus-Free
Original Seedling Cultivation Base in Changsha City, Hunan
Province, and were taken with a Canon EOS R6 camera with
a resolution of 5,472 × 3,648 under natural light. The images
obtained through the Internet are derived from the open-source
datasets of the kaggle platform: PlantifyDr Dataset, Dataset for
Classification of Citrus Diseases, Fruit Diseases. The training
of the network requires a large number of data sets, so after
enhancing the collected images, the number of data sets is
expanded by horizontal flipping, vertical flipping, and random
cropping, and finally, 9,258 images are obtained, all in jpg format
to save. Table 2 shows the number and proportion of various
citrus disease images and healthy citrus images. Disease types
include citrus canker, scab, black spot, and anthracnose, a total
of four diseases, as shown in Figure 2.
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TABLE 1 Related research work details.

References Method Advantage Drawback

Pydipati et al.
(2015)

A machine learning method based on
color symbiosis (CMM)

The classification accuracy obtained under controlled
lighting conditions in an indoor laboratory is excellent

The model is sensitive to the
background environment of citrus,
and the classification of citrus diseases
in natural environment may have
limitations

Wetterich et al.
(2016)

Identification method based on FIS
(Fluorescence Imaging Spectroscopy)
and machine learning

High accuracy for classification of similar diseases of citrus
(canker and scab)

High requirements for image quality

Mishra et al. (2012) Classification of Citrus Diseases Based
on Support Vector Machines and
VIS-NIR (Near-Infrared
Spectroscopy)

Classification algorithms are common and effective The experimental data has strong
uncertainty and is greatly affected by
the environment

Deng et al. (2016) Identification method of citrus HLB
disease based on visible spectrum
image processing and C-SVC
(cost-support vector classification)

(a) Low computational complexity and high efficiency
(b) Low cost

Classification accuracy needs to be
improved

Zhang et al. (2021) Optimized AlexNet citrus disease
classification model

The network structure is simple, the number of parameters
is small, and the performance is relatively excellent

There are certain challenges in
applying to multi-classification of
citrus diseases

Pan et al. (2019) Intelligent Diagnosis System of Citrus
Diseases Based on Mobile Service
Computing

(a) WeChat applet is rich in functions, convenient and
practical
(b) Simplified DenseNet can reduce prediction time

Disease identification accuracy needs
to be improved

Elaraby et al.
(2022)

A citrus disease classification model
based on transfer learning and
optimized SGDM (Stochastic
Gradient Descent with Momentum)

(a) Stochastic Gradient Descent with Momentum (SGDM)
can speed up convergence?
(b) Transfer learning can improve training efficiency

The classification of similar diseases
will have certain limitations

Janarthan et al.
(2020)

A Patch-Based Framework for Citrus
Classification

(a) Fast and accurate classification can be achieved with
sparse data
(b) Model computational complexity is low and lightweight

The classification accuracy of similar
diseases needs to be improved

Rehman et al.
(2022)

A classification method of citrus
diseases based on transfer learning
and feature fusion

(a) Image preprocessing with hybrid contrast stretching can
improve image quality
(b) The feature set obtained by fusing different networks
can deeply extract image information
(c) Whale Optimization Algorithm (WOA) is used to select
salient features, which can reduce computation time

Lack of performance comparisons
with more state-of-the-art
classification models

Sharif et al. (2018) Automatic classification of citrus
diseases based on optimized weighted
segmentation and feature selection

The optimized weighted segmentation algorithm can
segment the lesions, which is beneficial to the extraction of
later feature information

Less suitable for citrus diseases
without lesions, such as citrus
Huanglongbing

Syed-Ab-Rahman
et al. (2021)

A classification model of citrus
diseases based on two-stage deep
CNN

Feature sharing can be achieved between the two stages to
reduce model training overhead

The robustness of the model needs to
be further improved

Xing et al. (2019) A lightweight citrus pest identification
model based on Weakly DenseNet

(a) Feature reuse and data augmentation algorithms can
reduce similarity between images
(b) Lightweight design for easy use in mobile apps

The proportion of the object to be
classified in the image will affect the
output result

Next, we will elaborate on the image enhancement algorithm
and citrus disease classification model proposed in this paper.
For ease of reading, we list the variables included in the formulas
that appear below, as shown in Table 3.

Image enhancement of citrus diseases
based on weighted fusion algorithm
combining MSRCR and homomorphic
filtering optimized by Laplacian filter

During the shooting of citrus disease images, the image
quality is easily disturbed by various environmental factors such
as light, resulting in poor image quality, uneven illumination,

indistinct disease features in dark parts, blurring, and low
color contrast. These problems will adversely affect the training
and testing of the later network and increase the difficulty of
identification and classification.

To improve the reliability and accuracy of post-recognition
classification, the image needs to be enhanced. Therefore, this
paper uses the HFLF-MS algorithm to enhance the citrus
disease images. The algorithm first uses the MSRCR algorithm
and the HFLF algorithm to process the images, respectively,
and then weights and fuses the two processed images to
obtain the enhanced image. The MSRCR algorithm effectively
enhances the dark details and color contrast of the image.
The HFLF algorithm combines homomorphic filtering and
Laplace filtering to improve the clarity of the image and
alleviate the phenomenon of uneven illumination. The weighted
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FIGURE 1

Working principle diagram of the system.

TABLE 2 Number and proportion of citrus diseases.

Disease type Original
number

Expanded
number

Percentage
(%)

Healthy 564 1,692 18.3

Canker 634 1,902 20.5

Scab 592 1,776 19.2

Black spot 743 2,229 24.1

Anthracnose 553 1,659 17.9

fusion image method overcomes the shortcomings of using the
MSRCR algorithm or homomorphic filtering alone for image
enhancement and can better describe the details of the image.

The HFLF-MS algorithm can not only highlight the details
of the image well, but the enhanced image also has natural color
and a good visual effect. The specific workflow of the HFLF-MS
image enhancement algorithm is shown in Figure 3.

Multi-scale retinex with color restoration
When the overall color contrast of the image is low and

the dark details are not obvious or missing, the color recovery
algorithm based on Retinex (Land Edwin, 1978) theory can
effectively enhance the image to improve the color contrast and
highlight the dark details of the image. The MSRCR algorithm is
a color-restoration algorithm with good effect, which is derived
from the color-restoration algorithm based on Retinex theory.

In the Retinex theory, an image can be regarded as
the product of the luminance component and the reflection
component, represented by i

(
x, y

)
and r

(
x, y

)
, respectively.

The mathematical model is Formula (1). In Formula (1),
the luminance component i represents the incident light
image, and the reflection component r represents the reflection
property of the object, that is, the intrinsic property of the
image. The purpose of the Retinex algorithm to enhance
the image is to remove the brightness component i from

TABLE 3 Variable names and their meanings.

Variable Meaning

i color channel, i ∈ R,G,B

i
(
x, y

)
luminance component

r
(
x, y

)
reflection component

f
(
x, y

)
input image

ri
(
x, y

)
Output of the ith channel SSR

F(x, y) Gaussian wrap function

c Gaussian Surround Scale

rMSRi (x, y) the result of MSRCR enhancement of the ith color channel

Fn
(
x, y

)
Gaussian wrapping function at the nth scale

ωn Weight coefficient for the nth scale

N total number of scales, N=3

rMSRCRi
(
x, y

)
the result of MSRCR enhancement of the ith color channel

Ci
(
x, y

)
color restoration factor of the ith color channel

α controlled nonlinear intensity

β Gain constant

Y Parameter quantity

H Length of the convolution kernel

W Width of the convolution kernel

C channel number of the input feature map

K channel number of the output feature map

YDW The parameter quantities of DW convolution

YPW The parameter quantities of PW convolution

bi Input feature maps of the ith group

ai The ith group of feature maps

fsq The average pooling function

fex The excitation function

fscale The multiplication function

image f, and obtain the reflection component rto the
greatest extent.

f
(
x, y

)
= i

(
x, y

)
· r
(
x, y

)
(1)

The SSR algorithm is proposed based on the Retinex theory
(Hines et al., 2005), and the algorithm can be expressed as
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FIGURE 2

Collection of citrus disease images.

FIGURE 3

HFLF-MS working principle diagram.

Formulas (2)–(4). Among them, rij
(
x, y

)
is the output image

of SSR, F
(
x, y

)
is the Gaussian wrapping function, and c is the

Gaussian wrapping scale.

ri
(
x, y

)
= logf i

(
x, y

)
− log

[
F
(
x, y

)
fi
(
x, y

)]
(2)

F
(
x, y

)
= µexp

[
−
(
x2
+ y2)2

c2

]
(3)

∫∫
F
(
x, y

)
dxdy = 1 (4)

It can be seen from Formulas (2) and (3) that the SSR
algorithm estimates the illumination change in the image by
calculating the pixel point and the surrounding area under the
action of weighted average, removes i

(
x, y

)
, and retains f

(
x, y

)
.

The multi-scale Retinex algorithm (MSR) is developed based
on SSR. It linearly weights multiple color channels with a fixed
number of scales. The calculation formula of the algorithm
is as follows. rMSRi (x,y) is the result obtained by the MSR
algorithm for the ith color channel, i ∈ R,G,B, represents the
three color bands of the image, Fn

(
x, y

)
is the Gaussian function

of the nth scale, ωn is the weight of the result at the nth

scale, and satisfies the normalization condition:
N∑

n=1
ωn = 1,

N is the total number of scales, where N=3, represents a
color image.

rMSRi
(
x, y

)
=

N∑
n=1

ωn
{
logf i

(
x, y

)
− log

[
Fn
(
x, y

)
fi
(
x, y

)]}
(5)

Although MSR can simultaneously satisfy color fidelity and
detail enhancement, in the process of image enhancement,
the problem of local color distortion of the image will still
occur due to the increase in noise, which reduces the overall
visual effect. The Multiscale Retinex with Color Recovery
(MSRCR) algorithm can improve this problem. Based on MSR
(Rahman et al., 1996), this algorithm makes up for the defect
of color distortion by introducing a color recovery factor and
preserves the original image details to the greatest extent while
maintaining the original color of the image. The expressions are
Formulas (6) and (7). For Formulas (6) and (7), rMSRCRi(x, y) is
the result of MSRCR enhancement of the jth color channel, and
ci(x, y) is the color restoration factor of the ith color channel, α

is the controlled nonlinear intensity, β is the gain constant, and
fj
(
x, y

)
is the distribution of the citrus disease image in the jth

color channel.

rMSRCRi
(
x, y

)
= Ci

(
x, y

)
· rMSRi

(
x, y

)
(6)
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Ci
(
x, y

)
= β

{
log
[
αf i

(
x, y

)]
− log

[ N∑
i=1

fi
(
x, y

)]}
(7)

The MSRCR algorithm adjusts the proportional relationship
between the three color channels in the original image through
the color restoration factor, highlighting the details in the darker
areas in the image, and the local color contrast is also improved.

Homomorphic filtering optimized by Laplacian
filter

In the process of image acquisition, due to the influence
of environmental factors such as light and weather, low-
illumination problems such as backlight will inevitably occur,
and the image is prone to blurring and uneven brightness, which
makes it difficult to distinguish disease characteristics. The
HFLF algorithm can effectively solve such problems. The HFLF
algorithm combines homomorphic filtering and Laplacian
filtering and performs a Laplacian filtering on the obtained
high-frequency components in the process of homomorphic
filtering. Homomorphic filtering is a commonly used low-
illumination image enhancement method. Its core idea is to
suppress the low-frequency luminance component to correct the
uneven illumination and enhance the high-frequency reflection
component to enhance the low-illumination details of the
image. Laplacian filter is a commonly used two-dimensional
linear filter, which uses the Laplacian operator to enhance
the feature points of the image to achieve the effect of
image sharpening.

The HFLF algorithm adopts the illuminance-reflection
model of the image represented by the Formula (1). First, we
can take the logarithm of both sides of Formula (1), convert the
multiplication operation into an addition operation, and obtain
Formula (8). Afterward, Fourier transform is performed on
Formula (8) to obtain Expression (9) in the frequency domain.
Among them, I(u, v) is the low-frequency part corresponding to
the illumination component, and R(u, v) is the high-frequency
part corresponding to the reflection component (Yu et al., 2021).
The high-frequency part mainly reflects the edge information of
the image.

lnf
(
x, y

)
= lni

(
x, y

)
+ lnr

(
x, y

)
(8)

F (u, v) = I (u, v)+ R (u, v) (9)

Secondly, to make the edges, contours, and details of citrus
disease images clearer, the Laplacian operator filters the high-
frequency parts (Khan et al., 2020). We can denote ∇2r

(
x, y

)
as

the Laplacian operator, and (x,y) as the image plane coordinates
of the high-frequency part of the pixel, and the Laplacian
operator can be defined as:

∇
2r
(
x, y

)
=

∂2r
∂x2 +

∂2r
∂y2 = r

(
x− 1, y

)
+ r

(
x, y+ 1

)
+ r

(
x+ 1, y

)
+ r

(
x, y− 1

)
− 4r

(
x, y

)
(10)

FIGURE 4

Laplacian filter template.

According to Formula (10), the value filtered by the
Laplacian operator is the sum of four times the gray value of the
center pixel and the gray value of the four upper, lower, left, and
right pixels. The Laplacian filter template is a fixed 3 × 3 size
window, as shown in Figure 4, that is, the four-neighborhood
Laplacian filter template.

By traversing any pixel of the image corresponding to the
high-frequency part of the four-neighborhood Laplacian filter
template, the Laplacian filter value of each pixel can be obtained.
It is important to note that the Laplace sharpening result of the
high-frequency part is G(u, v); then, the expression is:

G (u, v) = R (u, v)− F
[
∇

2r
(
x, y

)]
(11)

After the high-frequency part is subjected to Laplace
filtering, the homomorphic filter function H(u, v) filters the
high- and low-frequency components. The traditional H(u, v) is
often a Butterworth filter function, and its expression is Formula
(12). rh and rl are the multiples of high-frequency component
enhancement and low-frequency component suppression,
respectively; c is the sharpening coefficient; D0 is the cutoff
frequency radius; and D(u, v) is (u, v) to the distance of the filter
center.

H (u, v) = rh−rl
1+
[
c· D0

D(u,v)

]2n + rl (12)

The traditional Butterworth filter function deals with low
frequency and high frequency in the same way. To better
improve the phenomenon of uneven illumination and low
illumination and enhance the details of the dark part of the
image, two improved exponential homomorphic filter functions
are selected in this paper, which can process the low-frequency
and high-frequency components separately. It is important to
note that the filtered result is Hf (u,v), and the improved
homomorphic filtering function and filtering method are as
follows:

Hh (u, v) = (rh − rl) · exp
(
−c ·

D0

D (u, v)

)n
+ rl (13)

Hl (u, v) = 1−
[
(rh − rl) · exp

(
−c ·

D0

D (u, v)

)n
+ rl

]
(14)

Hf (u, v) = Hl (u, v) I (u, v)+Hh (u, v)G (u, v) (15)
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FIGURE 5

Enhancement of citrus disease images.

After the high- and low-frequency components are filtered
by the homomorphic filter functions Hh and Hl, the inverse
Fourier transform is performed on both sides of Formula (15)
at the same time, and Formula (16) can be obtained. Finally, we
can take the exponent of Formula (16). We can denote z(x,y) as
the image processed by the HFLF algorithm, and the expression
is Formula (17).

hf
(
x, y

)
= hi

(
x, y

)
+ hg

(
x, y

)
(16)

z
(
x, y

)
= ehf (x,y) = ehi(x,y)ehg(x,y) (17)

Weighted fusion
The purpose of image fusion is to synthesize the results

obtained by processing the same image with multiple algorithms
so that the synthesized image can highlight the details of the
image to the greatest extent. Weighted average fusion is a
simple and commonly used image fusion method. Its basic
idea is to perform a weighted average of the corresponding
pixels of multiple images under the condition that the weighting
coefficient is the best and then perform fusion.

The image processed by the MSRCR algorithm can be
obtained from Formula (6), denoted as M

(
i, j
)
, and the

image processed by the HFLF algorithm can be obtained
from Formula (17), denoted as N

(
i, j
)
. K
(
i, j
)

represents the
fused image, and i and j represent the coordinates of the

pixels in the image. The weighted image fusion can be
expressed as:

K
(
i, j
)
= µM

(
i, j
)
+ (1− µ)N

(
i, j
)

(18)

Among them, β is the weighting coefficient, and 0 ≤ β ≤ 1,
the size of β can be adjusted according to the actual needs.
Through experiments on many pictures, it can be concluded
that the range of the optimal weighting coefficient is 0.4–
0.6. After the enhancement, the obtained image can take into
account the advantages of the MSRCR algorithm and the HFLF
algorithm simultaneously, overcome the shortcomings of the
two algorithms, and have a better visual effect.

HFLF-MS algorithm summary
Based on the principles of MSRCR, HFLF and weighted

fusion proposed above, the flow of the HFLF-MS algorithm can
be summarized as follows:

Step 1: the input color image is processed by the MSRCR
algorithm. Decompose the input color image I(x, y) into
three RGB images, and convert its data type to double type.
The following processes each image separately (using R as an
example):

(1) Determine the Gaussian surround function according to
formulas (2) and (3), calculate the corresponding Gaussian
template, and select the value of scale c to be 250.
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(2) According to formula (5), the weighted average of the
results obtained under the three scales is calculated, and
the value of the weight coefficient w is 0.33, 0.33, and
0.34, respectively.

(3) The color restoration factor is calculated according to
formula (7), the contrast is stretched and enhanced on
the image, and then rMSRCRi

(
x, y

)
can be calculated by

substituting formula (6).

(1)–(3) are performed on the three channels of R, G, and
B, respectively, and finally integrated into a complete image
IMSRCR (x,y).

Step 2: Decompose the input color image I (x, y) into three
RGB images, and convert the data type to double. The following
processes each image separately (using R as an example):

(1) Enhance the high-frequency area of the image, that is,
perform Laplace sharpening enhancement.

(2) Determining the image in the frequency domain by taking
the logarithm and Fourier transform of the input.

(3) Determine the Basworth function according to formulas
(13) and (14), and set rh and rl to be 1.1 and
0.01, respectively.

(4) Multiplying the Butterworth function with the
frequency domain output.

(5) Inverse Fourier transform of the filtered frequency domain
image to time domain.

(6) Exponentiate an image in the time domain

(1)–(6) are performed on the three channels of R, G, and
B, respectively, and finally integrated into a complete image
IHFLF (x,y).

The third step: weighted fusion of IMSRCR (x,y) and IHFLF
(x,y) according to formula (18), take µ = 0.3. The final image
enhanced by HFLF-MS algorithm is obtained.

As shown in Figure 5, the four images are the original image,
the image processed by MSRCR, the image processed by HFLF,
and the image enhanced by HFLF-MS.

Identification of citrus disease based
on DS-MENet model

Since some citrus diseases will show similar characteristics,
it is necessary to strengthen the feature extraction ability of
the convolutional neural network to obtain more detailed
features and reduce the false-positive rate. When the traditional
convolutional neural network is used for feature extraction, with
the deepening of the network, it is easy to cause the loss of
important features, the disappearance of the gradient, or the
explosion of the gradient, which affects the classification effect.
Therefore, this paper selects DenseNet-121 as the main body
of the network to construct our neural network framework.

Dense Block is the core component of the DenseNet-121
network, which can effectively obtain the main features of the
image. The basic Dense Block structure is relatively simple,
and the feature information extraction ability needs to be
further enhanced.

To improve the overall learning effect of the network, this
paper replaces the traditional convolution of Dense Block with
depthwise separable convolution to reduce network parameters.
To improve the robustness of the model, a new activation
function ReMish is proposed to alleviate the problem of neuron
death caused by the original ReLU function. In addition,
we propose an MCF method based on grouped convolution
and multi-channel fusion, which is used to enhance the
backbone of the Dense Block to improve the network’s ability to
extract citrus disease features. DS-MENet has good robustness,
which can effectively improve the recognition and classification
accuracy of similar disease features and reduce the running
time of the model.

The DS-MENet network structure contains one Feature
Block, one Classification Block, three Transition Blocks, and
four Dense Blocks. The network structure of DS-MENet and
the output results of each layer are shown in Figures 6, 7,
respectively. The main workflow is as follows:

(1) The first part of DS-MENet is Feature Block, which
contains 7× 7 convolutional layers and 3× 3 max pooling
layers. The BN layer and the ReMish activation function
are added between the convolutional layer and the pooling
layer. The BN layer can enhance the generalization ability
of the model and speed up the convergence speed of
the network. The application of the ReMish activation
function can improve the robustness of the network.

(2) The second part of DS-MENet is Dense Block (1),
which consists of 6 layers, including 5 convolution layers
composed of 1 × 1 convolution, 3 × 3 depth separable
convolution, and 1 convolution layer based on MCF
backbone enhancement. BN layer and ReMish activation
function are also included between each convolution layer.
As shown in Figure 6, Dense Block directly connects all the
layers, and each layer uses the features of all previous layers
as input before feature transfer, and transmits its own
output feature map to all subsequent layers. This structure
reduces network parameters, strengthens the utilization
and transfer of features, and solves the problem of gradient
disappearance or gradient explosion caused by network
deepening. The use of depthwise separable convolution
reduces network parameters. The MCF method is applied
to the last set of convolutional layers, which can further
enhance the main feature information of the feature map.

(3) The third part is Transition Block, which contains a 1 × 1
convolutional layer, BN layer, ReMish, and 2 × 2 average
pooling layer. Transition Block is used to compress the
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FIGURE 6

DS-MENet network structure.

number of output channels of Dense Block and reduce
network parameters.

(4) The part after DS-MENet is to cycle through three Dense
Blocks and two Transition Blocks. The structure of the
Transition Block is the same as the third part above. The
Dense Block (2), Dense Block (3), and Dense Block (4)
have 12, 24, and 16 layers, respectively. The last layer is the
convolution layer based on MCF backbone enhancement,
and the other layers are the convolution layer composed of
1× 1 convolution and 3× 3 depth separable convolution.

(5) The last Dense Block is followed by the Classification
Block, which consists of BN, ReMish, 7× 7 average pooling
layers, and linear layers.

(6) The last part of DS-MENet is to determine the
classification results of the input citrus disease images
through the softmax activation function.

DenseNet
As the number of convolutional neural network layers

increases, the problem of vanishing gradients is easy to occur.
In order to solve this problem, ResNet (He et al., 2016)
connects the bypass information and shortens the network
by randomly dropping some layers in the process of network
training, so as to achieve a better training effect. DenseNet
was proposed in 2017 (Huang et al., 2017). Compared with
the classic ResNet and GoogleNet, DenseNet is separated from
the stereotyped thinking of deepening the number of network
layers and widening the network structure. From the perspective
of features, a new dense connection mechanism is proposed.
The layers are cascaded, each layer of features accepts the

input from the previous layers, and transmits its own feature
map to all subsequent layers, which makes the transfer of
feature information more effective. DenseNet can optimize the
transfer of information and gradients in the network. Each
layer can directly use the gradient of the loss function and
the initial input information for deep supervision, which is
very helpful for training deep networks. In addition, the dense
connections of the DenseNet network also have a regularization
effect, which is beneficial to reduce the problem of overfitting

FIGURE 7

Output parameters of each layer of DS-MENet.
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during training. Since we are not studying a very complex
multi-classification problem, considering the computational
cost, this paper selects DenseNet-121 as the backbone network
for citrus disease classification.

Depthwise separable convolution
To further reduce the network parameters in the process

of citrus disease identification, this paper replaces the 3 × 3
ordinary convolution in each Dense Block with a depthwise
separable convolution. Depthwise separable convolution is the
core idea of MobileNet (Howard et al., 2017), This is a method
that separates the regions and channels of the feature map and
decomposes the standard convolution into DW convolution and
PW convolution in a factorized manner.

Taking the first Dense Block as an example, according
to the output results of each layer of DS-MENet shown in
Figure 7, the dimension of the citrus disease feature map input
to the first 3 × 3 convolutional layer is 56 × 56 × 128. In
ordinary convolution, the feature map is directly convolved
with 32 3 × 3 convolution kernels, padding and stride are
set to 1, and the output dimension is 56 × 56 × 32. In
deeply separable convolution, DW convolution is performed
first, and a convolution kernel is responsible for one channel
of the feature graph. The feature graph of 56 × 56 × 128
was convolved with 128 3 × 3 convolution kernels. The
padding and stride were set to 1, and finally obtained a
feature graph with output of 56 × 56 × 128. Then, we
performed PW convolution on the feature map, that is, perform
convolution operation with 32 1 × 1 convolution kernels,
with padding and stride also set to 1, and finally obtain a
feature map with an output dimension of 56 × 56 × 32. The
specific process of depthwise separable convolution is shown in
Figure 8.

Compared with ordinary convolution, the biggest advantage
of depthwise separable convolution is that it can reduce
the network parameters exponentially, thereby reducing the
network running time. The calculation formula for calculating
the number of ordinary convolution parameters is as follows:

Y = H ×W × C × K (19)

Among them, Y is the parameter quantity, H is the
length of the convolution kernel, W is the width of the
convolution kernel, C is the channel number of the input
feature map, and K is the channel number of the output
feature map. In an ordinary 3 × 3 convolution operation,
the corresponding regions of the feature map and all
channels need to be considered simultaneously. When the
dimension of the input image is 56 × 56 × 128, the
parameter amount can be obtained as 36,864 according
to Formula (19).

Since the depthwise separable convolution divides the
convolution into two processes: DW convolution and PW
convolution, the calculation formula of the parameter quantity

is somewhat different from that of ordinary convolution. The
specific calculation method is as follows:

YDW = H ×W × C (20)

YPW = H ×W × C × K (21)

Among them, YDW and YPW are the parameter quantities
of DW convolution and PW convolution, respectively, and the
definitions of other parameters are the same as Formula (19).
Under the same input conditions, the parameter amount of
the DW convolution stage is 1,152, and the parameter amount
of the PW convolution stage is 4,096; that is, the overall
parameter amount is 5,248, which is about 1/7 of the ordinary
convolution parameter amount. It can be seen that compared
with ordinary convolution, depthwise separable convolution can
greatly reduce the number of parameters of the network, which
can reduce the running time.

Multi-channel fusion backbone enhancement
In the classification task of citrus disease images, it is

inevitable that the image categories are different but the
features are similar, which puts forward higher requirements
for the ability of the network to extract feature information.
Feature fusion is beneficial to retain a large amount of
image information, thereby improving the accuracy of image
classification. At present, there are many implementation
methods for feature fusion, which fuse feature information from
different perspectives and ideas, and achieve good results. The
design of the DenseNet network structure is actually a simple
feature fusion, which encourages feature reuse, and enables
the shallow feature information to be directly used by the
deep layer through the cascade. However, DenseNet also has
shortcomings. Each layer of DenseNet simply combines the
feature maps obtained from the previous layers, so the ability
to extract feature information still needs to be further improved.
In response to this problem, some scholars have proposed other
new methods of feature fusion based on DenseNet. Zhai et al.
(2020) proposed a new feature fusion module based on the
traditional FPN pyramid structure and applied it to DenseNet.
This method fuses shallow feature maps with high resolution
but weak semantic information and Deep feature maps with
high semantic information but low resolution, so the context
information is more effectively utilized. Pearline and Vajravelu
(2019) and Montalbo (2021) proposed that DenseNet and other
network models extract features from images separately, and
then connect different feature vectors.

In the above research, although the mentioned methods
basically fuse multiple feature maps directly, it is not considered
that with the increase of the depth of the DenseNet network,
the channel information of the output feature map is not fully
utilized. Therefore, in order to strengthen the utilization of
feature map channel information, this paper proposes the MCF
algorithm to enhance the backbone of the Dense Block, which
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FIGURE 8

Working principle of depthwise separable convolution.

significantly improves the ability to utilize the channel feature
information and solves the problem that the network does not
fully utilize the convolution kernel channel information in the
process of gradually deepening.

The MCF backbone enhancement method is mainly divided
into two parts, namely, grouped convolution based on multi-
channel fusion and attention mechanism. In the process of
network training and testing, ordinary convolution will generate
a high amount of parameters and cannot make full use of
the channel information of the convolution kernel. Therefore,
the original ordinary convolution is replaced by a depthwise
separable convolution, and the method of grouping convolution
and feature map fusion between adjacent channels is adopted
to enhance the utilization of feature information. This method
cannot only reduce the number of parameters generated in
the convolution process but also the inter-correlation between
channels can fully extract the detailed information of citrus
disease features. Attention mechanism is an important concept
in the field of deep learning and has gradually become an
important part of the neural network structure. SE is a typical
attention mechanism, which can enhance the degree of attention
to the local information of citrus disease images, explicitly
establish the interconnection between the feature map channels,
and ensure the lossless transmission of the original information
(Hu et al., 2017). Figure 9 shows the overall architecture of
the MCF.

The specific implementation steps of the MCF backbone
enhancement method are as follows:

(1) First, record the input of the last set of convolutional
layers as X0 (H × W × C); X0 is convolved with m
1 × 1 × C convolution kernels, and the feature map X′

with dimension H×W×m is generated.
(2) Secondly, X′ is equally divided into 4 groups according to

the number of channels, marked as a1, a2, a3, a4, and the
size of each group of feature maps is H×W× m

4 .
(3) After that, DW convolution is performed on each group

separately, and one convolution kernel corresponds to one
channel of the feature map. As can be seen from Figure 9,
the input parts of the DW convolution of different groups
are different, except that the input of the DW convolution
of the first group is a1 a_1 obtained after grouping, and the
input of each subsequent group of DW convolution is ai +
bi−1 (1 < i < 4), which means that the input of each group
depends on the output obtained by the DW convolution
of the previous group, and a1a_1 can be expressed by
Formula (16). Due to the design of this grouping structure,
the number of 3 × 3 convolution kernels in each group of
DW convolutions varies. According to the basic principle
of the above-mentioned depthwise separable convolution,
it can be obtained that the number of 3 × 3 convolution
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FIGURE 9

Working principle diagram of MCF algorithm.

kernels in each group is m
4 i, and the output bi dimension

after DW convolution is H×W× m
4 i.

bi =

{
ai, i = 1

ConvDW3×3
(
ai + bi−1

)
, 1 < i < 4

(22)

(4) After DW convolution, PW convolution is performed on
bi; that is, each group is convolved with k

4 convolution
kernels of 1 × 1 × m

4 i to obtain the output of each group
b′i. The dimensions are H ×W × k

4 , and k is the number
of channels of the target output feature map. The output b′i
of each group is superimposed to obtain the feature map
Y (H × W × k). Steps (3) and (4) replace the traditional
3 × 3 convolution with depthwise separable convolution.
This improved method can effectively expand the network
width, and the feature information of the original image
has been effectively enhanced and utilized.

(5) Finally, Y is fed into the SE module to obtain the
final output Ũc. The working steps of the SE attention
mechanism are as follows:

a. First, the global information of each feature map channel
is extracted using global average pooling, and Y is

compressed by the spatial dimension H × W to generate
a feature vector ac (1 × 1 × k). The calculation formula of
ac is as follows:

ac = fsq (Y) = 1
H×W

H∑
i=1

W∑
j=1

Y
(
i, j
)

(23)

where fsq is the average pooling function and c is
the channel index.

b. Secondly, ac passes through the fully connected layer, the
ReMish activation function, the fully connected layer, and
the sigmoid activation function in turn. In this process,
the correlation between channels is completely captured,
ensuring that multiple channels are emphasized, and
finally, the channel weight vector t (1 × 1 × k). The
expression for t is:

t = fex (a,W) = σ (W2δ (W1a)) (24)

Among them, δ is the ReMish activation function, σ is the
sigmoid function, fex is the excitation function, W1 and
W2 are the dimensionality reduction parameters and the
dimensionality raising parameters in the fully connected
layer, which are, respectively, used to reduce the channel
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dimension to reduce the amount of calculation and convert
to the original channel dimension of u.

c. Finally, the channel weight vector t (1 × 1 × k) and Y
(H × W × k) are correspondingly multiplied to achieve
the weight calibration of the original feature, and the final
output Ũc is obtained. Ũc is calculated as follows:

Ũc = fscale (t,Y) = tcFc (25)

Among them, fscale is a multiplication function.

ReMish
The ReLU function is a widely used activation function in

deep learning, and its expression is:

ReLU =

{
0, x < 0
x, x ≥ 0

(26)

Compared with sigmoid and tanh, ReLU has the following
advantages: for linear functions, ReLU has a stronger expressive
ability; for nonlinear functions, the non-negative interval
gradient of ReLU is constant, which makes up for the problem
of gradient disappearance; ReLU only has a linear relationship,
and the calculation is very simple, and ReLU converges much
faster than sigmoid and tanh in both forward and backward
propagation. Although ReLU can alleviate the disappearance of
the gradient and speed up the calculation speed, according to
the function definition of ReLU, it can be seen that when the
input x < 0, the output is forced to 0, and the gradient is always
0, which can alleviate the problem of overfitting to a certain
extent. However, it also caused the calculation results to not
converge; the weights could not be updated, resulting in the
death of neurons.

The Mish function is a smooth activation function whose
expression is:

Mish = x ∗ tanh
(
log (1+ ex)

)
(27)

Mish positive is unbounded, negative allows some small
negative values in an absolutely small area to stabilize the
gradient flow of the network, has better generalization ability
and the ability to effectively optimize results, allows information
to better penetrate the neural network, and improves the
learning ability of the network. However, according to the
expression, it can be seen that Mish needs logarithms and
trigonometry, which adds complexity to the calculation.

Combining the characteristics of ReLU and Mish, this paper
proposes the activation function ReMish, whose shape is shown
in Figure 10. The functional form of ReMish is as follows:

f (x) =

{
x ∗ tanh

(
alog (1+ ex)

)
, x < 0

x, x ≥ 0
(28)

Among them, a is a random parameter, which changes in
real-time according to model training, and finally converges to
an appropriate constant.

FIGURE 10

ReMish.

The improved ReMish function inherits the advantages of
both ReLU and Mish functions, mainly including the following
two aspects:

(1) The positive semi-axis retains the form of the ReLU
function, which can ensure the rapid convergence
of the function, alleviate the problem of gradient
disappearance, and reduce the computational complexity
to a certain extent.

(2) The negative semi-axis inherits the smooth characteristics
of the Mish function and nonlinearly corrects the negative
semi-axis data, and some small negative values are
retained, which solves the problem of ReLU neuron death
to a certain extent and stabilizes the gradient flow of the
network. In addition, a random parameter a is added,
which can effectively control the saturation range of the
function.

Experimental analysis

Experimental environment and data
preparation

Hardware: Processor: Intel(R) Core(TM) I5-8265U CPU @
1.60 GHz; Graphics card: NVIDIA GeForce MX250; System
memory: 8 Gb. Software environment: Cudatoolkit 10.2;
PyTorch 1.10; Python 3.8.12; MATLAB R2016A. Operating
system: Windows10.

The training of the model requires a large number of citrus
disease samples, but obtaining enough disease images is a big
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FIGURE 11

Ten-fold cross-validation.

challenge. Therefore, we increase the number of samples by
expanding the data set before network training, so that the
limited data can generate value equivalent to more data, prevent
the network from overfitting, and improve the performance of
the model. We apply geometric transformations to the image
to increase the number: horizontal flipping, vertical flipping,
and random cropping. The classification of citrus diseases is not
sensitive to the direction of the image, so the processing method
of geometric transformation is to simulate the shooting of citrus
images from different angles, which is beneficial to restore the
real shooting situation.

Evaluation indicators

This paper studies the classification of citrus diseases, so we
choose Accuracy, Precision, Recall, F1-score, and ROC/AUC as
indicators to evaluate model performance. Among them, the
calculation formulas of Accuracy, Precision, Recall and F1-score
are as follows.

Accuracy =
TN + TP

FP + TN + TP + FN
(29)

Precision =
TP

TP + FP
(30)

Recall =
TP

TP + FN
(31)

F1− score =
2
(
Precision ∗ Recall

)
Precision+ Recall

(32)

In order to better understand the above formula and the
included parameters, first clarify the positive samples and
negative samples. Assuming that the images under the citrus
canker category are all positive samples, the remaining disease
images do not belong to the citrus canker category, that
is, they are all negative samples. For the research in this
paper, taking the category of citrus canker as an example, TP
means that citrus images with canker are correctly predicted
to the category “Citrus canker,” and FP means that images
of citrus with other diseases are incorrectly predicted to be
“citrus canker.” TN means that images of citrus with other
diseases are predicted to other disease classes, and FN means
that images of citrus with cankers are mispredicted to other
disease classes.

Accuracy, Precision, Recall, and F1-score are all
commonly used metrics in classification tasks. Accuracy
represents the proportion of correctly classified samples
to the total number of samples. Precision represents the
proportion of the number of correctly classified positive
samples to all the predicted positive samples. Recall
represents the proportion of the number of correctly
classified positive samples to the actual number of
positive samples. The F1-score is the harmonic mean of
Precision and Recall.

In addition, ROC/AUC are also very important indicators,
which are generally represented by a curve graph, namely the
ROC curve graph. In the graph, the abscissa and ordinate are
FPR and TPR, respectively, the curve is the ROC curve, and
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TABLE 4 Hyperparameter settings.

Hyperparameters Value

Learning rate 0.001

Epoch 20

Momentum 0.9

Batchsize 32

Optimizer Adam

TABLE 5 Performance of DS-MENet and other network models before
and after adding noise to the dataset.

Methods Accuracy (test
set without
noise) (%)

Accuracy (test
set with added
noise) (%)

AlexNet (Krizhevsky et al., 2012) 84.37 79.76

ResNet50 (He et al., 2016) 86.67 82.48

InceptionV4 (Tian et al., 2021) 88.45 86.31

ResNeXt50 (Gp et al., 2020) 89.26 88.56

EfficientNet (Chen et al., 2021) 92.56 91.94

EfficientNetV2 (Sunil et al., 2022) 95.39 94.83

MobileNetV3 (Tarek et al., 2022) 88.64 86.93

DenseNet121 (Huang et al., 2017) 90.06 89.74

DS-MENet 95.25 95.02

the AUC is the area under the ROC curve. The formulas for
calculating FPR and TPR are as follows.

FPR =
FP

FP + TN
(33)

TPR =
TP

TP + FN
(34)

In the above formulas, FPR represents the ratio of the
number of misclassified negative samples to the actual number
of negative samples, and the meaning of TPR is the same as that
of Recall. In practical applications, the closer the ROC curve is
to the (0, 1) coordinate, and the closer the area of AUC is to 1,
the better the performance of the classifier.

Experimental design and results

The experimental dataset in this paper contains five
categories of citrus fruits: healthy, citrus canker, citrus black-
spot, citrus scab, and citrus anthracnose. We uniformly size
the input images to 224 × 224 × 3. After image enhancement
and data expansion, a total of 9,258 citrus disease images were
obtained. To ensure the reliability and accuracy of our model,
we use K-fold cross-validation to train and test the model in
all subsequent validation experiments. The basic idea of cross-
validation is to group the original data, use most of the samples
as the training set to train the model, and use the remaining

samples as the test set to test the model, and determine the test
error of the small sample, record their sum of squares. Repeat
the above process until all samples are predicted and predicted
only once. In this paper, we take the value of K as 10, which
is 10-fold cross-validation. As shown in Figure 11, we divided
the citrus disease data set into 10 groups, and took nine groups
as training data and one group as test data in turn, and finally
took the average of ten test results as the standard to measure the
accuracy of the model. For 10-fold cross-validation, the dataset
is randomly divided. So we use 10 times 10-fold cross-validation
for training and testing of each model to increase the diversity
of dataset division and improve the reliability and accuracy of
the model. We retain the best results of each 10-fold cross-
validation, and finally take the average of these ten results as the
overall classification accuracy of the network model.

In the process of network training, the adjustment of
hyperparameters is a critical step. We select the best set of
hyperparameters by grid search. Grid search is a very common
hyperparameter tuning method. Its essence is to optimize the
model by traversing different hyperparameter combinations.
When training a network model, the learning rate, batchsize,
epoch, and momentum parameters are the first hyperparameters
that we need to pay attention to and tune. We choose the
learning rate as [0.1, 0.01, 0.001], the batchsize as [16, 32, 64],
the epoch as [10, 20, 30], and the momentum parameter as [0.2,
0.4, 0.9]. In order to ensure the reliability of the results in the
grid search process, we use 3-fold cross-validation. The resulting
optimal hyperparameter combination is: the learning rate is
0.001, the batchsize is 32, the epoch is 20, and the momentum
parameter is 0.9. Then there is the choice of the optimizer. We
perform grid search again for Adam, RMSprop, and SGDM
under the conditions of the above optimal hyperparameter
combination, and the Adam optimizer performs the best.
In summary, the combination of hyperparameters we finally
selected is as shown in Table 4.

It should be noted that in order to ensure the accuracy
and reliability of the experiments, all experiments were
performed under the same hardware and software
environment, and all models used were trained under the
same hyperparameter settings.

Comparing DS-MENet with other networks
In real life, due to the influence of the internal characteristics

of digital photographing equipment and the imaging
environment, the captured images are often easily disturbed by
some noise, such as the composite noise composed of Gaussian
noise and impulse noise (Chen, 2017). Therefore, in order
to better simulate the real environment, we randomly select
one-third of the samples in the expanded dataset to add noise,
that is, compound Gaussian noise and impulse noise and add
them to the samples to form a new expanded dataset. We
re-tested all models contained in Table 5. For composite noise,
we choose the standard deviation of Gaussian noise between
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FIGURE 12

Classification confusion matrix of citrus diseases by different models (the models corresponding to the (A–I) confusion matrix are: AlexNet,
ResNet50, Inceptionv4, ResNext, EfficientNet, EfficientNetv2, MobileNetv3, DenseNet121, and DS-MENet).

15 and 60 and the ratio of impulse noise between 0.02 and
0.08. Randomly adding different degrees of composite noise to
the sample can restore the image to a more realistic shooting
quality, so as to verify the anti-interference ability of the model.

For citrus disease classification, in addition to using the
DS-MENet model proposed in this paper to test the effect
of citrus disease classification, in order to better prove that
our model has better reliability and accuracy, we also test
with some classical models and state-of-the-art models The
experimental results are compared and analyzed, including
AlexNet, ResNet50, ResNeXt, InceptionV4, MobileNetV3,
EfficientNet, DenseNet121, and EfficientNetV2. AlexNet is a
very classic deep convolutional neural network in the early
days; ResNet50 proposed a residual block, and the cross-
layer connection allows the features of different layers to be
transferred to each other, alleviating the problem of gradient
disappearance; ResNeXt uses grouped convolution, and also
combines the advantages of ResNet and Inception, which

has both residual structure and feature layer connection;
InceptionV4 uses residual connection to improve InceptionV3,
which improves performance; MobileNetV3 combines the
advantages of MobileNetV1 and MobileNetV2, and is a
more efficient lightweight network; EfficientNetV1 uses neural
architecture search technology and introduces a composite
coefficient to expand the network from three dimensions of
network depth, width and image resolution; EfficientNetV2
introduces an improved progressive learning method based
on EfficientNetV1, which has faster training speed and fewer
parameters. All in all, the above models have their own
characteristics in structure, and also have their own advantages
in image classification tasks. So it is necessary to compare
our model with them, which can better demonstrate the
effectiveness and reliability of our proposed model.

As shown in Table 5, among all models, EfficientNetV2
has the highest average classification accuracy for citrus
diseases, this is because EfficientNetV2 uses an improved
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TABLE 6 Evaluation of classification performance of DS-MENet and other networks.

Methods Evaluation indicators Citrus disease

Healthy Canker Scab Black-spot Anthracnose

AlexNet Precision (%) 82.63 75.66 81.55 83.64 73.62

Recall (%) 92.90 75.26 76.97 80.27 73.17

F1-score (%) 87.46 75.46 79.19 81.92 73.39

ResNet50 Precision (%) 88.14 81.98 79.01 83.49 74.17

Recall (%) 92.31 74.21 80.34 86.10 79.27

F1-score (%) 90.18 77.90 79.67 84.77 76.64

Inceptionv4 Precision (%) 90.56 84.95 87.21 88.58 79.04

Recall (%) 96.45 83.16 84.27 87.00 80.49

F1-score (%) 93.41 84.05 85.71 87.78 79.76

ResNeXt50 Precision (%) 95.35 86.84 85.87 88.74 85.90

Recall (%) 97.04 86.84 88.76 88.34 81.71

F1-score (%) 96.19 86.84 87.29 88.54 83.75

EfficientNet Precision (%) 97.06 89.58 92.00 92.38 88.41

Recall (%) 97.63 90.53 90.45 92.38 88.41

F1-score (%) 97.34 90.05 91.22 92.38 88.41

EfficientNetv2 Precision (%) 96.51 90.10 93.45 92.86 88.69

Recall (%) 98.22 91.05 88.20 93.27 90.85

F1-score (%) 97.36 90.57 90.75 93.06 89.76

MobileNetv3 Precision (%) 94.25 88.40 85.71 86.55 80.12

Recall (%) 97.04 84.21 84.27 86.55 83.54

F1-score (%) 95.62 86.25 84.98 86.55 81.79

DenseNet121 Precision (%) 94.32 88.6 92.07 88.99 84.76

Recall (%) 98.22 90.00 84.83 90.58 84.76

F1-score (%) 96.23 89.29 88.30 89.78 84.76

DS-MENet Precision (%) 98.25 93.30 95.29 94.71 93.21

Recall (%) 99.41 95.26 91.01 96.41 92.07

F1-score (%) 98.83 94.27 93.10 95.55 92.64

progressive learning method, that is, the regularization method
is dynamically adjusted according to the size of the training
image, so as to improve the classification accuracy. The
classification effect of our proposed DS-MENet is also
good, reaching 95.25%, which is only 0.14% different from
EfficientNetV2. After adding random composite noise of
Gaussian noise and impulse noise in the dataset, the average
classification accuracy of DS-MENet dropped by only 0.23%,
and the average accuracy reached the highest on the test set
after adding noise. This shows that our model has better anti-
interference ability than other models and has higher feasibility
in practical scenarios.

Evaluation of classification performance of
DS-MENet and other networks

In this section, we use the expanded dataset after adding
noise to demonstrate DS-MENet’s citrus disease classification
results and perform model evaluation. As shown in Figure 12,
the confusion matrix very intuitively reflects the classification

of each type of citrus disease by different models. For the
classification performance evaluation of the DS-MENet model,
as shown in Table 6, we calculated the average Precision,
Recall and F1-score for healthy citrus and four citrus diseases,
respectively. The classification effect of healthy citrus on
different models is the best, because the surface of healthy citrus
has almost no flaws, the image background is simple and the
quality is excellent, and the training effect is better. For the
classification of the other four citrus diseases, EfficientNetV1,
EfficientNetV2, and DS-MENet proposed in this paper have
achieved relatively good results, and the average F1-score
can basically reach about 90%. However, the classification
effect of canker and anthracnose in most models is poor,
because the disease characteristics of canker and anthracnose
are relatively similar, which increases the difficulty of training
and puts forward higher requirements for the ability of the
model to extract feature information. Compared with other
models, the DS-MENet proposed in this paper still has excellent
classification performance, and the average F1-score of healthy
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FIGURE 13

ROC curve.

citrus, canker, scab, black spot and anthracnose can reach
98.83, 94.27, 93.10, 95.55, and 92.64%. Moreover, our model
has a slight improvement in the classification effect of canker
and anthracnose, which is because the MCF multi-channel
feature fusion structure is added to the last layer of each
DenseBlock of DS-MENet. MCF can make full use of the feature
information between channels, improve the ability to extract
image information, and help to deal with the classification
of similar diseases. We also plot the ROC/AUC curve of the
DS-MENet model to more intuitively reflect the classification
performance. According to Figure 13, it can be seen that the
ROC curve is very close to the (0, 1) coordinate, and the area
of AUC is also very close to 1, indicating that our proposed DS-
MENet model is more suitable for the classification of citrus
diseases than some state-of-the-art classification models.

Verifying the effectiveness of data
preprocessing

In order to more comprehensively verify the validity of
the citrus disease dataset after image preprocessing (image
enhancement and data expansion), we performed the same
data expansion on the dataset without image enhancement and
enhanced by the HFLF-MS algorithm, respectively. Methods
include horizontal flipping, vertical flipping, random cropping.
Finally we got the original dataset without image enhancement,
the original dataset with HFLF-MS image enhancement, the
extended dataset without image enhancement and the extended
dataset with HFLF-MS image enhancement. Afterward, we feed

these datasets into the DS-MENet model proposed in this paper
for training and testing.

As can be seen from Table 7, compared with the original
dataset, whether image enhancement is performed or not, the
data expansion can improve the accuracy. This is because
the sample size of the original dataset is smaller, and the
data expansion can Provide more samples for the model,
increase the diversity of samples, and improve the generalization
ability of the model.

Verifying the effectiveness of the improved
activation function ReMish

In this section, we use the expanded dataset after adding
noise to conduct experiments to verify that the activation
function ReMish can improve the expression ability of the
neural network to the model. We conducted a comparative
experiment on the network model before and after the improved
ReLU activation function. The experimental model uses the
DS-MENet proposed in this paper. Figure 14 shows the
Accuracy and Loss training curves before and after the activation

TABLE 7 Classification accuracy of different networks before and
after image augmentation and dataset augmentation.

Image enhancement
methods

Original
dataset (%)

Extended
dataset (%)

No image enhancement 83.17 89.62

HFLF-MS 85.94 95.25
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FIGURE 14

Performance comparison of ReLU and ReMish.

function is improved. Compared with the ReLU activation
function, the ReMish activation function can improve the
convergence speed of the network. As shown in Table 8,
the classification accuracy of citrus disease images is also
improved by 1.6%.

Verifying the effectiveness of depthwise
separable convolution

In this section, we use the expanded dataset after adding
noise to verify that the depthwise separable convolution can
reduce network parameters and thus reduce the amount of
computation. We design different network models. As can be
seen from Table 9, among all network models, our proposed
DS-MENet has a relatively short training time. Compared with
ResNet and DenseNet121, the training time of ResNet-DS and
DenseNet121-DS is reduced, but this is at the cost of accuracy,
and adding depthwise separable convolution will inevitably
bring about a drop in accuracy.

Verifying the effectiveness of the MCF
backbone enhancement method

In this section, we use the expanded dataset after adding
noise to verify the effectiveness of the MCF method. We design
different network structures. As can be seen from Table 10,
after adding MCF to ResNet and DenseNet, the accuracy
has been slightly improved. Among them, the classification
accuracy of DenseNet121-MCF and DS-MENet can reach more
than 90%. This is because MCF enhances the backbone of

TABLE 8 Verifying the effectiveness of the improved activation
function ReMish.

Activation function type Accuracy (%) Loss

ReLU 93.42 0.06

ReMish 95.02 0.03

DenseBlock, which can enhance the utilization of feature maps
by fusing grouped convolutions with feature maps between
adjacent groups, thereby maximizing the extraction of detailed
features of citrus diseases during operation. But it can also
be clearly seen that the accuracy improvement brought by
the addition of MCF comes at the expense of increasing
training time.

Ablation experiment
To verify the effectiveness of the method proposed in

this paper, we conduct ablation experiments. In the ablation
experiments, we use the same experimental environment, using
a 10-fold cross-validation approach, using the expanded dataset
after adding noise to some samples. We use DenseNet121,
InceptionV4, and ResNeXt as the overall structure of the
network, plus one or more of the methods proposed in this
paper to form ablation experiments. In this experiment, we want
to verify the effectiveness of depthwise separable convolution,
MCF, ReMish, respectively. The experimental results are shown
in the Table 11.

First, it can be seen from the Table 11 that depthwise
separable convolution, MCF and ReMish all contribute to the
improvement of citrus classification accuracy, among which
DS-MENet has the highest average classification accuracy of
95.02%. When only one method is added to DenseNet121, MCF
has the highest contribution to classification accuracy, and
depthwise separable convolution has the highest contribution
to training time. For the improvement of accuracy, using MCF
to process DenseBlock can improve the utilization of feature
information between channels and enhance the ability of the
network to extract detailed features of citrus diseases. For the
shortening of training time, depthwise separable convolution
can reduce the amount of computation and parameters, thereby
improving computational efficiency. When DenseNet121
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TABLE 9 Verifying the effectiveness of depthwise separable convolutions.

Normal networks ResNet50 DenseNet121 DenseNet121-DS ResNet50-DS DS-MENet

Training time (s) 1 h 37 m 34 s 2 h 20 m 56 s 2 h 4 m 12 s 1 h 22 m 24 s 2 h 18 m 29 s

Accuracy (%) 82.48 89.74 88.86 80.65 95.02

TABLE 10 Verifying the effectiveness of the MCF backbone enhancement method.

Normal networks ResNet50 DenseNet121 DenseNet121-MCF ResNet50-MCF DS-MENet

Training Time 1 h 37 m 34 s 2 h 20 m 56 s 2 h 43 m 15 s 1 h 56 m 44 s 2 h 18 m 29 s

Accuracy (%) 82.48 89.74 94.31 87.55 95.02

TABLE 11 Ablation experiment results.

Module DenseNet121 InceptionV4 ResNeXt

Accuracy (%) Training time Accuracy (%) Training time Accuracy (%) Training time

Baseline 89.74 2 h 20 m 56 s 86.31 1 h 58 m 31 s 88.56 2 h 15 m 27 s

DS 88.86 2 h 4 m 12 s 84.16 1 h 40 m12 s 87.12 1 h 54 m 42 s

MCF 94.31 2 h 43 m 15 s 89.97 2 h 28 m 43 s 92.05 2 h 48 m 29 s

ReMish 90.33 2 h 10 m 09 s 87.81 1 h 42 m 51 s 89.66 2 h 03 m 04 s

DS+ReMish 89.18 1 h 51 m 31 s 86.44 1 h 23 m 03 s 88.45 1 h 44 m 35 s

DS+MCF 93.42 2 h 27 m 18 s 88.14 2 h 04 m 15 s 91.17 2 h 28 m 22 s

MCF+ReMish 95.97 2 h 33 m 02 s 91.21 2 h 13 m 55 s 93.18 2 h 31 m 05 s

DS+ReMish+MCF 95.02 2 h 18 m 29 s 90.03 1 h 56 m 28 s 91.83 2 h 16 m 08 s

TABLE 12 Public dataset details.

Dataset Category Total Available

PlantVillage 38 55,400 https://www.kaggle.com/datasets/hiyash99/plantvillage

Stanford cars 196 16,185 https://www.kaggle.com/datasets/jutrera/stanford-car-dataset-by-classes-folder

ImageNetDogs 120 20,580 http://vision.stanford.edu/aditya86/ImageNetDogs/

adds two methods, the combination of MCF+ReMish achieves
the highest classification accuracy, and the combination
of DS+ReMish minimizes the training time. The ReMish
activation function can not only make the model converge
faster and reduce the training time, but also make some
contributions to the expressiveness of the data and the
improvement of the accuracy. When three methods are
added to DenseNet121, the DS-MENet proposed in this
paper is formed. The average classification accuracy rate
can reach 95.02%, and the training time is 2 h 18 m

TABLE 13 Average classification accuracy of DS-MENet on public
datasets.

Dataset Accuracy (%)

PlantVillage 96.16

Stanford cars 95.41

ImageNetDogs 94.32

29 s. Compared with DenseNet121-MCF-ReMish, although the
accuracy is reduced by 0.95%, the gap is small. Compared
with DenseNet121-DS-ReMish, although the training time
has increased a little, the classification accuracy has been
significantly improved. Besides validating DS, ReMish and MCF
on DenseNet121, we also conduct ablation experiments in
InceptionV4 and ResNeXt, respectively. As can be seen from
the table, adding three structures on InceptionV4 and ResNext
can also achieve good classification performance. However,
compared with DenseNet121 as the backbone network, there
is still a slight gap between InceptionV4 and ResNeXt. In the
research of this paper, the biggest difficulty is the accurate
classification of similar diseases, which requires high retention
and extraction of detailed information. DenseNet121 can
make full use of shallow and deep information through
the connection between layers, maximize the use of detailed
information, and be more conducive to the classification
of similar diseases. Therefore, it is a better choice to use
DenseNet121 as the backbone network. A comprehensive
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analysis of all the ablation experimental results shows that
DS-MENet can achieve a balance between training time and
classification accuracy, and has relatively good classification
performance and use value.

Supplementary experiment
To better verify the performance of DS-MENet, we train

and test again on PlantVillage, Stanford cars and ImageNetDogs.
Table 12 provides details about the dataset, including the
number of classes, total number of samples, and sources.

We use three public datasets to test the model proposed
in this paper, and the test results are shown in the Table 13.
It can be seen that our model has good performance on three
public datasets, indicating that our proposed model has good
generalization ability on other datasets.

Conclusion

This paper proposes a method for image recognition and
classification of citrus diseases based on HFLF-MS and DS-
MENet models. Firstly, the HFLF-MS algorithm is used to
enhance the citrus disease image to highlight the details
of the image and improve the quality of the image. Then,
the enhanced images are preprocessed by horizontal flipping,
vertical flipping, random cropping, and other methods to
expand the number of datasets. The expanded dataset is then
fed into the DS-MENet network model. DS-MENet adopts
DenseNet-121 as the basic network structure and enhances
the backbone of Dense Block by introducing depthwise
separable convolution and MCF algorithm based on grouped
convolution, multi-channel fusion, and SE attention mechanism
to improve the network’s ability to extract feature information
of citrus disease images. The experimental results show
that using the 10-fold cross-validation method, DS-MENet
can achieve an average classification accuracy of 95.02%
on the dataset with random compound noise added. This
shows that the citrus disease classification method based on
the combination of HFLF-MS and DS-MENet network has
good anti-interference ability and has certain feasibility in
real life.

For the surface disease defects of citrus and other fruits,
image recognition and classification technology is still an
important research direction, which is of great significance
to ensure the quality of fruits and improve the development
of the agricultural economy. Even though deep learning has
achieved outstanding performance in the identification and
classification of various fruit diseases, it still needs to be
further improved. The citrus disease samples collected in
this paper are not enough, and it is necessary to further
expand the data set and test scale, so as to improve the
generalization ability of the model and better meet the needs of
agricultural development.
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