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Complete and balanced nutrition has always been the first line of plant

defense due to the direct involvement of mineral elements in plant protection.

Mineral elements affect plant health directly by modulating the activity

of redox enzymes or improving the plant vigor indirectly by altering

root exudates, and changing microflora population dynamics, rhizosphere

soil nutrient content, pH fluctuation, lignin deposition, and phytoalexin

biosynthesis. Nitrogen (N) is one of the most important macronutrients

having a significant impact on the host-pathogen axis. N negatively affects

the plant’s physical defense along with the production of antimicrobial

compounds, but it significantly alleviates defense-related enzyme levels

that can eventually assist in systemic resistance. Potassium (K) is an

essential plant nutrient, when it is present in adequate concentration,

it can certainly increase the plant’s polyphenolic concentrations, which

play a critical role in the defense mechanism. Although no distinguished

role of phosphorus (P) is observed in plant disease resistance, a high

P content may increase the plant’s susceptibility toward the invader.

Manganese (Mn) is one of the most important micronutrients, which

have a vital effect on photosynthesis, lignin biosynthesis, and other plant

metabolic functions. Zinc (Zn) is a part of enzymes that are involved

in auxin synthesis, infectivity, phytotoxin, and mycotoxin production in

pathogenic microorganisms. Similarly, many other nutrients also have

variable effects on enhancing or decreasing the host susceptibility toward

disease onset and progression, thereby making integrative plant nutrition

an indispensable component of sustainable agriculture. However, there
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are still many factors influencing the triple interaction of host-pathogen-

mineral elements, which are not yet unraveled. Thereby, the present

review has summarized the recent progress regarding the use of macro-

and micronutrients in sustainable agriculture and their role in plant

disease resistance.

KEYWORDS

mineral nutrition, disease management, plant growth, nutrient signaling, nutrient use
efficiency

Introduction

Crop production remains delimited by an array of biotic
and abiotic factors that can eventually reduce crop yield,
quantity, and quality (Wang M. et al., 2013). Among the biotic
factors, phytopathogens such as bacteria, fungi, nematodes, and
viruses, have considerable impacts on agricultural productivity
and sustainability. Sustainable agriculture can be said as the
utilization of the agricultural ecosystem in a way that enables
the perfect balance of biological diversity, productivity, and
regeneration capacity so that the present and significant future
demands can be fulfilled without harming other ecosystems
(Lewandowski et al., 1999) and at the same time by managing
plant diseases along with an increased yield and improved
product quality (Camprubi et al., 2007). Developing along
with evolution course, plants have developed multi-layered
defense systems enabling them to resist and/or tolerate pathogen
invasion and resist infection (Sun et al., 2020). The mineral
nutrients play a potential role in supporting plant wellness that
is influenced by various abiotic factors, such as light, humidity,
temperature, and mineral nutrients (Velasquez et al., 2018) The
N status can be affected by high soil temperature as it increases
the overall N availability in soils (Lukac et al., 2011) and also
increases the plant metabolic rate, thereby positively correlating
N uptake with temperature (Dong et al., 2001). The K demands
are observed to increase under low moisture conditions,
which may sequester a higher reactive oxygen species (ROS)
production leading to increased disruption of the plant cell
organelles (Wang Y. et al., 2013). The P availability was reported
to decrease during high light intensity, which subsequently
increased the root length and fine root hair production (Wen
et al., 2017). Mineral nutrients are particularly and directly
involved in plant protection as structural components and
metabolic regulators (Huber, 1980). As imparting the primary
defense line, the plant’s nutritional status can play a deciding
role in determining the plants’ susceptibility or resistance
toward the invading pathogens (Walters and Bingham, 2007;
Marschner and Marschner, 2012). The mineral elements can
potentially influence plant health either directly by activating
the enzymes involved in the synthesis of defense metabolites

(callose, glucosinolates, lignin, phenols, and phytoalexins) or
indirectly by altering the microbial activity, root exudates
composition, and rhizosphere pH modulation (Datnoff et al.,
2007). For controlling and managing plant disease, balanced
nutrition had always been the primary component, yet its
importance remains to be unraveled. The importance of mineral
nutrition on plant disease management can be highlighted
as (a) fertilization effect on the incidence or severity of a
particular pathogen/host pathosystem, (b) mineral nutrition
effect in imparting resistance or susceptibility to plant when
provided in different concentration, and (c) effect of specific
nutrient availability or starvation on disease in consortium with
the growth stage of the plant, environmental conditions, and
biological activity, which can eventually affect the outcomes
(Meena et al., 2015). A healthy plant will certainly have
high vigor and improved resistance and hereby mineral
nutrients show their capabilities in disease management (Ojha
and Jha, 2021). Mineral nutrients, such as the primary
macronutrients, nitrogen (N), phosphorus (P), and potassium
(K); the three secondary macronutrients, calcium (Ca), sulfur
(S), and magnesium (Mg); and the micronutrients, boron
(B), manganese (Mn), iron (Fe), zinc (Zn), copper (Cu), and
silicon (Si), are significant in imparting disease resistance
and healthy growth to the plant (Datnoff et al., 2007; Gupta
et al., 2017) (Figures 1, 2). Some key mineral elements have
a greater impact on plant disease, for instance, N, which
can limit the pathogen growth and may also affect the plant
defense elicitation and deployment. Moreover, the availability
of different N forms (NH4

+and NO3
−) also shows varied

effects on plant disease resistance using the assimilatory and
metabolic pathways (Bolton and Thomma, 2008; Mur et al.,
2017). Similarly, K is particularly a critical element required
for plant growth and metabolism and contributes greatly to
plants’ survival under various biotic stresses (Pettigrew, 2008)
by assisting them in multiple plant defense enzyme functioning,
regulating the higher plants’ metabolite patterns, and eventually
altering the metabolite concentrations (Mengel, 2001). It can be
noted that a particular nutrient may have opposite impacts on
different diseases and in different environments, i.e., the same
nutrient may increase the incidence of one disease but at the

Frontiers in Plant Science 02 frontiersin.org

https://doi.org/10.3389/fpls.2022.883970
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-883970 October 15, 2022 Time: 14:40 # 3

Tripathi et al. 10.3389/fpls.2022.883970

FIGURE 1

Overview of the biochemical and physiological roles of macronutrients.

FIGURE 2

Overview of the biochemical and physiological roles of major micronutrients.
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same time may decrease the incidence of others (Agrios, 2005)
(Table 1).

This review presents the recent advances bridging the
implications of mineral nutrients in sustaining plant health, with
a focus on nutrient signaling and disease resistance. In addition,
an attempt has been made to unravel the linkage between
plant macro/micronutrients involved in the disease onset and
progression, thereby ensuring sustainable crop production.

Macronutrients mediated plant
disease management

Nitrogen

In the context of plant disease management, nitrogen
(N) is an essentially important macronutrient required for
the normal growth and development of the plant (Scheible
et al., 2004). N plays a prominent role in varying metabolic
and physiological processes, such as photosynthesis, amino
acid synthesis, respiration, and tricarboxylic acid (TCA) cycle
(Foyer et al., 2011). The N availability can restrict pathogen
growth by alleviation and deployment of different plant defense
mechanisms, and the different forms of N (NH4

+ and NO3

form) are reported to have diverse effects on plant disease
resistance (Bolton and Thomma, 2008; Mur et al., 2017).
Several instances have been reported wherein N fertilization
increased the plant disease incidence, for example, downy
mildew, powdery mildew, leaf rust, stem rot, and rice blast
diseases (Ballini et al., 2013; Devadas et al., 2014; Huang et al.,
2017) while contrary results have been reported for diseases,
such as take-all, gray mold, and leaf spot (Krupinsky et al.,
2007; Lecompte et al., 2010). The excessive use of N fertilization
in plants promotes succulent tissue growth and alleviates
apoplastic amino acid concentration along with improving the
plant canopy, which ultimately favors the growth of pathogenic
spores (Neumann et al., 2004; Dordas, 2008).

The impact of N limitation on Pseudomonas syringae
pv. syringae B728a when studied through an extensive
transcriptomic assessment revealed the prominence of
virulence-associated features, such as swarming motility,
type three secretion system (T3SS), and metabolic pathways
involved in gamma-aminobutyric acid (GABA) and polyketide
metabolism (Bolton and Thomma, 2008). N starvation studies
confirm its importance in initiating pathogenesis by stimulating
the pathogen effector genes, such as the hypersensitive response
and pathogenicity (hrp), avirulence (avr), and hydrophobin
MPG1 genes in Magnaporthe oryzae (Pérez-García et al., 2001)
while opposite results were documented for effectors from
Magnaporthe oryzae (Huang et al., 2017) and Passalora fulva
(ex Cladosporium fulvum) (Thomma et al., 2005). Defense
enzymes are also an important arsenal possessed by plants in
fighting the invading pathogen and N is observed to be involved
in the stimulation of these enzymes during the host-pathogen

interaction (Ngadze et al., 2012). The genes encoding the key
regulatory enzymes of the defense pathway, such as phenyl
ammonia lyase (PAL), cinnamate-4-hydroxylase (C4H), and
4-coumarate: CoA ligase (4CL), are all upregulated by N
deficiency (Camargo et al., 2014) while a reduction in PAL
activity has been observed with N fertilization (Sun et al., 2018).
However, the relationship between N fertilization and plant
disease is still unclear, but the understanding of the fundamental
mechanism is noteworthy in crop production.

Phosphorus

Phosphorus (P) is thought to be the second most commonly
applied nutrient after nitrogen in crops but its role in resistance
is seemingly inconsistent and variable. P is a part of many cell
organic + molecules, such as deoxyribonucleic acid (DNA),
ribonucleic acid (RNA), adenosine triphosphate (ATP), and is
also involved in many metabolic processes taking place both
in the plant and in the pathogen. During pathogen infection,
the extracellular ATP is also received as a damage-associated
molecular pattern (DAMP) since it is sensed by the plant
when cellular damage is caused during pathogen colonization
(Tanaka et al., 2014), considering it as a signaling molecule
for the defense response activation in the plant (Cao et al.,
2014). In recent reports, the role of extracellular ATP has been
also proposed in jasmonic acid (JA)-induced defense response
through direct activation of JA signaling in the Arabidopsis plant
(Tripathi et al., 2018; Jewell et al., 2019). The beneficial effects
of P application are also observed in controlling seedling and
fungal diseases wherein the prolific root growth enables the
plant to escape the disease (Huber and Graham, 1999). Various
researchers have shown the significant effect of P fertilization
in managing Pythium root rot in wheat (Huber, 1980) and
reducing bacterial leaf blight in rice, downy mildew, blue mold,
leaf curl virus disease in tobacco, pod and stem blight in
soybean, yellow dwarf virus disease in barley, brown stripe
disease in sugarcane, and blast disease in rice (Potash and
Phosphate Institute [PPI], 1988; Reuveni et al., 1998; Huber
and Graham, 1999; Kirkegaard et al., 1999; Reuveni et al.,
2000). Campos-Soriano et al. (2020) reported overexpression of
miR399 resulting in high Pi content and enhanced susceptibility
to infection by the rice blast fungus Magnaporthe oryzae due to
high phosphate fertilization.

Potassium

Potassium (K) is an essential nutrient and the most
plentiful inorganic cation found in plants (Shabala and
Pottosin, 2010). K plays essential roles in enzyme activation,
protein synthesis, photosynthesis, osmoregulation, stomatal
movement, energy transfer, phloem transport, cation-anion
balance, stress resistance (Marschner, 2012) crop yield, and
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TABLE 1 Effect of major plant nutrients on disease reactions.

Mineral
element

Crop Disease Causal organism Effect on disease reaction References

Macronutrients

Nitrogen Tomato Early blight Alternaria solani High N supply reduces disease severity Blachinski et al., 1996

Gray mold Botrytis cinerea High N supply increases plant resistance Hoffland et al., 1999

Potato Early blight Alternaria solani High N supply reduces disease severity Blachinski et al., 1996

Rice Blast disease Magnaporthe grisea High N supply increases disease severity Long et al., 2000

Wheat Stripe rust Puccinia striiformis f. sp.
tritici

N supply decreases the infection severity Devadas et al., 2014

Potassium Wheat Leaf blight Pyrenophora tritici-repentis Increased K supply lowers the disease severity Sharma et al., 2005

Leaf rust Puccinia triticina Increased K supply lowers the disease severity Sweeney et al., 2000

Rice Sheath blight Rhizoctonia solani Reduced disease severity with an increased supply
of K

Schurt et al., 2015

Soybean Pod and stem
blight

Diaporthe sojae Low K supply increases disease susceptibility Snyder and Ashlock, 1996

Peanut Tikka leaf spot Cercospora arachidicola and
Cercospora personatum

Reduced disease incidences with increased K
supply

Sharma et al., 2005

Phosphorus Cucumber Powdery mildew Sphaerotheca fuliginea P application reduces the disease severity Reuveni et al., 2000

Rice Bacterial leaf
blight

Xanthomonas oryzae pv.
oryzae

P application reduces the disease severity Huber and Graham, 1999

Wheat Flag smut Urocystis agropyri Application of P may increase the severity of
diseases

Huber, 1980

Calcium Soybean Phytophthora
stem rot

Phytophthora sojae Ca application decreases the disease severity Sugimoto et al., 2011

Crucifers Club root
disease

Plasmodiophora brassicae Sufficient soil Ca status reduces the disease
incidence

Campbell and Arthur, 1990

Sulfur Grapes Powdery mildew Uncinula necator S application reduces the disease severity Kruse et al., 2007

Oilseed rape Leaf spot Pyrenopeziza brassicae S application reduces the disease severity Bloem et al., 2004

Magnesium Rice Brown spot Bipolaris oryzae Mg application reduces the disease severity Moreira et al., 2015

Corn Corn stunt
disease

Spiroplasma kunkelii Mg application reduces the disease severity Oliveira et al., 2005

Micronutrients

Boron Crucifers Club root
disease

Plasmodiophora brassicae B application reduces the disease severity Graham and Webb, 1991

Grapevines Eutypa dieback Eutypa lata B application increases resistance to disease Rolshausen and Gubler, 2005

Tomato Tomato mosaic
virus

TMV B application reduces the disease severity Graham and Webb, 1991

Zinc Wheat Fusarium head
blight

Fusarium graminearum Zn application reduces the disease infection Graham and Webb, 1991

Banana Banana wilt Fusarium oxysporum f. sp.
cubense

Zn application increases the resistance to disease Streeter et al., 2001

Copper Tomato Bacterial canker Clavibacter michiganensis
subsp michiganensis

Cu application reduces the disease incidence Bastas, 2014

Wheat Powdery mildew Blumeria graminis f. sp. tritici Cu application suppresses the disease Graham, 1983

Manganese Potato Common scab Streptomyces scabies Mn application reduces the disease incidence Keinath and Loria, 1996

Bent grass Take-all disease Gaeumannomyces graminis
var. avenae

Mn application increases the resistance to disease Carrow et al., 2001

Iron Apple Apple canker Sphaeropsis malorum Fe application increases the disease resistance Graham, 1983

Banana Banana
anthracnose

Colletotrichum musae Fe application reduces the disease severity Graham and Webb, 1991

Silicon Paddy Blast Magnaporthe oryzae Si application increases the plant resistance Sun et al., 2010

Brown spot Bipolaris oryzae Si application increases the plant resistance Dallagnol et al., 2014

Turf grass Powdery mildew Blumeria graminis Si application reduces the disease severity Zhang et al., 2006
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quality improvement (Marschner, 2012; Oosterhuis et al., 2014).
The plants with K starvation symptoms are observed to be more
susceptible to disease in comparison to those having adequate K
supply. A reduction in the incidence of fungal diseases (70%),
bacterial diseases (69%), viral diseases (41%), and nematodes
(33%) due to the profound K use was reported by Perrenoud
(1990). Though K fertilization decreased the disease incidence
in most of the cases, contrary results were also reported in some
instances thereby categorizing the K impact on plant disease
as “increased,” “decreased,” and having “no effect” or “variable
effect” (Prabhu et al., 2007). The increased susceptibility
in strawberries grown under K concentration excess toward
Colletotrichum gloeosporioides and resistance alleviation in K
fertilization absence due to starvation-induced synthesis of
ROS and phytohormones were reported by Nam et al. (2006)
which lead to enhanced plant stress tolerance (Amtmann
et al., 2008). The increased K+ concentrations also decrease
the prevailing intra-plant pathogen competition for nutrients
(Holzmueller et al., 2007) and thereby enabling the plant to
divert more resources to build the physical defense barrier
and damage repair (Mengel, 2001). K is also an important
facet in regulating the plant enzyme function by regulating the
plants’ metabolite pattern and eventually varying its metabolite
concentrations (Marschner, 2012). The synthesis of high-
molecular-weight compounds (such as proteins, starches, and
cellulose) and phenol concentration was significantly increased
in plants with an adequate supply of K, which depressed the
concentrations of low-molecular-weight compounds (soluble
sugars, organic acids, amino acids, and amides) essential for
diseases development in plant tissues, thereby making the plant
less prone toward disease incidence (Prasad et al., 2010).

Calcium

Calcium is an essential element, serving as one of the cell
wall and membrane constituents and thereby contributing to
the cell structure along with upholding the physical barriers
against invading pathogens (White and Broadley, 2003). Owing
to its significance in the structural role, the plants showing Ca
deficiency are observed to be more prone to disease infection,
and element exogenous supply has been shown to alleviate the
plant’s resistance response toward the pathogen. A reduction in
the Ca concentration within the plant increases susceptibility
toward the fungi preferentially invading the xylem tissue and
dissolving the cell wall of the conducting vessels increases,
leading to wilting of the plant (Hirschi, 2004). In addition,
Ca also plays an important role in serving as a secondary
messenger for a variety of metabolic processes carried out
within the plant during biotic stresses (Lecourieux et al.,
2002). The Ca2+ signal is observed to be one of the earliest
responses in the basal defense response triggering the signaling
cascade required for the pathogen-associated molecular patterns

(PAMPs) or host-derived damage-associated molecular patterns
(DAMPs) that are recognized by surface-localized pattern-
recognition receptors (PRRs) eventually leading to PAMP-
triggered immunity (PTI) (Dodds and Rathjen, 2010).

Sulfur

Sulfur (S) is an essential plant macronutrient having a
pivotal role in plant disease resistance. The sulfur-containing
defense compounds (SDCs) play versatile roles both in pathogen
perception and initiating signal transduction pathways that
are interconnected with various defense processes regulated
by plant hormones (salicylic acid, JA, and ethylene) and ROS
(Kunstler et al., 2020). The sulfur-containing amino acid (SAA)
cysteine acts as a precursor of a large number of biomolecules,
having major roles in plant disease resistance. Cysteine
mediates spore germination and mycelial growth inhibition
in a concentration-dependent manner in Phaeomoniella
chlamydospora and Phaeoacremonium minimum, the two main
causal agents of grapevine trunk disease (Roblin et al., 2018).
The other important SAA in plants playing a central role in
different defense reactions to biotic stresses is methionine
(Met). A drastic reduction in the disease severity of Met-treated
susceptible pearl millet cultivar (Pennisetum glaucum) infected
by Sclerospora graminicola was reported by Sarosh et al.
(2005). The Met treatment induces the generation of hydrogen
peroxide (H2O2), a key element in plant defense signaling,
leading to an upregulation in different defense-related gene
expressions in grapevine (Vitis vinifera) (Boubakri et al., 2013).
Sulfur-containing secondary metabolites play an important
role in plant disease resistance and based on their mode of
action can be classified into phytoalexins and phytoanticipins
(Nwachukwu et al., 2012). In sulfur-deficient plants, there is a
general gene downregulation responsible for sulfur-containing
secondary metabolites synthesis and therefore the biosynthesis
of S-containing phytoalexin (Camalexin) is also inhibited.
Elemental sulfur (S0) can also be regarded as the only inorganic
phytoalexin in plants that is accumulated during the xylem-
invading fungal infection and bacterial pathogens infection,
and its accumulation is faster and greater in disease-resistant
genotypes than in susceptible lines (Cooper and Williams,
2004). The reactive sulfur species (RSSs) also play an important
role in defense metabolism due to their participation in cellular
signaling and regulatory processes. Two RSSs, hydrogen sulfide
and sodium sulfite, have been shown to play important roles in
plant disease resistance (Gao et al., 2012; Chen et al., 2014).

Magnesium

Magnesium (Mg) is a vital cation, which influences an array
of in planta physiological functions when the plant presents
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deficient or excess concentrations (Wang et al., 2020). It can also
affect the pathogen invasion way into a plant by colonizing the
plant phloem tissues, as it is present within the young phloem
tissues under high Mg concentration and outside the cells under
Mg deficit conditions. A low Mg concentration was detected
in maize plants infected with corn stunt spiroplasma, which
occurs due to the competition for Mg between the plant and
the pathogen, thereby causing pronounced symptoms in the
plant deficient in Mg (Nome et al., 2009). Mg deficiency during
plant growth can also reduce the structural integration within
the middle lamella and may also lower the energy production
necessary for defense functions eventually leading to pathogen
metabolites inactivation. A nutrient-rich environment favoring
several phytopathogens occurs in the leaf tissue under the Mg
deficiency condition due to sucrose and starch deposition in
the leaf tissue (Huber and Jones, 2013). A higher clubroot
disease incidence was also reported in soils showing lower
Mg concentrations (Young et al., 1991). A drastic increase in
the rate of disease infection and severity of peanut leaf spots
caused by Mycosphaerella arachidicola was observed during the
Mg deficient conditions (Bledsoe et al., 1945). An increase in
pepper and tomato bacterial spot disease incidence caused by
Xanthomonas campestris pv. vesicatoria was observed due to
alleviated Mg levels (Woltz and Jones, 1979).

Micronutrients mediated plant
disease management

Boron

Boron (B) is one of the least understood micronutrients
showing widespread deficiency in plants around the globe
(Brown et al., 2002). B nutrition-mediated physiological and
metabolic activities that reduce disease susceptibility in the plant
system are attributed to (1) strengthening cell wall structure
through the formation of carbohydrate-borate complexes,
which control carbohydrate transport and cell wall protein
metabolism, (2) controlling cell membrane permeability and
stability function, and (3) phenolics or lignin metabolism
(Brown et al., 2002). In B deficient conditions, plant cell walls
tend to swell and split, resulting in weakened intercellular
space, which eventually weakens the physical barrier to the
initial infection (Blevins and Lukaszewski, 1998). Sanjeev and
Eswaran (2008) observed that B nutrition contributed to the
maximum fungal mycelial growth inhibition and it can be
used as a prokaryotic inhibitor at a certain concentration. The
response of soil-borne phytopathogenic prokaryotes, such as
Ralstonia, Pectobacterium, and Pantoea, to B can be assessed,
and if boron concentration is not toxic to other beneficial plant-
associated microorganisms, then altered B nutrition can be used
as disease management effective means against the soil-borne
plant pathogens.

Zinc

Zinc (Zn), one of the crucial micronutrients, plays its role
in plant response toward phytopathogens primarily activating
or stabilizing metalloenzymes (Fones and Preston, 2012).
Generally, the Zn deficient plants are more prone to pathogen
attack (Streeter et al., 2001), thereby providing Zn the status
of a significant element deciding the outcome of the plant-
pathogen interaction. This results in limiting the invader’s entry
or evading plant defense responses. Several studies suggest Zn
fertilization role in reducing plant symptoms (Li et al., 2016;
Machado et al., 2018); however, an increased susceptibility
toward other pathogens was also reported due to protective
Zn concentrations used against certain pathogens of the same
host (Helfenstein et al., 2015). The studies conducted on the
potential relationship between Zn availability status and fungal
disease severity have reported an alleviated disease response
in plants supplemented with Zn (Huber and Haneklaus, 2007;
Khoshgoftarmanesh et al., 2010) while the contrary results were
observed in soybean plants with varied Zn treatment, wherein
either normal or high Zn fertilization had fewer positive counts
for bacterial pustules caused by Xanthomonas axonopodis pv.
glycines (Helfenstein et al., 2015). An evolutionary-conserved
Zn-sensing phenomenon connecting root growth to pathogen
response mechanism was stated by Bouain et al. (2018). In this
study, the authors found that azelaic acid triggered by Azelaic
Acid Induced1 (AZI1), belonging to the lipid transfer protein
family (LTP) of the pathogenesis-related (PR) protein during
systemic acquired resistance (SAR), regulated the plant growth
and immunity responses on the basis of Zn availability status in
plants.

Copper

Copper (Cu) is one of the significant micronutrients
required by plants that acts as a cofactor for several
enzymes involved in respiration and electron transport proteins
(Sommer, 1931). Cu is a plant protection essential part of
controlling oomycetes, fungi, and bacteria for over a century.
Although diseases can be managed by Cu applications, the lack
of curative or systemic activity leads to Cu spray applications
year after year (Graham et al., 2011). Plants with low Cu
content show an increased disease incidence as a result of
reduced lignification (Marschner, 1995). Cu fertilization in
plants reduces the severity of fungal and bacterial diseases
associated with cell wall stability and lignification (Broadley
et al., 2012). The best evidence of a Cu effect on host
plant resistance to disease can be observed in cases where
Cu is applied in soil, and it lowers the leaf infection as
evident in powdery mildew in wheat and ergot (Claviceps
sp.) (Evans et al., 2007). The Cu synergistic effects can also
be stated when it was used with other fungicides, such as
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Mancozeb, which leads to a reduction in canker and fruit
spotting symptoms (Shoemaker, 1992). Cu compounds and
their different combinations, in different studies, are reported to
reduce sheath blight severity (Rhizoctonia solani) in rice (Khaing
et al., 2014) and bacterial canker (Clavibacter michiganensis
subsp. michiganensis) in tomatoes (Bastas, 2014).

Manganese

Manganese (Mn) is an important micronutrient known for
its efficacy on pathogen and resistance development in plants
(Huber and Graham, 1999) owing to its ability for phenolic
and lignin compound synthesis (Broadley et al., 2012). Cacique
et al. (2012) reported that high Mn concentration on leaf tissues
was found to decrease blast symptoms by Pyricularia oryzae in
rice. Heine et al. (2011) observed that Mn can also contribute
to black leaf mold disease control (Pseudocercospora fuligena)
in tomatoes. Plants with inadequate Mn nutrition are observed
to be unable in restricting the fungal hyphae penetration into
the root tissues (Graham and Webb, 1991) while plants with
adequate Mn nutrition show an alleviation in lignification
and a reduction in aminopeptidase and pectin methyl esterase
synthesis that is required essentially for fungal growth and for
host cell wall breakdown, respectively (Carrow et al., 2001).

Iron

Iron (Fe) is an essential micronutrient required by plants
and pathogens having both positive and negative effects on
the host and host disease resistance (Kieu et al., 2012; Aznar
et al., 2015). Fe catalyzes ROS production that is used by
the plant for alleviating the local oxidative stress as a defense
response against the pathogens, thereby making iron play
an intricate role in plant-pathogen interaction (Aznar et al.,
2015). Fe fertilization is evident to be effective in antimicrobial
compound synthesis leading to an indirect effect on the plant’s
metabolic activity (Aznar et al., 2015). A reduction in symptom
severity and pectate lyase encoding gene expression of the
two soft rot-causing pathogens, such as Dickeya dadantii
and Botrytis cinerea, was observed in plants showing Fe
starvation (Kieu et al., 2012). Fe is also reported to enhance
the fungal growth in certain plant-fungus interactions, as
it was observed in Phytophthora parasitica var. nicotianae,
wherein the fungal growth was observed to enhance in Fe3+

supplemented synthetic glucose asparagine medium (Hendrix
et al., 1969). Fe also plays a potent role in Pseudomonads that are
adapted to produce iron-chelating agents called siderophores
in Fe-deficient soils, which, in turn, suppress certain fungal
pathogens by starving them of iron (Calvent et al., 2001).
Siderophores are also involved in some volatile antibiotic
compounds’ synthesis (Thomashow, 1996). Depending on
the host, the defense activation mechanism involves either

their Fe scavenging property or receptor-mediated recognition
as in the case of pattern-triggered immunity (Aznar and
Dellagi, 2015). The reduced iron availability for fusaria-
related wilts induced by fluorescent pseudomonads producing
siderophores is reported as the main mechanism to reduce
disease incidence in fusarium wilt of tomatoes (De Weger
et al., 1986; Alabouvette, 1999; Hussain et al., 2016). In fact,
soil suppressiveness to fusarium wilt of tomatoes has been
mainly ascribed to Fe competition between the pathogenic
Fusarium oxysporum isolates from the rhizosphere with the wild
populations of fluorescent pseudomonads (Haas and Défago,
2005; Lemanceau and Alabouvette, 2008).

Silicon

Silicon (Si) is not essentially a micronutrient but stands
out eminently in its potential for decreasing several pathogens’
severity in varied crops belonging to the families Poaceae,
Equisetaceae, and Cyperaceae (Huber et al., 2012; Pozza et al.,
2015). The increased Si supply strongly reduces the number
of lesions on young leaves, indicating an increase in disease
resistance (Osuna-Canizalez et al., 1991). The silicates are
known for inducing defense responses in plants by involving cell
wall strengthening through alleviated phytoalexin production,
increased lignification, PR protein synthesis, and phenolics
production (Fawe et al., 2001; Oliveira et al., 2012).

Silicon is accumulated mainly in epidermal cells and
exclusively on endodermal cells in roots and creates a physical
barrier for fungal hyphae penetration into plant roots (Najihah
et al., 2015). An increase in the activity of antioxidative enzymes
(peroxidase, polyphenol oxidase, phenylalanine ammonia lyase,
and lipoxygenase) was also observed after Si application (Shetty
et al., 2011), which are considered the second line of defense
for the pathogen entry into the host (Pozza et al., 2015).
A significant reduction in lesion length of bacterial leaf blight
(Xanthomonas oryzae pv. oryzae) among four rice cultivars
was reported by Chang et al. (2002) following Si application,
which was correlated with the soluble sugar content reduction
in plant leaves amended with Si. Reduced severity in rice sheath
blight disease was attributed to the increased lignin content
and enhanced activities of antioxidative enzymes in rice leaves
with Si addition. Therefore, knowing its effects on disease
reduction, it can be included as an important component of
crop protection.

Conclusion

Since sustainable agriculture that uses increasing amounts
of bio-fertilizers and organic amendments from a wide
range of organic wastes represents a very important plant
mineral nutrient source, it is fundamental to know the
mechanisms of action by which such minerals can be involved
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in plant defense in several pathosystems. It is a general
assumption that balanced nutrition leads to a healthy plant,
which reduces disease susceptibility and infection. Thus, it
is important to provide balanced nutrition at the due time
when the nutrient can be most effectively used for disease
control. Nutrient manipulation achieved by either modifying
the nutrient availability or modifying the nutrient uptake
for disease management or suppression has been reported
in several studies. Fertilizers’ application affects plant disease
development under field conditions either directly through the
plant’s nutritional status or indirectly by affecting the conditions,
which can influence the disease development, such as dense
stands, changes in light interception, and humidity within the
crop stand. It is a general assumption that balanced nutrition
leads to a healthy plant, which reduces disease susceptibility and
infection. Thus, it is important to provide balanced nutrition at
the due time when the nutrient can be most effectively used for
disease control.
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