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Southern root-knot nematode [SRKN, Meloidogyne incognita (Kofold & White)
Chitwood] is a plant-parasitic nematode challenging to control due to its short life
cycle, a wide range of hosts, and limited management options, of which genetic
resistance is the main option to efficiently control the damage caused by SRKN. To
date, a major quantitative trait locus (QTL) mapped on chromosome (Chr.) 10 plays an
essential role in resistance to SRKN in soybean varieties. The confidence of discovered
trait-loci associations by traditional methods is often limited by the assumptions of
individual single nucleotide polymorphisms (SNPs) always acting independently as well
as the phenotype following a Gaussian distribution. Therefore, the objective of this
study was to conduct machine learning (ML)-based genome-wide association studies
(GWAS) utilizing Random Forest (RF) and Support Vector Machine (SVM) algorithms
to unveil novel regions of the soybean genome associated with resistance to SRKN.
A total of 717 breeding lines derived from 330 unique bi-parental populations were
genotyped with the Illumina Infinium BARCSoySNP6K BeadChip and phenotyped for
SRKN resistance in a greenhouse. A GWAS pipeline involving a supervised feature
dimension reduction based on Variable Importance in Projection (VIP) and SNP detection
based on classification accuracy was proposed. Minor effect SNPs were detected by
the proposed ML-GWAS methodology but not identified using Bayesian-information
and linkage-disequilibrium Iteratively Nested Keyway (BLINK), Fixed and Random Model
Circulating Probability Unification (FarmCPU), and Enriched Compressed Mixed Linear
Model (ECMLM) models. Besides the genomic region on Chr. 10 that can explain most
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of SRKN resistance variance, additional minor effects SNPs were also identified on Chrs.
10 and 11. The findings in this study demonstrated that overfitting in GWAS may lead to
lower prediction accuracy, and the detection of significant SNPs based on classification
accuracy limited false-positive associations. The expansion of the basis of the genetic
resistance to SRKN can potentially reduce the selection pressure over the major QTL
on Chr. 10 and achieve higher levels of resistance.

Keywords: machine learning, feature selection, GWAS, soybean, root-knot nematode

INTRODUCTION

Soybean [Glycine max (L.) Merr.] represents one of the most
essential crops to the world’s economy and food security due to its
unique seed composition. As a versatile crop with unprecedented
seed composition, soybean is extensively used in the food,
feed, and many other industries exploring oil and protein-
based products (Vieira and Chen, 2021). Over the last decade,
soybean production has increased approximately 40% expanding
from 257.8 to 362.1 million metric tons (2010–2020) (USDA
United States Department of Agriculture, 2010, 2020). Yearly,
this represents an increment of 26.5 kg ha−1 in yield (Koester
et al., 2014), which can be attributed to genetic improvements as
well as advancements in farming technology and management
practices (Specht et al., 1999; De Bruin and Pedersen, 2008;
Rowntree et al., 2013; Koester et al., 2014). However, many biotic
and abiotic stressors can limit soybean yield potential in the
United States and around the world.

In the United States, the average annual yield losses caused
by soybean diseases are estimated to be over 11% (Hartman
et al., 2015), which translates into an average economic loss
of approximately $60.66 per acre (Allen et al., 2017). With
over 4,100 species of plant-parasitic nematodes around the
world (Decraemer and Hunt, 2006), these small parasites are
responsible for annual agricultural losses of approximately $160
billion, severely impacting global food security (Abad et al., 2008).
Root-knot nematodes (Meloidogyne spp.) are considered the
most economically important and widely distributed species of
plant-parasitic nematode, of which southern root-knot nematode
[SRKN, Meloidogyne incognita (Kofold & White) Chitwood] has
the most scientific and economic importance (Jones et al.,
2013). In soybeans, observed symptoms of SRKN are similar
to abiotic stressors, including stunted growth, wilting, leaf
discoloration, and deformation of the roots. The magnitude of
crop losses depends on historical crop rotation and field usage,
environmental parameters, initial nematode population density,
soil type, and genetic background (Vieira et al., 2021). SRKN
is challenging to control due to its short life cycle and high
reproductive rates (Trudgill and Blok, 2001). Crop rotation is
especially challenging and limited since most flowering plants
are hosts to SRKN (Walker, 1995; Trudgill and Blok, 2001;
Luc et al., 2005). Chemical approaches used to be an effective
management option to control these nematodes, however, most
commercial nematicides and soil fumigants were banned due
to toxicity to humans, animals, and environments (Abad et al.,
2008). Therefore, the use of genetic resistance becomes the

most sustainable – economically, environmentally, and socially –
alternative to efficiently control the damage caused by SRKN in
soybeans (Vieira et al., 2021).

The first genetic mapping of resistance to SRKN in soybean
identified two resistance quantitative trait locus (QTL) on
chromosomes (Chrs.) 10 and 18 in plant introduction (PI) 96354
(Tamulonis et al., 1997). The combination of these resistance
QTLs in PI 96354 was reported to enhance the levels of resistance
to SRKN (Li et al., 2001). Additional marker-trait associations
have been identified on Chrs. 6 in a soybean variety derived
from PI 96354 (Shearin et al., 2009), 7 in soybean variety LS5995
(Fourie et al., 2008), 8 in PI 438489B (Xu et al., 2013), 10 in
“Palmetto,” LS5995, PI 96354, PI 438489B, PI 567516C, and
PI 567305 (Ha et al., 2004; Fourie et al., 2008; Pham et al.,
2013; Xu et al., 2013; Passianotto et al., 2017; Vuong et al.,
2021), 13 in PI 438489B, PI 567516C, and PI 567305 (Xu
et al., 2013; Jiao et al., 2015; Vuong et al., 2021), 17 in PI
567516C (Jiao et al., 2015), and 18 in PI 96354 (Pham et al.,
2013). The effect of combining these marker-trait associations
has not been investigated to date. Attempts to analyze gene
expression patterns after infection as well as fine-map the
genomic region of the major QTL on Chr. 10 identified candidate
genes with cell wall modification-related functions including
extensin and pectinesterase encoding functions, carbon and
energy metabolism, defense-related, transcription factors and
proteins encoding, and cell division-related genes (Ibrahim et al.,
2011; Eugênia et al., 2012; Beneventi et al., 2013; Pham et al., 2013;
Xu et al., 2013; Passianotto et al., 2017). Most genetic mapping
studies for SRKN resistance are based on the development of galls
in the root system (galling response) of soybean lines reported
as categorical variables, often using bi-parental populations with
limited molecular marker density and coverage.

Traditional genome-wide association studies (GWAS) identify
genomic regions associated with a trait or phenotype of interest
from a large group of single nucleotide polymorphisms (SNPs)
by linear or logistic regression analysis which is performed
separately for each SNP. The resulting p-values are then used
to rank the SNPs and to select those with a p-value smaller
than a pre-set significance level threshold (e.g., p-value < 0.05
or LOD score of 3.0) (Szymczak et al., 2016). The confidence
of discovered trait-loci associations by the traditional methods
is often limited by the assumptions of individual SNPs
always acting independently, false-positive SNPs identified by
linkage disequilibrium, as well as the phenotype following
a Gaussian distribution (Korte and Farlow, 2013; Nicholls
et al., 2020). Although statistical methodologies to account
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for epistatic interaction, as well as population relatedness-false
associations have been developed (Marchini et al., 2005; Cordell,
2009; Kam-Thong et al., 2011; Liu et al., 2016; Huang et al.,
2019), linear model-based genome-wide studies still experience
drawbacks from the extensive number of pair-wise tests that need
to be performed (Korte and Farlow, 2013). Recently developed
machine learning (ML) based GWAS has provided a promising
alternative to classical, model-based statistical methods for the
selection of important SNPs in datasets where the number of
independent variables is far higher than the number of samples
that are often seen in genomic studies (Nicholls et al., 2020).
ML-based GWAS has the advantage of taking into account
the interaction effects between markers, whereas conventional
GWAS methodologies are appropriate for detecting markers
with large effects on complex traits and underpowered for the
simultaneous consideration of a wide range of interconnected
biological and physiological processes and mechanisms that
constitute the phenotype of interest.

Popular ML models, such as Random Forest (RF) and Support
Vector Machine (SVM) have been involved in GWAS for
feature (SNPs) selection (Merelli et al., 2013; Szymczak et al.,
2016), performance assessment (Vitsios and Petrovski, 2019)
and result prioritization (Ning et al., 2015). Though advanced
rapidly, ML-based GWAS faces challenges, including high
computational expenses and difficulty to interpret and handle
the high dimensionality in predictors. Besides, the applications
of ML-based GWAS need to be consistently validated with
significant associations that make both biological and statistical
sense (Nicholls et al., 2020). To the best of our knowledge, ML-
based GWAS has been applied in soybean to identify significant
marker-trait associations using SVM (Yoosefzadeh-Najafabadi
et al., 2021a,b), RF (Zhou et al., 2019; Xavier and Rainey, 2020;
Yoosefzadeh-Najafabadi et al., 2021b), and Deep Convolutional
Neural Network (CNN) (Liu et al., 2019), of which none was
applied on soybean resistance to SRKN. Therefore, the objective
of this study was to conduct ML-GWAS utilizing 717 diverse
breeding lines derived from 330 unique bi-parental populations
with two different algorithms (SVM and RF) to unveil novel
regions of the soybean genome regulating the resistance to SRKN
(reported as the development of galls in the roots) and contribute
to developing enhanced and more durable SRKN resistance.

MATERIALS AND METHODS

Plant Materials and Data Collection
Soybean Breeding Lines Panel and Genotyping
A total of 717 breeding lines derived from 330 unique bi-parental
populations and developed by the University of Missouri –
Fisher Delta Research Center (MU-FDRC) soybean breeding
program was used in this study. The MU-FDRC soybean
breeding program has historically advanced the field of nematode
resistance in soybeans and developed and released multiple
soybean lines with enhanced levels of SRKN resistance by
combining multiple sources of resistance (Shannon et al., 2019;
Chen P. et al., 2021). The lines comprised 5 years (2017–
2021) of internal advanced yield trials at the MU-FDRC. Five

seeds of each line were grown in a greenhouse, and genomic
DNA was extracted from lyophilized young trifoliate leaf tissue
(V3) (Fehr et al., 1971) using the Qiagen DNeasy Plant 96 kit
(QIAGEN, Valencia, CA, United States) and respective protocol.
DNA concentration was quantified with a spectrophotometer
(NanoDrop Technologies Inc., Centerville, DE, United States)
and normalized at 50 ng/µl. DNA samples were genotyped in
the USDA-ARS Soybean Genomics and Improvement Laboratory
using the Illumina Infinium BARCSoySNP6K BeadChip (Song
et al., 2020). The SNP alleles were called using the Illumina
Genome Studio Genotyping Module (Illumina, Inc., San Diego,
CA, United States). SNPs were converted to numerical format
(0, 1, and 2 for the homozygous minor allele, heterozygous, and
homozygous major allele, respectively), and were excluded based
on minor allele frequency (MAF) < 0.05 resulting in 4,974 SNPs.
The across-genome SNP density was 249, ranging from 191 (Chr.
17) to 327 (Chr. 08).

Phenotypic Characterization
Breeding lines were phenotyped for the development of galls
in the root system (galling response) in a greenhouse of the
University of Georgia from 2017 to 2021 using a well-established
protocol as previously described (Hussey and Boerma, 1981). The
resistant and susceptible standard checks “Bossier,” “CNS” (PI
548445), “GaSoy17” (PI 553046), G93-9009 (Luzzi et al., 1996),
and “Haskell” (PI 572238) were included in the bioassays. Three
seeds of each line were planted in four replications in Ray Leach
Cone-tainers (20.6 cm long cones) and filled with fumigated
sandy loam soil. Plants were thinned to one seedling per cone-
tainer after emergence and then inoculated with 3,000 SRKN eggs
(race 3) after 10 days. Forty days after inoculation, the plants
were uprooted. The roots were washed free of soil, and the galls
were counted (Hussey and Boerma, 1981). The number of galls
on the resistant and susceptible standard checks were used to
determine rating scales for these lines, where 1 < 10 galls per
plant, 2 = 11 to 20, 3 = 21 to 30, 4 = 31 to 40, and 5 >40 galls.
For classification purposes, lines were considered tolerant when
<20 galls per plant, moderate >20, <40, and susceptible >40
galls per plant.

Genome-Wide Association Study
Single Nucleotide Polymorphism Feature Selection
To select SNPs that were significantly associated with SRKN
resistance, a Partial Least Square (PLS) (Wold, 1966) model was
fitted using the 4,974 SNPs as predictors and the number of
galls in the root as responses. PLS models have the advantage
to reduce the variability and instability of estimated responses
caused by multicollinearity among predictors (Zhou et al.,
2019; James et al., 2021). Additionally, PLS creates linear
combinations (known as components) of the original predictor
variables (the SNPs) to explain the observed variability in the
responses (the galling response). Coefficients associated with
the components were trained with 10-fold cross-validation to
reach a minimum validation error. The relative importance
of these variables in the components was retrieved by calling
the Variable Importance in Projection (VIP) scores in the PLR
model fitting results. The PLS model fitting was conducted in
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R (R Core Team, 2021) using “plsregress” function in the “pls”
package (Mevik and Wehrens, 2007) and the VIP scores were
returned by calling the “VIP” function in the “plsVarSel” package
(Mehmood et al., 2012).

The SNPs with high VIP scores (>2.0) were kept to be
included in the ML-based GWAS and sorted descendingly based
on the VIP scores. Starting from the top of the selected SNP
list, the Pearson correlations (r) of one SNP with the others
were calculated, and those with high correlations (| r| > 0.5)
were removed from the list. The list was updated immediately
and the correlations between the following SNP and the others
were calculated. The loop ended when the last SNP correlations
were calculated.

Machine Learning Algorithms
The SNPs with high VIP values and low correlations with other
SNPs were further selected by ML models in a forward stepwise
selection loop. The selection loop started from taking single SNPs
as model predictors and the development of galls in the root
system as responses. Each of the models was evaluated with
5-folder cross-validation and their classification accuracy was
recorded. The overall accuracy of each model was calculated
using Eq. 1. Class accuracy, which represents the ratio of correctly
predicted instances and all the instances, was calculated using
Eq. 2. Precision, which indicates the proportion of predicted
presences, was calculated using Eq. 3, and specificity, which
indicates the ratio of correctly predicted negative classes was
calculated using Eq. 4. Matthews Correlation Coefficient (MCC)
was calculated using Eq. 5. The SNP with the highest accuracy in
the previous loop was kept in the later loop and evaluated with
an additional SNP from the list of significant SNPs. The loop
ended when no gain in the classification accuracy was observed
and output the best combination of SNPs. To assess the effect of
potential overfitting on the predictive accuracy of both SVM and
RF models, the loop was extended to all selected predictors and
accuracy metrics were calculated for each model.

Overall Accuracy =

No. of samples classified correctly in a test set
Total No. of samples in a test set

× 100% (1)

Class Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Specificity =
TN

TN + FP
(4)

MCC =
(TP × TN)− (FP × FN)

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(5)

where, TP, True Positive; TN, True Negative; FP, False Positive;
FN, False Negative.

Two models were used for the multi-class problem, namely
SVM and RF. The two models were selected due to their high
effectiveness in high dimensional cases where the number of

predictors is greater than the number of samples, as well as a
good balance between the variance-bias trade-off (James et al.,
2021). RF is a tree-based supervised learning algorithm based
on assembling multiple decision trees. It can perform feature
selection and generate uncorrelated decision trees by randomly
dropping a set of input variables so that it allows to model a
high number of features in the data (Breiman, 2001). The SVM
model works well in classification problems by placing flexible
hyperplanes among classes. The model offers controllability to
users by combinations of tunable parameters to ensure model
performance and avoid potential overfitting.

The RF model was called by the “randomForest” function
in the “randomForest” package (Liaw and Wiener, 2002) with
sqrt(p) (where p is the number of variables) variables randomly
sampled as candidates at each split. The SVM model was
fitted by the “svm” function in the “e1071” (Meyer et al.,
2021) package and the kernel was defined as “radial.” The best
combination of trainable parameters in SVM (i.e., gamma and
cost) were returned automatically by calling the “tune” function.
The model was turned by going through a grid search for cost
(the margin softness parameter) from 0.01, 0.1, 1, 10, 100, and
1,000 and gamma (the variance-bias tradeoff parameter) from
0.0001, 0.001, 0.01, 0.5, and 1. In addition, to compare the
efficacy of the proposed methodology in detecting significant
SNPs, GWAS was conducted using the package GAPIT (Lipka
et al., 2012) with the models Enriched Compressed Mixed Linear
Model (ECMLM) (Li et al., 2014), Fixed and Random Model
Circulating Probability Unification (FarmCPU) (Liu et al., 2016),
and Bayesian-information and linkage-disequilibrium Iteratively
Nested Keyway (BLINK) (Huang et al., 2019). The threshold
of significance was calculated based on the false discovery rate
(FDR)-adjusted p-values to reduce false-positive associations
(Benjamini and Hochberg, 1995).

Compressed Mixed Linear Model (CMLM) groups individuals
based on kinship replacing the genetic effects of individuals in
the regular mixed linear model (MLM) with the genetic effects
of the corresponding groups. In ECMLM, additional algorithms
are provided to cluster individuals into groups including the
average and Ward methods. The detailed methodology can be
found in Li et al. (2014). FarmCPU was developed to eliminate
the confounding effect between kinship in an MLM and genes
underlying a trait of interest by substituting the kinship with
a set of markers associated with the causal genes. The set of
the associated markers is fitted as a fixed effect in a fixed-effect
model for testing markers one at a time across the genome.
This set is optimized in a maximum likelihood method in
an MLM with variance and covariance structure defined by
the associated markers to minimize the risk of overfitting. Liu
et al. (2016) described the methodology in detail. BLINK is a
methodology based on FarmCPU targeting the major limitations
of the latter. BLINK does not assume that causal genes are evenly
distributed across the genome by directly working on markers
instead of bins. Markers that are in linkage disequilibrium (LD)
with the most significant marker are excluded until no marker
can be excluded. In addition, BLINK uses Bayesian Information
Content (BIC) of a fixed-effect model to approximate the
maximum likelihood of a random effect model to select the
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FIGURE 1 | Variable Importance in Projection (VIP)-based Manhattan plot of the 4,974 SNPs. The SNPs with VIP scores higher than 2.0 are highlighted in blue, and
the 29 non-correlated SNPs with VIP scores higher than 2.0 selected to be used in the ML-based GWAS are colored in red.

associated markers among the ones that remained after the
exclusion based on LD. The detailed methodology can be
found in Huang et al. (2019).

RESULTS

Phenotypic Distribution and Feature
Selection
A total of 186 genotypes were scored as resistant to SRKN
(average score of 1.3), 105 as moderate (average score of 3.0),
and 426 as susceptible (average score of 4.9). The distribution was
unbalanced as the susceptible (59.4%) lines largely outnumbered
the resistant (25.9%) and moderate (14.6%) lines. The average
VIP scores across the 4,974 SNPs was 0.89, of which 2,167 SNPs
showed VIP scores above the standard threshold of 1.0 (Figure 1).
The PLS-VIP method is often used when multicollinearity is
present among features (Chong and Jun, 2005), which is a
common scenario with high-density SNP datasets. The method
ranks the features based on their importance toward the
aggregate index (De). Since the average of squared VIP scores
equals one, a score greater than 1.0 is generally used as a
threshold for selecting features that contribute the most toward
the aggregate index (Chong and Jun, 2005; Cocchi et al., 2018).
Alternative values include increasing the threshold to 2.0–3.0
or adjusting based on the average of VIP values (Cocchi et al.,
2018). In this study, we used the threshold of 2.0 considering the
high multicollinearity between SNPs, as well as the relatively high
average VIP scores in this dataset. To reduce model overfitting
and correlated features, SNPs with pair-wise Pearson correlation
(| r|) higher than 0.5 were eliminated, maintaining the SNP with
higher VIP scores. A total of 29 non-correlated SNPs with VIPs
higher than 2.0 (range 2.0–8.8) were identified across Chrs. 2, 3,
5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19, and selected to be
included in the analysis (Figure 1).

Genome-Wide Association Study Results
Machine Learning Genome-Wide Association Studies
The SVM model achieved the highest overall prediction
accuracy (0.78) using five SNPs as predictors, including Gm10-
1232205, Gm10-2240113, Gm10-214458, Gm10-1586434, and
Gm11-63293. Gm10-1232205 was the SNP with the highest
VIP score (8.83) and yielded a classification accuracy of 0.74
when used as the only predictor. The addition of Gm10-
2240113, Gm10-214458, Gm10-1586434, and Gm11-63293 to
Gm10-1232205 improved the model’s ability to classify resistant,
moderate, and susceptible genotypes, with an overall increment
in prediction accuracy of 5%. A substantial gain in accuracy
was observed in the moderate class, increasing from 0.50 to
0.59 (18%). The precision, which measures the ability of the
model to classify a true positive prediction based on the total
number of positive predictions, increased for all classes with
the addition of the four SNPs, however, a drastic increase in
precision was observed in the moderate class (0.00–0.63). In
addition, specificity, which represents the proportion of true
negative predictions by the total number of negative predictions,
increased proportionally for the resistant and susceptible classes
(7.5 and 6.8%, respectively). Interestingly, a substantial decrease
in overall prediction accuracy was observed with the further
addition of predictors, which can be attributed to the overfitting
of the training set and consequently poor reproducibility in the
testing set (Table 1).

In the RF model, the highest accuracy (0.80) was obtained
using 21 SNPs as predictors, including Gm10-1232205, Gm10-
2240113, Gm10-214458, Gm11-63293, Gm10-1586434, Gm10-
4670275, Gm10-3465857, Gm15-13014539, Gm19-44761515,
Gm13-35032818, Gm06-9668798, Gm16-6423098, Gm12-4883
456, Gm18-57126096, Gm16-31397286, Gm03-1718435, Gm11
-1620921, Gm06-3608127, Gm02-3774471, Gm10-39937578,
Gm14-48703687, and Gm11-16996443. Like the SVM model,
Gm10-1232205, Gm10-2240113, Gm10-214458, Gm10-1586434,
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TABLE 1 | Summary of SVM classification accuracy metrics based on the number of predictors.

# SNPs1 Overall accuracy2 MCC3 Resistant Moderate Susceptible

Accuracy4 Precision5 Specificity6 Accuracy Precision Specificity Accuracy Precision Specificity

1 0.74 0.53 0.87 0.55 0.80 0.50 0.00 1.00 0.80 0.84 0.73

2 0.74 0.51 0.85 0.59 0.84 0.52 0.29 0.96 0.80 0.84 0.73

3 0.75 0.54 0.85 0.59 0.84 0.53 0.50 0.98 0.80 0.83 0.71

4 0.76 0.56 0.86 0.62 0.86 0.53 0.50 0.98 0.82 0.84 0.71

5 0.78 0.60 0.86 0.62 0.86 0.59 0.63 0.97 0.85 0.87 0.78

6 0.78 0.59 0.86 0.62 0.86 0.56 0.75 0.99 0.83 0.85 0.73

7 0.77 0.57 0.86 0.62 0.86 0.54 0.67 0.99 0.82 0.84 0.71

8 0.77 0.57 0.86 0.62 0.86 0.54 0.67 0.99 0.82 0.84 0.71

9 0.76 0.56 0.86 0.62 0.86 0.53 0.50 0.98 0.82 0.84 0.71

10 0.76 0.56 0.86 0.60 0.85 0.53 0.50 0.98 0.82 0.85 0.73

11 0.76 0.55 0.86 0.60 0.85 0.52 0.33 0.97 0.83 0.85 0.75

12 0.74 0.52 0.86 0.62 0.86 0.51 0.25 0.95 0.81 0.84 0.73

13 0.76 0.57 0.88 0.63 0.86 0.54 0.38 0.96 0.83 0.86 0.76

14 0.75 0.54 0.86 0.62 0.86 0.53 0.33 0.95 0.82 0.85 0.75

15 0.75 0.54 0.86 0.62 0.86 0.53 0.33 0.95 0.82 0.85 0.75

16 0.75 0.54 0.86 0.62 0.86 0.53 0.33 0.95 0.82 0.85 0.75

17 0.75 0.54 0.86 0.60 0.85 0.52 0.29 0.96 0.82 0.85 0.75

18 0.76 0.55 0.86 0.60 0.85 0.54 0.38 0.96 0.83 0.86 0.76

19 0.76 0.55 0.86 0.60 0.85 0.54 0.38 0.96 0.83 0.86 0.76

20 0.76 0.55 0.86 0.60 0.85 0.54 0.38 0.96 0.83 0.86 0.76

21 0.75 0.54 0.85 0.61 0.86 0.53 0.33 0.95 0.82 0.85 0.75

22 0.74 0.53 0.85 0.57 0.82 0.51 0.25 0.97 0.82 0.85 0.75

23 0.74 0.53 0.86 0.60 0.85 0.51 0.25 0.95 0.82 0.85 0.75

24 0.74 0.53 0.83 0.56 0.82 0.51 0.33 0.98 0.82 0.84 0.73

25 0.74 0.51 0.80 0.64 0.89 0.58 0.38 0.92 0.81 0.84 0.73

26 0.75 0.53 0.82 0.67 0.90 0.60 0.41 0.92 0.81 0.84 0.73

27 0.74 0.53 0.83 0.56 0.82 0.54 0.67 0.99 0.80 0.83 0.71

28 0.74 0.52 0.83 0.57 0.83 0.53 0.50 0.98 0.80 0.83 0.71

29 0.73 0.50 0.83 0.57 0.83 0.53 0.33 0.95 0.81 0.85 0.75

1Total number of SNPs used as predictors in the model. For the SVM model, the highest accuracy was obtained using five SNPs including Gm10-1232205, Gm10-
2240113, Gm10-214458, Gm10-1586434, and Gm11-63293.
2Overall prediction accuracy was calculated according to Eq. 1.
3Matthews Correlation Coefficient (MCC) was calculated according to Eq. 5.
4Class accuracy was calculated according to Eq. 2.
5Precision was calculated according to Eq. 3.
6Specificity was calculated according to Eq. 4.
The bold rows are the combination of SNPs with the highest accuracy.

and Gm11-63293 were among the most significant SNPs and the
RF model using these five SNPs yielded an overall accuracy of
0.78. A total gain in overall classification accuracy of 11% was
observed with the addition of 20 SNPs to the model using only
Gm10-1232205 (0.80 and 0.72, respectively) (Table 2). Similar to
the SVM model, the highest gain in prediction accuracy by the
addition of SNPs was observed in the moderate class (0.50–0.60).
All prediction accuracy metrics were improved in the model
with 21 SNPs. In the resistant class, an increase of 3.5, 15.2, and
7.1% was observed in class accuracy, precision, and specificity,
respectively. In the moderate class, a more pronounced increase
was observed in class accuracy and precision (20.0 and 252.9%,
respectively). Increments proportional to the resistant class
were observed in the susceptible class, including a gain of
7.5, 4.8, and 7.0% in class accuracy, precision, and specificity,
respectively (Table 2).

Although RF is well-known for sustaining predictive
performance under high dimensional data with multicollinearity,

excessive noise among predictors, and unbalance between the
number of predictors and the number of samples (Ishwaran
et al., 2010; Chen and Ishwaran, 2012), a substantial decrease
in overall accuracy by the addition of predictors was observed
(Figure 2). Like the SVM model, the decrease in prediction
accuracy is most likely due to the overfitting of the training set
and poor reproducibility in the testing set. Due to computational
limitations, the analysis included combinations of up to 2,000
SNPs instead of the entire set of 4,974 SNPs and was not
performed for SVM.

Linear Model-Based Genome-Wide Association
Studies
The SNPs Gm10-1232205 and Gm10-1586434 were detected in
BLINK, FarmCPU, and ECMLM, as well as in SVM and RF
(Table 3). In addition to these two SNPs located in genomic
regions previously reported in the literature, Gm10-2240113 was
detected in the ECMLM, SVM, and RF and represents a potential
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TABLE 2 | Summary of RF classification accuracy metrics based on the number of predictors.

# SNPs1 Overall accuracy2 MCC3 Tolerant Moderate Susceptible

Accuracy4 Precision5 Specificity6 Accuracy Precision Specificity Accuracy Precision Specificity

2 0.73 0.50 0.85 0.59 0.84 0.50 0.17 0.96 0.79 0.83 0.71

3 0.74 0.54 0.85 0.59 0.84 0.51 0.33 0.98 0.80 0.83 0.69

4 0.77 0.58 0.85 0.59 0.84 0.59 0.63 0.98 0.84 0.87 0.78

5 0.78 0.59 0.86 0.62 0.86 0.57 0.57 0.98 0.84 0.86 0.76

6 0.77 0.57 0.86 0.62 0.86 0.54 0.43 0.97 0.84 0.86 0.76

7 0.77 0.58 0.86 0.62 0.86 0.54 0.43 0.97 0.84 0.86 0.76

8 0.76 0.59 0.83 0.62 0.87 0.56 0.40 0.95 0.84 0.86 0.76

9 0.77 0.58 0.86 0.61 0.85 0.58 0.56 0.97 0.84 0.87 0.78

10 0.76 0.57 0.84 0.60 0.85 0.60 0.50 0.95 0.84 0.88 0.80

11 0.79 0.60 0.86 0.62 0.86 0.60 0.60 0.97 0.86 0.88 0.80

12 0.79 0.62 0.87 0.63 0.87 0.62 0.64 0.97 0.86 0.88 0.80

13 0.79 0.61 0.87 0.63 0.87 0.62 0.64 0.97 0.86 0.88 0.80

14 0.79 0.63 0.86 0.62 0.86 0.62 0.64 0.97 0.85 0.88 0.80

15 0.78 0.60 0.86 0.62 0.86 0.59 0.63 0.98 0.84 0.86 0.76

16 0.78 0.56 0.87 0.63 0.87 0.58 0.56 0.97 0.84 0.86 0.76

17 0.79 0.55 0.85 0.67 0.90 0.61 0.67 0.98 0.82 0.84 0.71

18 0.79 0.53 0.84 0.68 0.90 0.61 0.67 0.98 0.82 0.83 0.69

19 0.79 0.59 0.82 0.67 0.90 0.60 0.55 0.96 0.84 0.85 0.73

20 0.79 0.56 0.84 0.68 0.90 0.60 0.55 0.96 0.85 0.86 0.75

21 0.80 0.65 0.88 0.68 0.90 0.60 0.60 0.97 0.85 0.87 0.76

22 0.79 0.57 0.88 0.67 0.89 0.60 0.60 0.97 0.84 0.86 0.76

23 0.79 0.57 0.86 0.66 0.89 0.58 0.56 0.97 0.84 0.86 0.75

24 0.78 0.60 0.86 0.66 0.89 0.59 0.63 0.98 0.82 0.84 0.71

25 0.78 0.59 0.87 0.65 0.88 0.56 0.44 0.96 0.84 0.86 0.76

26 0.77 0.57 0.85 0.63 0.87 0.60 0.55 0.96 0.83 0.86 0.76

27 0.79 0.59 0.86 0.68 0.90 0.60 0.60 0.97 0.82 0.85 0.73

28 0.78 0.60 0.84 0.65 0.89 0.61 0.67 0.98 0.82 0.84 0.71

29 0.78 0.59 0.84 0.65 0.89 0.59 0.63 0.98 0.82 0.84 0.71

1Total number of SNPs used as predictors in the model. For the RF model, the highest accuracy was obtained using 21 SNPs including Gm10-1232205, Gm10-
2240113, Gm10-214458, Gm11-63293, Gm10-1586434, Gm10-4670275, Gm10-3465857, Gm15-13014539, Gm19-44761515, Gm13-35032818, Gm06-9668798,
Gm16-6423098, Gm12-4883456, Gm18-57126096, Gm16-31397286, Gm03-1718435, Gm11-1620921, Gm06-3608127, Gm02-3774471, Gm10-39937578, Gm14-
48703687, and Gm11-16996443.
2Overall prediction accuracy was calculated according to Eq. 1.
3Matthews Correlation Coefficient (MCC) was calculated according to Eq. 5.
4Class accuracy was calculated according to Eq. 2.
5Precision was calculated according to Eq. 3.
6Specificity was calculated according to Eq. 4.
The bold rows are the combination of SNPs with the highest accuracy.

additional marker-trait association in Chr. 10. The linear model-
based GWAS methodologies did not detect Gm10-214458 and
Gm11-63293 (Table 3). As shown in the previous section,
these two SNPs contributed to increasing overall prediction
accuracy when included in both SVM and RF models, and
may represent additional marker-trait associations in Chrs.
10 and 11. These results show that BLINK, FarmCPU, and
ECMLM perform well in detecting major effect SNPs, but lag
in identifying minor effect alleles contributing to the observed
phenotype. Both BLINK and FarmCPU models were able to
adjust significance based on the presence of multicollinearity
among SNPs, whereas the ECMLM model identified many
correlated SNPs as significant associations which can lead to false-
positive associations and an overall decrease in the predictive
accuracy of the model.

DISCUSSION

From a data analytics perspective, a GWAS is the identification
of significant features controlling a respective trait of interest.
Among thousands – often hundreds of thousands – of molecular
markers distributed across the genome, the goal of the analysis
is to select the most informative features and eliminate
potential false-positive associations, a common drawback in
high dimensional genomic data that presents multicollinearity,
excessive noise among predictors, and unbalance between the
number of predictors and the number of samples (Ishwaran
et al., 2010; Chen and Ishwaran, 2012). Traditional GWAS
models in plants are often vulnerable to overfitting, which
leads to the detection of false-positive associations between
molecular markers and the observed phenotype (Hayes, 2013;
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FIGURE 2 | Prediction accuracy of RF models by the number of SNPs included as predictors.

TABLE 3 | Summary of significant SNP-trait associations identified by GWAS using the BLINK, FarmCPU, and ECMLM models.

SNP Chr1 Position2 MAF3 BLINKp-value4 FarmCPUp-value ECMLMp-value Significant models

Gm10-1232205 10 1,232,205 0.41 <0.00000 <0.00000 <0.00000 BLINK, FarmCPU, ECMLM

Gm10-1586434 10 1,586,434 0.20 <0.00000 <0.00000 <0.00000 BLINK, FarmCPU, ECMLM

Gm10-1623075 10 1,623,075 0.41 <0.00000 <0.00000 <0.00000 BLINK, FarmCPU, ECMLM

Gm10-1426801 10 1,426,801 0.37 0.00006 1.00000 <0.00000 BLINK, ECMLM

Gm10-1475647 10 1,475,647 0.14 <0.00000 1.00000 <0.00000 BLINK, ECMLM

Gm14-3470438 14 3,470,438 0.39 0.00069 1.00000 1.00000 BLINK

Gm10-39827303 10 39,827,303 0.49 0.22398 0.00084 1.00000 FarmCPU

Gm10-1268065 10 1,268,065 0.35 0.14341 1.00000 <0.00000 ECMLM

Gm10-981062 10 981,062 0.44 1.00000 1.00000 <0.00000 ECMLM

Gm10-1341309 10 1,341,309 0.25 1.00000 1.00000 <0.00000 ECMLM

Gm10-925972 10 925,972 0.47 1.00000 1.00000 <0.00000 ECMLM

Gm10-2714130 10 2,714,130 0.46 0.08015 1.00000 <0.00000 ECMLM

Gm10-831916 10 831,916 0.47 1.00000 1.00000 <0.00000 ECMLM

Gm10-754804 10 754,804 0.47 1.00000 1.00000 <0.00000 ECMLM

Gm10-1051336 10 1,051,336 0.37 1.00000 1.00000 <0.00000 ECMLM

Gm10-14714 10 14,714 0.11 0.90685 1.00000 0.00042 ECMLM

Gm10-406427 10 406,427 0.14 1.00000 1.00000 0.00184 ECMLM

Gm10-2240113 10 2,240,113 0.38 0.90685 1.00000 0.00447 ECMLM

Gm10-2482570 10 2,482,570 0.38 0.90685 1.00000 0.01196 ECMLM

Gm10-2437001 10 2,437,001 0.18 1.00000 1.00000 0.02936 ECMLM

1Chromosome where the SNP is located.
2Position in the genome reported as basepairs.
3Minor allele frequency.
4False discovery rate (FDR)-adjusted p-values of each model to reduce false-positive associations.
Associations with a p-value lower than 0.05 are in bold.
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Korte and Farlow, 2013; Chen Z. et al., 2021). Overfitting
happens when the model does not generalize well from
observed to unseen data. This is caused by the model
excessively capturing unintentional noise on the training set
due to the presence of redundant predictors, and consequently
yielding poor reproducibility on the testing set (Austin and
Steyerberg, 2015; Ying, 2019). Feature selection is the process
of identifying important predictors from the original variable
set. This process is critical to avoid overfitting, improve model
performance, and provide faster and more cost-effective models
(Akarachantachote et al., 2014).

In this study, a novel GWAS pipeline that selects features
based on the VIP followed by the elimination of highly correlated
features and prediction accuracy in ML algorithms is proposed.
The results indicated that major effect SNPs can be identified by
the proposed methodology as well as the BLINK, FarmCPU, and
ECMLM models. However, minor effect SNPs which improved
the prediction accuracy of the two ML models were not detected
in BLINK, FarmCPU, and ECMLM. In addition, a pronounced
decrease in prediction accuracy was observed in the SVM model
with the increment of SNPs as predictors, reaching the highest
prediction accuracy in the model with five SNPs. RF, on the
other hand, showed to be less vulnerable to overfitting and
reached the highest prediction accuracy in the model with 21
SNPs. The ability of RF to include all markers, including low
effect, highly correlated, and interacting markers to contribute
to the model fit may explain the slight superior predictive
accuracy by including more features in the model (Breiman, 2001;
Díaz-Uriarte and Alvarez de Andrés, 2006; Pang et al., 2006;
Ogutu et al., 2011). However, when the number of predictors
exceeded 21, RF showed a steady decrease in prediction accuracy.
This observation is important to guide future applications of
genomic prediction, particularly for categorical phenotypes. As
demonstrated in this research, identifying fewer but important
predictors yielded higher prediction accuracy as compared to
fitting the model with the highest number of predictors available.
Yoosefzadeh-Najafabadi et al. (2021b) performed SVM, RF,
ECMLM, and FarmCPU-based GWAS for soybean yield and
its components including the number of reproductive nodes,
non-reproductive nodes, total nodes, and total pods per plant.
They found SVM to outperform all the other methodologies.
However, as described by the authors, both RF and SVM
results were based on variable importance and not on the
prediction accuracy of each combination of SNPs. There are
multiple reports of genomics and proteomics studies based
on ML models that consider RF and SVM comparably good,
and often superior to other ML models (Svetnik et al., 2003;
Pang et al., 2006; Qi et al., 2006). The superiority of each
algorithm is most likely based on the architecture of the dataset
under study and investigating multiple algorithms should be
encouraged to determine which is the most appropriate for a
specific application.

Across SVM, RF, BLINK, FarmCPU, and ECMLM, the SNP
Gm10-1232205 was the most significant predictor associated
with resistance to SRKN. It is located in a genomic region on
Chr. 10 (1,232,205 bp) previously reported in the literature
to be significantly associated with resistance to SRKN

(Tamulonis et al., 1997; Li et al., 2001; Fourie et al., 2008).
Tamulonis et al. (1997) found this QTL to explain 31% of the
phenotypic variance, whereas Li et al. (2001) accounted this QTL
for more than 55% of the phenotypic variance. In both studies,
the resistance was assessed against SRKN race 3, and the source
of resistance was PI 96354. Fourie et al. (2008), on the other
hand, identified this QTL using SRKN race 2, a predominant
race in soybean production areas of South Africa and accounted
for more than 31% of the phenotypic variance. Within 50 kb of
Gm10-1232205, two genes namely Glyma.10g013700 (Universal
Stress Protein) and Glyma.10g013900 (Carbohydrate Metabolic
Process) were identified as possible candidate genes associated
with SRKN resistance. Universal Stress Proteins (USP) are
involved in multiple cellular responses to biotic and abiotic
stressors, ranging from ion scavenging, hypoxia responses,
cellular mobility, and regulation of cell growth and development
(Chi et al., 2019). Glyma.10g013700 has been associated with
the Arabidopsis thaliana AT3G01520, an adenine nucleotide
alpha hydrolases-like superfamily protein that is involved in
N-terminal protein myristoylation (Kim et al., 2015). The
attachment of a myristoyl group enhances specific protein–
protein interactions, thus playing an essential role in membrane
targeting and signal transduction in plant responses to biotic
and abiotic stressors (Podell and Gribskov, 2004; Traverso
et al., 2008; Udenwobele et al., 2017). Glyma.10g013900 has
been associated with carbohydrate metabolic process with
complete expression patterns in the root zone (Libault et al.,
2010; Severin et al., 2010). It encodes a protein similar to
β-xylosidase and is a member of the glycosyl hydrolase family,
acting in the cell wall polysaccharide metabolism. Additional
functions of glycosyl hydrolases are mobilization of energy,
defense to biotic stressors, symbiosis, signaling, secondary
plant metabolism, and metabolism of glycolipids (Minic, 2008).
Gene expression analyses of soybean roots in response to
SRKN infection have identified glycosyl hydrolase proteins
to be overexpressed and likely associated with soybean’s
ability to control the infection (Ibrahim et al., 2011; Beneventi
et al., 2013). Gm10-1586434 was also detected by SVM, RF,
BLINK, FarmCPU, and ECMLM. This genomic region on
Chr. 10 (1,586,434 bp) overlaps with reports from Tamulonis
et al. (1997) and Li et al. (2001), as well as two more recent
studies using bi-parental populations derived from PI 96354
(Pham et al., 2013) and PI 438489B (Xu et al., 2013). Pham
et al. (2013) estimated this QTL to account for 50% of the
phenotypic variance. Three cell wall modification candidate
genes encoding for pectinesterase and extensin proteins were
proposed, including Glyma10g02090, Glyma10g02100, and
Glyma10g02140 (Pham et al., 2013). Xu et al. (2013) pinpointed
two candidate genes within this genomic region accounting for
23.6% of the phenotypic variance. They were Glyma10g02150
and Glyma10g02160 and encode a pectin methylesterase
inhibitor (PMEI) and PMEI-pectin methylesterase, respectively
(Xu et al., 2013).

In addition to this major QTL on Chr. 10 (1,018,664 to
1,881,027 bp) that has been well reported on the literature
(Tamulonis et al., 1997; Li et al., 2001; Fourie et al., 2008; Pham
et al., 2013; Xu et al., 2013; Passianotto et al., 2017), two new
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genomic regions on Chr. 10 associated with SRKN have been
identified. Gm10-2240113 is located at 2,240,113 bp and Gm10-
214458 is located at 214,458 bp of Chr. 10. These SNPs have
been shown to increase both SVM and RF models’ prediction
accuracy when included as a predictor, and may potentially
represent additional minor effect marker-trait associations on
Chr. 10. Gm11-63293 is located at 63,293 bp of Chr. 11
and was found to increase the prediction accuracy of both
SVM and RF models, however, it was not identified by either
BLINK, FarmCPU, and ECMLM. This is the first time this
genomic region has been reported to be associated with SRKN
resistance. Within 200 bp of this SNP is located the gene
Glyma.11g001200. Further investigation on Soybase.org (Grant
et al., 2010) revealed this gene to be a leucine-rich repeat (LRR)
family protein, a characteristic family protein that is required for
plant resistance against viruses, bacteria, fungi, and nematodes.
Interestingly, this family protein is similar to the Mi gene in
tomato conferring resistance to SRKN (Milligan et al., 1998;
Hwang and Williamson, 2003). Studies have identified the role
of LRR-mediated intramolecular interactions in both nematode
recognition and cell death signaling by the Mi gene (Milligan
et al., 1998; Hwang and Williamson, 2003). Although the reported
candidate genes are located nearby SNPs associated with the
resistance of soybean to SRKN and show functions that make
biological sense in the resistance pathway, additional studies
involving gene function and analysis of the impact on the galling
response should be conducted to validate this hypothesis.

CONCLUSION

Although the major QTL on Chr. 10 can explain most of the
phenotypic variance associated with SRKN resistance in soybean,
additional minor effect marker-trait associations on Chrs. 10
and 11 were identified to improve the prediction accuracy
of both SVM and RF models. The addition of minor effect
SNPs enhanced the models’ predictive accuracy in classifying
genotype response to SRKN, which could improve the ability of
plant breeding programs to identify resistant genotypes through
marker-assisted selection and/or genomic prediction early in
the breeding pipeline. Interestingly, a decrease in classification
accuracy was observed for the ML models as the number of
SNPs included in the analysis increased, which reinforces the
importance of limiting the unbalance between the number of
predictors and the number of samples resulting in overfitting
and poor reproducibility of the results. Minimal diversity and

evolution are expected since SRKN are parthenogenic nematodes.
However, resistance breakdown has been observed in tomatoes
against the Mi gene (Eddaoudi et al., 1997). Resistance-breaking
population in soybean could dramatically impact the soybean
value chain because of the degree of yield losses caused by SRKN
as well as the lack of alternative management options (Vieira et al.,
2021). Expanding the basis of the genetic resistance to SRKN
can potentially reduce the selection pressure over the major QTL
on Chr. 10, and as demonstrated in this study, result in higher
levels of resistance.
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