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Soybean is a primary meal protein for human consumption, poultry, and livestock feed.
In this study, quantitative trait locus (QTL) controlling protein content was explored via
genome-wide association studies (GWAS) and linkage mapping approaches based
on 284 soybean accessions and 180 recombinant inbred lines (RILs), respectively,
which were evaluated for protein content for 4 years. A total of 22 single nucleotide
polymorphisms (SNPs) associated with protein content were detected using mixed
linear model (MLM) and general linear model (GLM) methods in Tassel and 5 QTLs
using Bayesian interval mapping (IM), single-trait multiple interval mapping (SMIM),
single-trait composite interval mapping maximum likelihood estimation (SMLE), and
single marker regression (SMR) models in Q-Gene and IciMapping. Major QTLs were
detected on chromosomes 6 and 20 in both populations. The new QTL genomic region
on chromosome 6 (Chr6_18844283–19315351) included 7 candidate genes and the
Hap.XAA at the Chr6_19172961 position was associated with high protein content.
Genomic selection (GS) of protein content was performed using Bayesian Lasso (BL)
and ridge regression best linear unbiased prediction (rrBULP) based on all the SNPs
and the SNPs significantly associated with protein content resulted from GWAS. The
results showed that BL and rrBLUP performed similarly; GS accuracy was dependent on
the SNP set and training population size. GS efficiency was higher for the SNPs derived
from GWAS than random SNPs and reached a plateau when the number of markers was
>2,000. The SNP markers identified in this study and other information were essential in
establishing an efficient marker-assisted selection (MAS) and GS pipelines for improving
soybean protein content.

Keywords: Glycine max, genome-wide association study, genomic selection, genotyping by sequencing, protein
content, single nucleotide polymorphism
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INTRODUCTION

Soybean [Glycine max (L.) Merr.] provides about 60% of the
vegetable-derived proteins worldwide and is a primary meal
protein for human consumption, poultry, and livestock feed
(Wolf, 1970; Patil et al., 2017). Improving protein content is one
of the major breeding objectives in breeding programs (Li S. et al.,
2019; Stewart-Brown et al., 2019). Traditional soybean breeding
methods require phenotyping and multigeneration selection.
Although molecular marker-assisted selection (MAS) by tagging
the desired genes during breeding selection is an approach to
make the selection more efficient (Collard et al., 2005), it is only
relatively effective for traits with high heritability and controlled
by major genes (Xu and Crouch, 2008; Xu et al., 2012; Patil
et al., 2017). Genomic selection (GS) was developed for the
selection of traits controlled by multiple genes, but it has not
been practically applied due to the large variation of prediction
accuracy in different populations and lacking efficient genotyping
platforms (Zhang A. et al., 2017; Liu et al., 2018). With the rapid
development of genomic tools and DNA sequencing technology,
breeders and geneticists are able to explore molecular approaches
to increase seed protein genetic gain (Song et al., 2004, 2013;
Schmutz et al., 2010; Wang et al., 2020).

Linkage analysis (Hyten et al., 2004; Nichols et al., 2006;
Pathan et al., 2013; Teng et al., 2017; Whiting et al., 2020)
and genome-wide association study (GWAS) are powerful tools
to identify markers associated with seed protein content in
soybean (Hwang et al., 2014; Leamy et al., 2017; Lee et al.,
2019; Li S. et al., 2019); to date, a total of 262 loci have
been reported through linkage analysis and 107 loci have been
reported through GWAS (Patil et al., 2017; Gangurde et al.,
2020) per SoyBase.1 These loci were on all the chromosomes,
especially chromosome (Chr.) 15 and Chr. 20 (see text footnote
1/). Among these, several quantitative trait loci (QTLs), such as
cqPro-20 on Chr. 20 and cqPro-15 on Chr. 15, were confirmed
based on a low error rate (lower than 0.01) and in different
populations (Patil et al., 2017). More than 150 candidate genes
have been suggested to control seed protein content in soybean
(Zhang D. et al., 2017; Zhang J. et al., 2018; Zhang Y. et al., 2018;
Li S. et al., 2019; Zhang et al., 2019; Wang et al., 2020). The
most described genes affecting seed protein content were sugar
efflux transporter SWEET39 (Glyma15g05470) and sugar efflux
transporter SWEET24 (Glyma08g19580) (Wang et al., 2020).

The populations used for mapping protein content in
the previous reports included pedigree-based F2 and F4:6
(Csanádi et al., 2001; Chapman et al., 2003), recombinant
inbred lines (RILs) population (Qi et al., 2014; Hacisalihoglu
et al., 2018), backcross population (Sebolt et al., 2000; Liang
et al., 2010), multiline population (Brummer et al., 1997; Wang
et al., 2014; Whiting et al., 2020), nested association mapping
population (Gangurde et al., 2020), and natural population
(Hwang et al., 2014; Bandillo et al., 2015; Li D. et al., 2019).
Most studies used a single population, but some studies used
two populations for QTL verification (Vaughn et al., 2014;
Zhang D. et al., 2017; Zhang et al., 2019); a few studies analyzed

1https://www.soybase.org/

QTL using both the linkage mapping and associate mapping
methods (Zhang et al., 2019).

The annual wild soybean (Glycine soja) is an important
resource to improve soybean (Lam et al., 2010; Yao et al., 2020).
Therefore, the objectives of this study were to: (1) identify QTL
conferring seed protein content in RILs derived from cultivated
and wild soybeans; (2) identify single nucleotide polymorphism
(SNP) markers associated with seed protein content in GWAS
and candidate genes controlling the trait; and (3) assess the
accuracy of GS base on different SNP sets, training population
size, and statistical models.

MATERIALS AND METHODS

Plant Materials
Recombinant Inbred Line
A population of 180 F9-derived RILs was developed from a cross
of Jidou12 (Glycine max) and Ye9 (Glycine soja). Jidou12 is a
high-yield cultivar with a high protein content that is grown in
Shandong Jiaodong Peninsula, Hebei Province, and south-central
Shanxi. The seed protein content averaged 46.48% for Jidou12
and 48.78% for Ye9 on a dry weight basis.

Natural Population
A total of 284 soybean genotypes, including 250 accessions
selected from germplasm collection by Dr. Lijuan Qiu’s
laboratory at the Chinese Academy of Agricultural Sciences and
34 cultivars from Hebei Province, were used for the protein
association analysis (Supplementary Table 1). These genotypes
were originally from 10 provinces in China (202, 67.5%) and 6
states in the United States (76, 30.1%), South Korea (3, 1.2%), and
Japan (2, 0.8%).

Field Design
Field experiments were conducted at Shijiazhuang (114◦83′E,
38◦03′N) in Hebei Province in a randomized complete block
design with three replications in 2008, 2010, 2019, and 2020. The
plot size was 3 m × 6 m with six rows and 50 cm space between
rows in all the trials. The planting density was 225,000 plants
per ha. Each year, the plots were irrigated once at the seed-filling
stage. Plants were harvested after 95% of the leaves were falling
off. Ten plants were randomly chosen from the middle of the plot
for indoor laboratory seed protein content analysis when 95% of
plants in the plot were matured.

Statistical Analysis of Phenotypic Data
Seed protein content was quantified using Fourier
transform-near IR spectroscopy (Bruker MPA, Karlsruhe,
Germany) at the North China Key Laboratory of
Biology and Genetic Improvement of Soybean, Ministry
of Agriculture. Under the Quant 2 method of OPUS
(https://www.bruker.com/en/products-and-solutions/infrared-a
nd-raman/opus-spectroscopy-software/downloads.html) version
5.5 software (Bruker MPA, Karlsruhe, Germany), the samples’
protein content data were calculated using the dry basis model
(Yan et al., 2008). Each RIL and accession from each replication
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of each environment were detected three times using about
100–150 dry seeds and the average was used for statistical
analysis. Analysis of variance was performed using JMP R©

(https://www.jmp.com/en_us/home.html) Genomics 7 (Sall
et al., 2017). The least-squares mean (LSM) of the protein
content of each soybean genotype from JMP was used as the
phenotypic data in the association mapping.

Genotyping by Sequencing and Single
Nucleotide Polymorphism Discovery
Genomic DNA was extracted from leaves of soybean plants using
the QIAGEN DNeasy Plant Mini Kit (250). DNA was digested
using the restriction enzyme ApeKI following the genotyping by
sequencing (GBS) protocol described by Elshire et al. (2011). The
90 bp pair-end sequencing of accessions was performed using an
Illumina HiSeq 2000 machine at the Genetic Research Institute,
Chinese Academy of Sciences. GBS data alignment, mapping, and
SNP discovery were done using Short oligonucleotide analysis
Package (SOAP) family software. An average of 3.26 M short
reads for each accession was aligned to soybean whole-genome
sequence (Wm82.a2.v1) using SOAPaligner/soap2. SOAPsnp
version 1.05 was used for SNP calling (Li et al., 2009; Li, 2011).
Approximately, a half-million SNPs were discovered among the
284 soybean germplasm accessions. The SNPs were filtered before
genetic diversity and association analyses. Soybean accession with
>5% missing SNP and the >2% heterozygous SNP genotypes
was eliminated. After the SNP dataset was filtered to remove
those SNPs with minor allele frequency (MAF) <2%, missing
data >5%, and heterozygous genotype >25%, a total of 10,115
SNPs were used for genetic diversity and association analysis
(Supplementary Figure 1).

Genetic Maps
The genetic maps were constructed with JoinMap 4.0 (Van
Ooijen, 2006) when the threshold for the logarithm of
odds (LOD) was 3.0 based on 180 F9 RILs. QTL analysis
of protein content in the RIL population was performed
using single-trait Bayesian interval mapping (BIM), single-
trait multiple interval mapping (SMIM), single-trait composite
interval mapping maximum likelihood estimator (SMLE), single
marker regression (SMR) method of Q-gene software (Joehanes
and Nelson, 2008) with inclusive composite interval mapping
(ICIM, http://www.isbreeding.net) (Meng et al., 2015). Variance
components, QTL heritability, and QTL effect for seed protein
content were estimated by QTLNetwork version 2.1 based on the
phenotypic data (Yang et al., 2008). Only the QTL, which was
mapped in similar physical locations (<1,500 kb) on the same
chromosomes based on the five methods, was defined as a reliable
QTL. The selected SNP markers were further tested for their
effect by variance analysis using JMP Pro 10 (Sall et al., 2017).

Population Genetic Diversity and
Association Analysis
STRUCTURE is a program that uses Bayesian methods to analyze
multilocus data in population genetics (Kaeuffer et al., 2007).
This study used a hybrid model and an allelic variation

occurrence non-correlative model to examine the population
structure of soybean germplasm. The number of the
subpopulation (K) was assumed to be between 1 and 12. Each
K was run 10 times, the Markov Chain Monte Carlo (MCMC)
length of the burn-in period was 20,000, and the number of the
MCMC iterations after the burn-in was 50,000. Delta K was
used to determine appropriate K-values (Earl and vonHoldt,
2012). Next, CLUMPP was used to integrate the STRUCTURE-
generated results with the “repeat 1,000” parameter. In addition,
two different association mapping models were used to analyze
the association between the molecular markers and traits, the
TASSEL general linear model (GLM-Q), and the mixed linear
model (MLM) combining kinship with population structure
(Q-matrix) (Yu et al., 2006; Bradbury et al., 2007).

Identification of Candidate Genes
Linkage disequilibrium (LD) analysis was performed in
the regions with SNP significantly associated with protein
content; SNPs with r2 > 0.5 in a 1-Mb window were
considered to be in one linkage disequilibrium (LD)
block in the heterochromatic regions. Haplotype analysis
was conducted on all the SNPs within the LD block
containing significant loci. Two databases, namely, the
SoyBase(see text footnote 1) and the Arabidopsis Information
Resource,2 were used for gene annotation and preliminary
screening of candidate genes were determined by combined
bioinformatics and statistics.

Genomic Selection
Ridge regression best linear unbiased prediction (rrBLUP) and
Bayesian Lasso Regression (BLR) were used to predict genomic
estimated breeding value (GEBV) in GS (Endelman, 2011;
Legarra et al., 2011). The packages “rrBLUP” (Endelman, 2011)
and “BGLR” (Pérez and de los Campos, 2014) containing the
GS models rrBLUP and Bayesian Lasso (BL), respectively, were
run in R software.

Prediction accuracy of seed protein was evaluated for different
SNP sets, including 22 significant SNPs detected from GWAS, 22
random SNPs, 100 random SNPs, 250 random SNPs, 500 random
SNPs, 1,000 random SNPs, 2,000 random SNPs, 5,000 random
SNPs, and 10,115 SNPs. The effect of training population size on
GS accuracy was investigated by conducting cross-validation at
different levels with 100 replications for each cross-validation fold
from two to ten.

RESULTS

Seed Protein Content Variations in Two
Populations
The seed protein content of the 180 RILs showed a biased
normal distribution, seed protein content ranged from 34.69
to 58.71, and the Coefficient of variation (CV) was 23.39%
(Supplementary Figure 2A). The seed protein content of the
284 accessions showed a biased normal distribution, seed

2https://www.arabidopsis.org/
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FIGURE 1 | (A) QTL mapping of seed protein content in soybean chromosome 6 based on single-trait multiple IM (SMIM) in Qgene, (B) The QTL, qtl-chr6_prot was
mapped on the combined map between physical distance and genetic position of the chromosome 6, where the x-axis shows physical distance (Mbp) and the
y-axis shows the genetic position (cM).

TABLE 1 | Single nucleotide polymorphism (SNP) markers/quantitative trait locus (QTL) detected in recombinant inbred line (RIL) and natural populations.

SNP Markers/QTL Detected in RIL
and Natural populations

Population Model Confidence interval Physical position bp LOD Posterior
(POP)

PVE (%)

qtl-chr6_prot RIL Bayesian IM 142 18864382 0.847

Single-trait multiple IM (SMIM) 146–152 18580363–18597849 11.46 25.40

Single-trait CIM MLE (SMLE) 142–152 18580363–18864382 13.1

Single marker regression (SMR) 141.9–144.5 18449510–19398117 13.7 29.60

ICIM 144 18449510–18597849 14.11 22.30

Chr6_18658898 POP MLM 18658898 19.95

GLM 18658898 25.76

qtl-chr8_prot RIL Bayesian IM 56–58 9318625–9502316 0.392–0.49

Single-trait multiple IM(SMIM) 42–44 7270752–8285888 7.16 16.70

Single-trait CIM MLE (SMLE) 42–44 7270752–8285888 7.05

Single marker regression 41.6–45.6 7270752–8285888 6.79 16.10

ICIM 61 9701254–9877332 6.35 9.18

qtl-chr15_prot RIL Bayesian IM 12 1890050 0.179

32 4708800–4708818 0.759

42 5786875 0.119

Single-trait multiple IM (SMIM) 20–32 3303648–4708818 3.28 8.00

Single-trait CIM MLE (SMLE) 18–20 3380704–3303648 4.43

30–50 4708800–6651199 4.93

Single marker regression 14.2–19.7 2095208–3303648 4.57 11.00

27.7–31.8 4370908–4708800 3.91 9.50

45.1–54.5 6037184–7193889 4.43 10.70

ICIM 20 3303648–3488588 4.72 6.60

qtl-chr17_prot1 RIL Bayesian IM 100 12398690–12801544 0.941

Single-trait multiple IM (SMIM) 100–124 12398690–13632893 4.11 9.80

Single-trait CIM MLE (SMLE) 104–112 12801549–13813134 4.05 9.90

Single marker regression 99.5–103.9 12398690–12801549 4.4

qtl-chr20_prot RIL Bayesian IM 112 33202705 0.871

Single-trait multiple IM (SMIM) 94 33202705 6.31 14.90

Single-trait CIM MLE (SMLE) 86–114 26572911–33224754 5.34

Single marker regression 93–115.3 26572981–33507017 5.12 12.30

ICIM 97 26957096–27003724 7.16 10.22

Chr20_34423091 POP MLM 34423091 7.21

Chr20_34423091 GLM 34423091 6.55
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FIGURE 2 | Structure analysis: (A) delta K-values for different numbers of populations (K) from the STRUCTURE analysis, the x-axis shows different numbers of
populations (K), the y-axis shows delta K-values for different numbers of subpopulations (K). (B) Classification of 284 accessions into four subpopulations using
STRUCTURE version 2.3.4, where the x-axis shows accessions and the y-axis shows the probability (from 0 to 1) of each accession belonging to subpopulation
(Q = K) membership. The membership of each accession belonging to subpopulations is indicated by different colors (Q1, red; Q2, green; Q3, blue; and Q4, yellow).
(C) Principal component analysis (PCA) of the population structure. Distribution of the accessions in the association panel under PC1 and PC2.

protein ranged from 35.65 to 50.99, and the CV was 9.53%
(Supplementary Figure 2B).

Genetic Map Construction and
Quantitative Trait Locus Mapping in
Recombinant Inbred Line Population
The RIL population was genotyped by sequencing. After filtering,
a total of 2,498 polymorphic markers SNP were obtained and
were mapped to 20 soybean chromosomes, thus the genetic maps
were built for the RILs (Supplementary Figure 3A). According
to their physical positions in the genome assembly, these markers
were basically evenly distributed on 20 chromosomes. The 20
combined maps between physical distance and genetic position
showed a good match (Supplementary Figure 3B). Chr. 14 had
the least number of markers (68) and Chr. 18 had the largest
number of markers (184). A genetic linkage map with a total
length of 4,476.2 cm was constructed and the average distance
between two adjacent markers was 1.8 cm (Supplementary
Figure 3). The average distance between adjacent markers was
the smallest on Chr. 20 (1.32 cm) but was the largest on
Chr. 9 (2.26 cm).

A total of 5 QTLs on chromosomes 6, 8, 15, 17, and 20 were
detected and the LOD value of the markers associated with the
QTL ranged from 3.3 to 14.1; the QTL could explain 6.6%–
29.6% of the genetic variation (Figure 1A and Supplementary
Figure 4). Among these, one QTL with a positive allelic effect
was from Jidou12 and 4 QTL with positive alleles were from Ye9
(Table 1). The QTL qtl-chr6-prot had the highest LOD and could

explain 22.3–29.6% of genetic variation (Table 1 and Figure 1A).
The qtl-chr6-prot was in the heterochromatic region (Figure 1B).

Genome-Wide Association Study in
Natural Population and Candidate Genes
Selection
A total of 10,115 high-quality SNPs were used to perform
population structure analysis of the 284 accessions using the
STRUCTURE software (Kaeuffer et al., 2007). When K = 4, delta
K was maximal with a relatively stable α value (Figures 2A,B).
Cluster I was comprised of 102 accessions, including 77 cultivars,
21 landrace, and 5 exotic accessions; cluster II was comprised of
19 accessions, namely, 18 exotic accessions and 1 cultivar; cluster
III was comprised of 93 accessions, namely, 57 exotic accessions,
34 cultivars, and 2 landraces; and cluster IV comprised of 70
accessions, namely, 51 landraces, 16 cultivars, and 3 exotic
accessions. Principal component analysis (PCA) also showed the
four groups (Figure 2C).

A significant association (-log P > 5.35) with seed protein
was observed for 22 SNPs from 22 haplotype blocks in 13 of
the 20 chromosomes using GLM and MLM (Table 2). The LOD
of the 22 markers ranged from 6.6 to 20.1 in GLM analysis
and 6.3 to 26.3 in MLM analysis (Table 2 and Supplementary
Figure 5), indicating that these markers were strongly associated
with seed protein. Eighteen of these markers were in euchromatic
regions and four of these markers were in heterochromatic
regions (Table 2).
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TABLE 2 | Significant SNPs associated with protein content over 4 years, chromosome (Chr.) and physical position (bp) of the significant SNPs, logarithm of odds (LOD)
[-log10 (p-value)] values of generalized linear model (GLM) and mixed liner model (MLM), and allele with positive effect at the SNP locus.

SNP Markers Chr. Position Heterochromatic
region

Euchromatic
region

SNP
Type

Allele with
positive effect

LOD of
GLM

LOD of
MLM

SNP annotation

Chr03_34851073 3 34,851,073 E A/C C 12.79 13.69 Glyma.03G133300

Chr03_42692363 3 42,692,363 E C/T C 10.22 9.18 Glyma.03G224600

Chr05_40074496 5 40,074,496 E A/T T 20.03 25.86 Glyma.05G221300

Chr05_41114434 5 41,114,434 E C/T C 13.08 13.12 Upstream_gene_variant|
MODIFIER| Glyma.05G234000

Chr06_14606307 6 14,606,307 E A/G G 9.30 8.41 Upstream_gene_variant|
MODIFIER| Glyma.06G173600

Chr06_18658898 6 18,658,898 H A/G A 19.95 25.76 Glyma.06G202000

Chr08_10757609 8 10,757,609 E C/T C 7.23 6.65 Glyma.08G140700

Chr09_5898756 9 5,898,756 E A/G G 8.80 8.45 Glyma.09G062100

Chr09_45699847 9 45,699,847 E A/G G 8.55 7.64 Glyma.09G234500

Chr10_2992389 10 2,992,389 E A/T A 8.47 7.94 Glyma.10G034400

Chr10_44549078 10 44,549,078 E A/G G 9.22 8.80 Glyma.10G213000

Chr12_1536444 12 1,536,444 E A/G G 7.48 6.29 Glyma.12G021400

Chr14_2351357 14 2,351,357 E C/T C 10.58 9.26 Glyma.14G032300

Chr14_48312781 14 48,312,781 E C/G G 20.07 26.26 Upstream_gene_variant|
MODIFIER| Glyma.14G218000

Chr15_13541492 15 13,541,492 H C/G C 8.48 7.71 Upstream_gene_variant|
MODIFIER| Glyma.15G160000

Chr17_347445 17 347,445 E A/T A 9.38 9.40 Glyma.17G003000

Chr17_32480031 17 32,480,031 H A/G G 6.64 6.73 Intergenic_region| MODIFIER|
Glyma.17G203300-
Glyma.17G203400

Chr18_7837981 18 7,837,981 E A/C C 14.27 13.62 Glyma.18G081200

Chr18_18834295 18 18,834,295 E A/C C 8.24 7.25 Intergenic_region| MODIFIER|
Glyma.18G133000-
Glyma.18G133100

Chr18_50849168 18 50,849,168 E A/T A 11.29 11.66 Upstream_gene_variant|
MODIFIER| Glyma.18G221300

Chr19_12210884 19 12,210,884 H C/T T 19.91 25.75 Intergenic_region| MODIFIER|
Glyma.19G060900-
Glyma.19G061000

Chr20_34423091 20 34,423,091 E A/T T 7.21 6.55 Glyma.20G100900

Two significant SNP loci on Chr. 6 and 20 were detected in
linkage analysis and GWAS and the SNP loci detected on Chr. 6
by GWAS were in the QTL intervals obtained by linkage analysis.
This SNP region on Chr. 6 had a high Phenotypic variation
explained (PVE) (22.3–29.60%) and LOD (6.696–25.762). The
region on Chr. 20 was associated with protein content with a PVE
of 12.30% and LOD of 7.208 (Tables 1, 2).

A 471-kb haplotype block from Chr6_18844283 to
Chr6_19315351 included 7 SNP markers and 17 genes
(Figure 3A). Pairwise LD analysis of the imputed SNP
data showed that the candidate gene region was from
Chr6_18842491 bp to Chr6_19015855 bp (Figure 3B).
Seven candidate genes were in the regions, which
included polynucleotidyl transferase (Glyma.06G202900
and Glyma.06G203100), polygalacturonase activity
(Glyma.06G202600 and Glyma.06G203000), ATP synthase
(Glyma.06G203200), and genes without annotation
(Glyma.06G202700 and Glyma.06G202800) (Figure 3B).

There were 7 QTL haplotypes in the LD block from
Chr6_18844283 to Chr6_19315351 in the natural population that

showed differences in protein content (Supplementary Table 2
and Figure 3C). The haplotypes Hap.B, Hap.C, and Hap.F
had higher protein content than other haplotypes. Hap.B had
the highest protein content, but no significant difference was
observed among Hap.B, Hap.C, Hap.F, and Hap.G (Figure 3C).
Further analysis showed that the SNP located at Chr6_19172961
may be more important; varieties carrying Hap.XAA showed
higher protein content than Hap.XGG (Figure 3D).

Prediction Accuracy of Seed Protein
Content
Prediction accuracy of different SNP densities for seed protein
was conducted using 22 significant SNPs resulting from GWAS
and 22 to 10,115 random SNPs, respectively. The prediction
accuracy ranges from 0.44 to 0.77 using the rrBLUP model
and from 0.44 to 0.78 using the BLR model (Figure 4 and
Supplementary Table 3). BLR and rrBLUP performed similarly
for prediction accuracy; the average prediction accuracy was 0.63
and 0.53, respectively. The prediction accuracy of the 22 SNPs
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FIGURE 3 | (A) The extent of linkage disequilibrium (LD) in the regions based on pairwise r2 values. The r2 values are indicated using the color intensity index.
Heatmap showing LD between each pair of markers that passed the Bonferroni threshold in genome-wide association study (GWAS). (B) Candidate genes for each
single nucleotide polymorphism (SNP) locus. The bottom panel depicts the extent of linkage disequilibrium in the regions based on pairwise r2 values. The r2 values
are indicated using the color intensity index shown. (C) Boxplot of seed protein based on different genotypes in soybean accessions. (D) Boxplot of seed protein
based on Hap.XGG and Hap.XAA phenotypic differences between genotype combinations of the two SNPs.

obtained from GWAS was higher than that of random 22 SNPs
and random 250 SNPs (Figure 4 and Supplementary Table 3).
Thus, regardless of the GS model, the accuracy of GS was
higher when the significant SNPs from GWAS were used.
Prediction accuracy for seed protein was increased with higher
SNP density. However, there is a minimal difference in prediction
accuracy after the SNP number reached 2,000 (Figure 4 and
Supplementary Table 3).

The effect of training population size on GS accuracy was
also investigated by conducting cross-validation at different folds
with 100 replications for each cross-validation (Figure 5 and
Supplementary Tables 4, 5). On average, the prediction accuracy
of the BLR model was 0.62 using GWAS-derived SNPs and
0.77 using the whole set of SNPs (Figure 5 and Supplementary
Table 4). The prediction accuracy of rrBLUP was less than BLR,
with 0.5 using GWAS-derived SNPs and 0.77 using the whole
set of SNPs (Figure 5 and Supplementary Table 5). Considering
average r-value and standardized deviation Sn, sevenfold resulted
in a high r-value and low Sn in BLR models and sixfold resulted
in a high r-value and low Sn in rrBLUP models.

DISCUSSION

Quantitative Trait Locus Mapping and
Candidate Genes Identification for
Soybean Seed Protein
Wild soybean with desired traits may improve the yield, quality,
and other traits of cultivated soybeans. In this study, we

performed QTL mapping for protein content in a RIL population
derived from the cross of cultivated Jidou12 and wild soybean
Ye9. Five major stable QTLs were detected on Chr. 6, 8, 15, 17,
and 20 using Bayesian IM, SMIM, SMLE, and SMR models in
Q-gene and IciMapping. Among these QTLs, we discovered that
qtl-chr6_prot contributed an average of 25.77 of the phenotypic
variance and the positive additive effects of allele were from the
cultivated soybean Jidou12. The qtl-chr6_prot did not overlap
with or was not adjacent to any of the previously reported
QTLs for seed protein content. Other QTLs, qtl-chr8_prot,
qtl-chr15_prot, qtl-chr17_prot, and qtl-chr20_prot, explained an
average of 13.99, 9.1, 9.85, and 12.47 of the phenotypic variance,
respectively; the positive additive effects of the allele of these
QTL were from the wild soybean parent. The QTL qtl-chr8_prot
(7.27–8.29 Mb) overlapped with the QTLs, as previously reported
by Pathan et al. (2013). In addition, the QTL qtl-chr15_prot
(3.30–4.71 Mb) overlapped with the qPro15-1 (Zhang et al.,
2019) and qtl-chr17_prot (12.80–13.81 Mb) with the protein 26-
2 (Reinprecht et al., 2006). The position of QTL qtl-chr20_prot
(26.57–33.51 Mb) was consistent with that of the confirmed QTL
cqPro-20 (Diers et al., 1992; Pandurangan et al., 2012; Vaughn
et al., 2014; Sonah et al., 2015; Warrington et al., 2015; Zhang Y.
et al., 2018; Fliege et al., 2022). Fliege et al. (2022) concluded
that a transposon insertion within the CONSTANS, CO-like, and
TOC1 (CCT) domain protein encoded by the Glyma.20G85100
gene accounted for the high/low seed protein alleles of the cqSeed
protein-003 QTL (31.74–31.84 Mb).

In the novel QTL region, the qtl-chr6_prot, seven candidate
genes were identified. Of which, Glyma06G202900 and
Glyma06G203100 were annotated as polynucleotidyl transferase,
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FIGURE 4 | Boxplots show the effect of different SNP density sets on genomic selection in the Bayesian Lasso Regression (BLR) model and ridge regression best
linear unbiased prediction (rrBLUP) models.

ribonuclease H-like superfamily protein, which were homologous
to the AT5G61090 gene in Arabidopsis. The protein encoded
by the AT5G61090 had an RNA–DNA hybrid ribonuclease
activity (Stoppel and Meurer, 2012). Glyma06G202600
was annotated as plasmodesmata callose-binding protein 3,
homologous to AT1G18650 with callose-binding activity and
the regulating intercellular trafficking in Arabidopsis (Simpson
et al., 2009). Glyma06G203000 was annotated as a pectin
lyase-like superfamily protein homologous to AT3G07820 with
a polygalacturonase activity in Arabidopsis (Kim et al., 2006).
Glyma06G203200 was annotated as a gamma subunit of Mt ATP
synthase, homologous to AT2G33040, one of mitochondrial (mt)
ATP synthesis subunits. Reduced expression of these subunits
of the mt ATP synthase was proposed to disturb cellular redox
states (Robison et al., 2009).

Genomic Selection in Soybean
Genomic selection overcomes the problems of traditional
breeding methods and MAS selection and provides a new way
for the selection of quantitative traits controlled by genes with
minor effects. GS allows for the estimation of the effects of all
the markers across the genome. These effects can be used to
predict the performance of lines (Meuwissen et al., 2001). Since
the target trait phenotype of an individual is predicted using the
GS model, the materials could be screened and selected before
planting, thus reducing costs and improving breeding efficiency
(Heslot et al., 2012; Longin et al., 2015; Spindel et al., 2015). Matei

et al. (2018) showed that the selection cycle for yield and seed
weight can be significantly shortened using GS.

So far, the GS study has been mainly conducted on maize,
wheat, and rice. The GS study in soybean remains limited. In
2013, Shu performed GS for 100-seed weight and reported a
prediction accuracy of 0.904 (Shu et al., 2013). Subsequent GS
showed accuracy for soybean cyst nematode (SCN) was 0.59–0.67
(Bao et al., 2014) and 0.64 for soybean yield (Jarquín et al., 2014).

The GS was performed on amino acid concentration (Qin
et al., 2019), soybean chlorophyll content, soybean cyst nematode
tolerance (Ravelombola et al., 2019), yield, and yield-related
traits, such as maturity, plant height, and 100-seed weight
(Ravelombola et al., 2021). These studies have shown the
feasibility of GS for soybean yield and quality-related traits (Matei
et al., 2018; Stewart-Brown et al., 2019).

However, few reports have focused on the GS of seed protein
in soybean. Stewart-Brown et al. (2019) evaluated the potential
of GS for soybean seed protein using 483 elite breeding lines
from 26 biparentals and reported the predictive abilities of 0.81
in all the populations, 0.55 across populations, and 0.60 within
each biparental population. Duhnen et al. (2017) compared
genomic prediction accuracy of seed protein obtained using
models calibrated across or within two subpopulations: early
lines and late lines. The results showed that calibrations within
subpopulations were more efficient. Five Bayesian models were
also compared with Genomic best linear unbiased prediction
(GBLUP) and did not show improved prediction accuracy. In this
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FIGURE 5 | Boxplots show the effect of training population size on genomic selection accuracy by conducting cross-validation at different folds with 100 replications
for each cross-validation fold using rrBLUP.

study, we performed GS based on different SNP sets, different
training population sizes, and statistical models. The results
showed that the use of GWAS-derived SNPs for conducting
GS significantly improved the accuracy of prediction, which
was consistent with the results reported by Qin et al. (2019).
The model selection criteria, SNP sets, and population training
size were critical factors when conducting a GS, as reported
in previous studies (Ravelombola et al., 2019, 2020, 2021).
Those studies had demonstrated that 1,000–2,000 genome-wide
markers across all the lines/accessions were needed to reach
maximum efficiency of genomic prediction in the populations,
increasing marker density that would not improve prediction
efficiency (Poland et al., 2012; Bao et al., 2014; Zhang J. et al., 2016;
Song et al., 2020). This study showed that there was a minimal
difference in prediction accuracy after the SNP number reached
2,000 for seed protein content.

CONCLUSION

This study reported mapping and GS for seed protein content.
Molecular markers associated with seed protein content were
identified in RIL and natural populations and a novel QTL for
seed protein content was detected and mapped on Chr. 6 in
both populations. In addition, seven candidate genes that were

related to seed protein content were identified. This is one of a
few reports investigating seed protein content using RILs derived
from cultivated and wild soybean crosses. Our results showed
that GS accuracy was dependent on the SNP set and training
population size; a set of GWAS-derived SNPs could increase GS
accuracy. No significant GS accuracy difference was observed
between rrBLUP and BL models. The results demonstrated the
potential of using GS to improve soybean seed protein content.
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