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Development of a dual-arm
rapid grape-harvesting robot for
horizontal trellis cultivation
Yingxing Jiang, Jizhan Liu*, Jie Wang, Wuhao Li, Yun Peng
and Haiyong Shan

Key Laboratory of Modern Agricultural Equipment and Technology, Jiangsu University, Zhenjiang,
China

It is extremely necessary to achieve the rapid harvesting of table grapes

planted with a standard trellis in the grape industry. The design and

experimental analysis of a dual-arm high-speed grape-harvesting robot were

carried out to address the limitations of low picking efficiency and high grape

breakage rate of multijoint robotic arms. Based on the characteristics of

the harvesting environment, such as the small gap between grape clusters,

standard trellis, and vertical suspension of clusters, the configuration of the

dual-arm harvesting robot is reasonably designed and analyzed, and the

overall configuration of the machine and the installation position of key

components are derived. Robotic arm and camera view analysis of the

workspace harvesting process was performed using MATLAB, and it can be

concluded that the structural design of this robot meets the grape harvesting

requirements with a standard trellis. To improve the harvesting efficiency,

some key high-speed harvesting technologies were adopted, such as the

harvesting sequence decision based on the “sequential mirroring method” of

grape cluster depth information, “one-eye and dual-arm” high-speed visual

servo, dual arm action sequence decision, and optimization of the “visual end

effector” large tolerance combination in a natural environment. The indoor

accuracy experiment shows that when the degree of obscuration of grape

clusters by leaves increases, the vision algorithm based on the geometric

contours of grape clusters can still meet the demands of harvesting tasks.

The motion positioning average errors of the left and right robotic arms were

(X: 2.885 mm, Y: 3.972 mm, Z: 2.715 mm) and (X: 2.471 mm, Y: 3.289 mm,

Z: 3.775 mm), respectively, and the average dual-arm harvesting time in one

grape cluster was 8.45 s. The field performance test verifies that the average

harvesting cycle of the robot with both arms reached 9 s/bunch, and the

success rate of bunch identification and harvesting success rate reached 88

and 83%, respectively, which were significantly better than those of existing

harvesting robots worldwide.

KEYWORDS

grape, standard trellis, sequential mirroring, depth threshold segmentation, one-eye
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Introduction

Grapes are soft-skinned, juicy berries that occupy an
important position in the world of fruit production. In 2020,
the total area of vineyard cultivation worldwide was 7.3 million
hectares, there were 50 million tons of grapes produced in
the world, and China produced approximately 20 million
tons, creating substantial economic value for people worldwide
(Organisation internationale de la vigne et du vin [OIV], 2020;
Isrigova et al., 2021). Due to growing labor shortages, the need
for harvesting robots for fresh grapes has become increasingly
urgent.

Trellis grapes are mainly used for fresh fruit consumption
and are extremely difficult to harvest because of the need
to ensure the integrity of grape clusters and soundness of
grapes for transportation and marketing requirements (Ozkan
et al., 2007; Jianying et al., 2014; Zhu et al., 2014). Traditional
trellis grape harvesting operations rely mainly on manual work
performed by two hands to finish working together, one hand
to support and the other to cut grape stems, to complete one
grape harvesting process (Piazzolla et al., 2016; Wang et al.,
2017). This harvesting model is both inefficient and has high
labor costs and will not meet the rapid harvesting standard
of the future grape industry. Grape trellis configurations are
mostly horizontal in Asia, the planting height is as high as
2 m, and the harvesting point of grape stems is usually 1.8 m
above the ground. Traditional single-arm harvesting robots
have deficiencies such as long harvesting cycles, poor moving
flexibility, and inaccurate fruit harvesting accuracy, and they
cannot meet the requirements of grape harvesting in standard
trellises (Possingham, 2006; Suvoéarev et al., 2013; Williams
and Fidelibus, 2016). Therefore, a highly efficient harvesting
robot must be designed for standard trellis grapes to address the
embarrassing gap of a lack of reliable harvesting machines in the
grape-growing industry.

At present, researchers worldwide are still in the exploratory
stage of research on harvesting machinery for grapes on trellises,
and their research methods mainly revolve around visual
positioning identification of grape clusters and the design of
end-effector configurations (Luo et al., 2016; Liu et al., 2019;
Tang et al., 2020; Kalampokas et al., 2021; Majeed et al., 2021;
Peng et al., 2021). Facing the growth characteristics of different
types of fruits and vegetables, researchers have developed
multiple types of picking equipment. Mehta et al. (2014)
proposed a cooperative vision servo controller for autonomous
harvesting to adjust the position of the end effector according to
the real-time position of fruit and, to a certain extent, to weaken
the interference of the complex environment in the harvesting
process. Levin and Degani (2019) proposed a modular design
of an agricultural robot structure by examining the phenomena
of low reusability and narrow applicability of the harvesting
robot structure, which has resulted in a large improvement in
harvesting time and fruit-harvesting success rate. Wang et al.

(2019) proposed an optimization method of harvesting posture
to address the randomness of the citrus growth direction on
stalks and designed an occluding end effector with a success
rate of fruit stalk-shearing up to 89% and a harvesting success
rate of the best posture up to 74%. Kurtser and Edan (2020)
used a TSP approach to plan a work sequence and path of
sensing and harvesting tasks for a bell pepper-harvesting robot
and concluded that planning a series of tasks can reduce costs by
12%. These equipments and methods were only commissioned
in the laboratory and not in a realistic agricultural environment
(Kurtser and Edan, 2020).

Compared to single-arm robots, harvesting robots that
use a two-armed operational strategy are more advantageous
in grape trellises. The dual-arm robot extends up to 2.5 m
and can cover all grape-growing areas of a standard trellis,
and the harvesting efficiency is much higher than that of
traditional robots. Zhao et al. (2016b) designed and tested a
dual-arm frame equipped with two 3 DoF (degree of freedom)
manipulators and two different types of end effectors used to
pick tomatoes and exchanged the operator’s commands and
displayed the state information of the robot. Ling et al. (2019)
developed a dual-arm cooperative approach for a tomato-
harvesting robot using a binocular vision sensor, and with
vacuum cup grasping and wide-range cutting, the success rate
of robotic harvesting reached 87.5%, while the harvesting cycle
time was more than 30 s. Yu et al. (2021) used an autonomous
humanoid robot for apple harvesting. It shows success rates
of 82.5 and 72% for the apple recognition and harvesting
functions, respectively; however, the apple-harvesting time is
more than 30 s, and it has a rough structure and end effector.
The authors concluded that although some progress has been
made in the development of current grape-harvesting robots,
further research is essential. Dual-arm harvesting robots can
substantially improve operational efficiency, but there is still a
lack of integrated harvesting robots in grape harvest production.

Grape clusters planted with trellises are mostly suspended
on top of trellises, and the distance range from the cutting point
of the fruit stalk to the top of the trellis is 30–100 mm, resulting
in a small space for the upper limit activity of the robotic
arm, which makes harvesting difficult and requires higher
precision in identifying fruit clusters (Vrochidou et al., 2021).
To accomplish efficient grape harvesting in standard trellis
complex environments, our research group invented a dual-arm
grape-harvesting robot for high standard trellis environments.
Its harvesting structure used an RGB-D camera for the
environmental field of view scanning and obtained the spatial
information of grape-harvesting points and transmitted it to a
dual robotic arm control system. The robot is a modular design.
Facing different fruit and vegetable harvesting requirements,
it only changes the structure of end effectors and adjusts
the parameters of the vision recognition algorithm to quickly
achieve a variety of fruit-harvesting tasks. Robotic harvesting
operations through unmanned control have high harvesting

Frontiers in Plant Science 02 frontiersin.org

https://doi.org/10.3389/fpls.2022.881904
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-881904 September 14, 2022 Time: 14:36 # 3

Jiang et al. 10.3389/fpls.2022.881904

quality and harvesting efficiency. They can significantly reduce
the labor burden in grape harvesting and improve the efficiency
of grape-harvesting operations (Zhao et al., 2016a; Ling et al.,
2019; Seol et al., 2020).

Therefore, a dual-arm rapid grape-harvesting robot for
the horizontal trellis was designed and analyzed in this
article. This robot is integrated with a variety of sensors
and actuators to enable unmanned operation processes. In
section “Parameters of the horizontal trellis environment,”
the horizontal trellis environment is introduced. In section
“Overall structure of the dual-arm rapid harvesting robot,”
the hardware and software architecture design of the robot
for rapid harvesting is described. In section “Key technologies
of dual arm rapid grape-harvesting robot,” we introduced
the key technologies of the robot. First, we propose a “one
eye-dual-arm” high-speed parallel harvesting strategy based
on the structural parameters of the horizontal trellis. The
position of the camera in relation to the two arms was also
determined. Then end effectors and the vision algorithm
were optimized for rapid recognition and harvesting process
implementation. The combination of end effectors and a
vision algorithm substantially improves the tolerance for
errors. Finally, a dual-arm harvesting strategy based on
depth values is proposed to achieve a harvesting sequence
and the division of operation space by spatially symmetrical
segmentation. For the area where the two arms are prone
to collision, we established the danger area and safety area.
In the danger area, the two arms will use an asynchronous
master–slave dual-robotic arm anticollision harvesting
strategy. In section “Experiments,” we present indoor
accuracy experiments and field performance experiments.
In section “Conclusion,” some conclusions are provided.
Meanwhile, the existing work deficiencies and future research
work are discussed.

Materials and methods

Parameters of the horizontal trellis
environment

The viticulture mode in horizontal trellises is the grape tree-
planting method, in which the bottom of the trellis is supported
by pillars, and the top is pulled by cross bars or lead wires
to form a net-like shelf surface, and branches and vines grow
on the shelf (Figure 1). A horizontal trellis has the advantages
of ventilation, light penetration, easy branch management and
high production. It has become one of the main modes of fresh
grape cultivation.

The horizontal trellis is divided into two upper and lower
layers by pulling a wire mesh at the top. The upper layer allows
vine branches to grow and spread, confining a large number
of branches and leaves to the upper area, while grapes grow

by gravity and hang vertically downward, achieving separation
between fruit, branches, and leaves. After several measurements,
the height of grape clusters to the top of the trellis is usually 20–
120 mm, and the height of the bottom of grape clusters to the
ground is 1,700–1,900 mm.

Fresh grapes, as ready-to-eat fruit, need to meet the integrity
and aesthetics of the bunches for later sale and eating, so
there are higher operational standards for harvesting fresh
grapes. Grape-harvesting methods with traditional trellises
rely on manual hand harvesting, with one hand supporting
grape bunches and the other hand shearing the fruit stem,
which is harmful to health because of the long hours spent
harvesting with a head-up posture. Based on this horizontal
trellis, there is an urgent need to design an intelligent grape-
harvesting robot for standard trellises to replace manual
labor to complete tedious tasks. Most traditional fruit- and
vegetable-harvesting robots use a single mechanical arm as
the harvesting servo mechanism, resulting in extremely low
single-cycle harvesting efficiency that is much lower than the
manual operation efficiency and cannot meet the requirements
of the grape industry.

We completed a study of horizontal trellises for fresh
grapes in different vineyards in Jurong City, Jiangsu Province,
China (119.25852◦E, 31.88404◦N). Standard grape trellises
have many unique structural characteristics that harvesting
robots need to adapt. In this particular working environment,
the harvesting robot is required to meet the following
design requirements.

(1) Based on the horizontal trellis structure and the vertical
growth of grapes, the harvesting width, depth value of
recognition range, walking step length and another factors
as key parameters of this robot. Hand-eye combination
configuration and the harvesting posture determine the
range of this robot and the end-effector.For these special
requirements from the environment structure, the analysis
of robot construct with multi-parameters fusion becomes
the central issue.

(2) The position of the camera relative to the robotic arms was
determined to ensure that all grape-harvesting targets were
fully integrated into the field of view in the camera and
robotic arm harvesting range.The combined relationship
between the camera and dual arms becomes the key point.

(3) The distribution of grape growth was random in the
standard trellis. The harvesting robot needs to quickly
identify grape targets and assign harvesting tasks to the
two robotic arms to accomplish rapid and accurate visual
servoing. Harvesting task assignment is an important
prerequisite for visual servo.

(4) The robot needs a reasonable harvesting strategy. It can
respond to unstructured environments in real time. It is
a crucial technology for the robot to make the harvesting
motion smoothly, accurately and at high speed.
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FIGURE 1

Vineyard in Jurong City.

Overall structure of the dual-arm rapid
harvesting robot

Hardware structure
Single-arm harvesting robots have some shortcomings,

including a small operating width (1–1.5 m) and low
harvesting efficiency (average of 25 s/cycle). Most robots
rely on tractors for towing or rail transport (Kootstra
et al., 2021). They are unable to navigate autonomously in
response to agricultural environment changes. Therefore, it is
extremely important to develop a robot with high harvesting
performance, multisensor integration, and real-time sensing of
environmental changes.

Figure 2 shows the developed dual-arm rapid grape-
harvesting robot. Its structure includes a RealSense D435i
depth camera, two 6 DoF robotic arms, and mobile tracked
chassis. The RealSense D435i depth camera is mounted on
top of the robot. This ensures that the camera obtains as
much of the field of view as soon as possible. The RealSense
D435i depth camera acquires the spatial coordinates of grape
clusters by shooting a standard trellis environment. The
two robotic arms are distributed with the camera mounting
position as the center of symmetry. To ensure that the dual-
arm working space covers the grape-growing space within
the standard trellis, two robotic arms are mounted on both
sides of the robot. Many sensors are integrated into the
control box (Jetson Nano, STM32, robotic arm controllers).
The camera and two robotic arms are mounted via steel
to a mobile tracked chassis. To acquire a point cloud of
grape trees in a reasonable view, a SICK 2D radar system
is mounted on the front of the tracked chassis. Multiple
electrical systems are integrated into a robot, and this
robot can handle various requirements in a nonstructural
agricultural environment.

System architecture
A Nvida Jetson Nano developer kit is used as the center

of the decision system. Its small size and powerful computing

FIGURE 2

Dual-arm rapid grape-harvesting robot.

power meet the needs of running programs in harvesting
(GPU: 128-core NVIDIA Maxwall, CPU: Quad-CoreARM
Cortex-A57 MPCore). RealSense D435i depth camera is used
as the main sensor to obtain environmental information
(RGB images 1,920 × 1,080 in resolution, depth images
1,280 × 720 in resolution, with a FOV of 69◦ × 42◦). It
is manufactured by Intel, United States. It is able to cover
a wider area and reduce more blind spots. The robotic
arms use Techsoft TB6-R5 (Techsoft, Shenzhen, China).
TB6-R5 has a payload of 5 kg and repeatable position
accuracy of up to ±0.05 mm. Each robotic arm has its own
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controllers, and controllers receive their respective harvesting
tasks and control independently. Each arm is equipped
with a cut-clip end effector. They hold grape clusters while
cutting grape stems. The chassis is manufactured by Sangpu
Agricultural Machinery Co., Changzhou, China. This robot
uses a 2D radar (LMS-111, Sick, Germany) with TOF distance
detection and enables accurate measurements in a complex
field environment.

The dual-arm grape-harvesting robot consists of four main
units: (1) a visual recognition system, (2) a decision system, (3)
a servo harvesting system, and (4) a walking chassis system. The
four units communicate with each other and work together to
harvest the target fruit based on visual information.

To adapt to the field environment in agriculture, agricultural
robotic systems are often required to have strong integration.
Figure 3 illustrates the details of the control system for
the whole robot. In the hardware section, Jetson Nano is
responsible for key aspects such as image processing, motion
information transmission, and communication between each
hardware unit. RealSense D435i is connected to Jetson Nano
via USB and sends the 3D information acquired to Jetson
Nano in real time. These images are segmented, and the
algorithm extracts contour information within ROS (robot
operating system). The robotic arm (Techsoft, TB6-R5, CHN)
communicates with the controller in real time via an EtherCAT
bus. After the robotic arm moves to the target coordinate,
it sends a signal to Jetson Nano. Jetson Nano sends control
commands to STM32 through serial ports. STM32 controls the
opening and closing of the electric gripper. When there are no
harvesting targets in the camera field of view, the chassis moves
forward some distance. Until the camera requires harvesting
targets again, the chassis stops moving, and then, the next
harvesting cycle begins.

In the software part, ROS is currently the most popular
control system in robots. It is able to manage and transmit
multiple sensor data. The data of the camera, robotic arms,
grippers, and chassis are defined as nodes. These nodes subscribe
to each other through topics for data delivery. The overall
software component allows for a rapid response to agricultural
environmental changes (Figure 4).

Key technologies of dual arm rapid
grape-harvesting robot

“One eye-dual hand” structure based on
horizontal trellises

A hand-eye structure is the basis of robot vision servo
control. At the same time, “eye-in-hand” usually requires a
camera at the end of the arm. This results in a small camera
field of view and cannot capture all the harvesting targets in
the horizontal trellis. As shown in Figures 5A–C, three kinds
of “eye-in-hand” structure occurs in different scenes.

Therefore, the special “one eye-dual hand” structure is
proposed. This structure ideally ensures full coverage of all
grape clusters in grape-growing space under a horizontal trellis.
The rational arrangement of the mounting position relationship
between the two arms and camera becomes the core of the
robot harvesting structure. To obtain as many grape clusters as
possible, the camera field of view needs to match the dual-arm
working space (Figure 6; Barth et al., 2016; Seyyedhasani et al.,
2020; Chen et al., 2021).

A robotic arm working space is usually defined as a
spherical space to simplify the problem in traditional research.
However, the 6 DoFs robotic arm consists of motors and
links. It does not have an ideal spherical shape of a robotic
arm because of the difference in length and orientation of
links. It looks more like a rugby ball in a working space.
Therefore, it would be more reasonable to analyze robotic arm
working space using the ellipsoidal spherical space equation.

V = Vl + Vr − Vk (1)

Vl = Vr =
y

(
x2

b2 +
y2

a2 +
z2

c2 )dydxdz (2)

As shown in Figure 6A, the left robotic arm working
space Vl and right robotic arm working space Vr are
added and subtracted from the overlapping space Vk,
which is the actual working space of the two arms V .

X =
x
b
,Y =

y
a
,Z =

z
c

(3)

Vl = Vr = abc
y

(X2
+ Y2

+ Z2)dXdYdZ =
∫ L

0

dz
x

f (X,Y,Z)dXdY (4)

lk =
4a − Lw

2
(5)

Vk = 2
∫ a

4a − Lw
dx

x
f (X,Y,Z)dYdZ (6)

V = 2
∫ L

0
dz

x
f (X,Y,Z)dXdY − 2

∫ a

4a − Lw
dx

x
f (X,Y,Z)dYdZ

(7)
where V is the overlapping part of the dual-arm working

space and grape-growing space, W is the grape-growing space
length, K is the grape-growing space width, L is the grape-
growing space height, lT is the dual-arm mounting horizontal
spacing, H is the height of the arm from the ground, ha
is the height of the arm from the grape-growing space, Slt
is the top area of the left arm working space and grape-
growing space, Slb is the bottom area of the left arm working
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FIGURE 3

Hardware communication method.

FIGURE 4

Control system of the dual-arm rapid harvesting robot.
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FIGURE 5

(A) Camera placed a short distance below. (B) Camera placed below at a distance. (C) Camera mounted above.

FIGURE 6

(A) Analysis of the “one eye-dual arm” working space and camera field of view. (B) Dual-arm working space and robot harvesting step.
(C) Operating effect in the XOZ coordinate system. (D) Operating effect in the XOY coordinate system.

space and grape-growing space, Srt is the top area of the
right arm working space and grape-growing space, Srb is the
bottom area of the right arm working space and grape-growing
space, and Lw is the working width of the two arms. Ov

is the camera mounting position, h is the camera mounting
height.

The area where the dual-arm workspace and camera field
of view overlap is the area of harvesting that the robot
can identify and harvest. Unreasonable arrangement of robot
harvesting steps can effectively reduce the harvesting efficiency
in grape-growing space and increase the number of missed

grape targets. As shown in Figure 6B, the width of the
camera field of view needs to be greater than the width
of harvesting space W. The camera field of view takes the
camera as the vertex. The directions of the FOV angle are
extended. The shape of view is similar to a quadrilateral cone.
By calculating the camera FOV angle, the camera field of view
equation is derived. Threshold segmentation of the camera field
of view effectively limits the range of the camera shot and
filters interference.

From Figures 6B–D, we established the camera field-of-
view equations. Relevant parameter constraints were established
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based on the horizontal trellis, camera field-of-view range, and
dual-arm working space.

Camera field of view space:

±
xo

tan ∅2
±

zo
tanω

2
− 2yo = 0 (8)

where ∅ is the camera shooting horizontal field-of-view angle, ω
is the camera shooting vertical field-of-view angle, (xo, yo, zo) is
the coordinate of the target point.

200mm ≤ dview ≤ h1St
lr + Rlb + Rrb ≥ W

H + h + dheight ≥ 2000mm
(9)

where dview is the camera depth threshold range, dheight is the
height of the camera field, St is the harvesting step of the robot,
h1 is the distance between the camera and robotic arms in the
y direction, lr is the mounting distance between dual arms, Rlb
is the minimum working width of the left robotic arm in grape
growing space, Rrb is the minimum working width of the right
robotic arm in grape growing space.

By combining the characteristics of the horizontal trellis,
camera field of view, and dual-arm working space, we obtain a
reasonable installation position relationship between the camera
and two arms: 

St = 800mm
H = 1400mm
h = 300mm
lr = 1100mm
h1 = 250mm

(10)

As shown in Figure 7, after MATLAB with Solidworks
simulation, the “one eye-dual arm” structure ensures that the
ends of the robot arm have sufficient space to move the
trellis boundary so that the ends of the robot arm can reach
the farthest end of the horizontal scaffolding in a flexible
posture to complete harvesting operations, and the robot can
be made in a harmonious proportion similar to the human form
configuration without a lack of design aesthetics.

Large error tolerance of the “hand-eye”
combination
(1) Rapid identification of multiple targets in one image.

The images of grapes inside a horizontal trellis obtained by
RealSense D435i often exhibit multiple clusters of grapes. If each
bunch of grapes needs to be identified once by the camera, it
would greatly increase the harvesting time. To achieve rapid
harvesting of multiple bunches of grapes in a horizontal trellis, it
is necessary to achieve rapid identification of multiple bunches
of grapes within an image.

Multiple bunches of grape bunches were often targeted in
the images of grapes inside the horizontal trellis obtained by
RealSense D435i. The camera directly acquires the depth values

of all grapes in the image. According to Figure 8, we can
calculate the camera depth threshold range as follows:

100mm < d < St + h1 (11)

When grape clusters are less than 100 mm from the
camera, the camera cannot focus on the grapes. When grape
clusters exceed the depth threshold, grape targets are beyond the
working space of the two arms. As shown in Figure 8, four grape
clusters were present in the image. The fourth grape cluster was
cleared as background because the depth value exceeded the
depth threshold. The other three grape clusters were harvested
based on the depth value from smallest to largest.

(2) Fuzzy prediction of grape stem-cutting points based on
grape contours.

Grape leaves, stems that are non-grapes, and grape clusters
in trellises can interfere with the target stem identification in
traditional algorithms. However, this fuzzy algorithm does not
rely on the precise identification of grape stems. The algorithm
constructs an external rectangle of grapes by HSV thresholds
acquiring their geometric contours. The center of the external
rectangle is the center of the grape profile in this algorithm
and moves upward to speculate the coordinates of grape stems.
When there is a small amount of cover in grape clusters, this
algorithm can still quickly determine the inference of grape stem
coordinates (Figure 9).

Grape contours were bounded to obtain parameter spike
length and width values, and the center of grape coordinates O
(x0, y0, z0) was calculated based on the distribution area. z0 is
the depth value of the center of the grape coordinate from the
camera and can be obtained directly through the depth camera.
The spatial coordinates of the grape-harvesting point K (xk, yk,
zk) are calculated as follows:

xk = x0

yk = y0 +
H
2 + h

zk = z0

(12)

(3) “Cut-clip” end effector for grape horizontal trellises.

Traditional finger end effectors often damage grapes at the
finger end during the grape harvesting process. For Kyoho
grapes, the stalks can reach 15 mm in diameter, and the weight
of a single cluster can reach 400 g. RealSense D435i extracts the
geometric contours of grape clusters to infer the calculation of
grape stem-cutting points with visual recognition errors. Due to
hand-eye calibration and coordinate conversion, the movement
of the robotic arm has some motion errors. Both of these errors
are generated by the design principle and algorithm. They are
difficult to reduce or minimize. The end effector must grip
the whole grape cluster when cutting the stem. It needs to be
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FIGURE 7

Operating space point cloud of the dual-arm harvesting robot.

FIGURE 8

Identification of multiple bunches of grape clusters within one image.

FIGURE 9

Calculation of the stem-cutting point.

transported from the standard trellis to the fruit box smoothly
to ensure no damage.

Facing these requirements in grape harvesting, our research
group has designed an end effector for rapid grape harvesting.
The finger of the end effector is designed with certain curved
angles. When the end effector begins to harvest, the finger with
curved angles can reduce the negative effect of visual recognition

errors and arm motion errors (Figures 10A,B). This structure
enhances error tolerance in the x and y directions. It turns a
harvesting point into a harvesting range.

Motors are used to control the fingers to open and close.
Three sets of blades are mounted on the fingers. When the
fingers are closed, the blades finish cutting the grape stems.
At the same time, the lower part of the fingers is fitted
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FIGURE 10

(A) Construction of the end effector; (B) error tolerance in the end effector; (C) end effector opening; and (D) end effector closing.

with a rubber block to hold grape clusters to cut the stems
(Figure 10C). The end effector is simple in structure and only
requires± signals to complete the control process (Figure 10D).
It enables the integration of cut-clip multitasking in rapid
grape-harvesting tasks and significantly improves the harvesting
efficiency and success rate.

(4) Error tolerant combination of the end effector and vision
algorithms.

Nonstructural features exist within the horizontal trellis.
Images contain not only grape clusters but also branches,
leaves, the trellis, and another environment. It is a challenge
to quickly acquire grape-harvesting points from complex
backgrounds. When grape stems are obscured, interlaced, or
overlapped, the stem-cutting point error is large. This leads to
chaotic robotic arm movements, harvesting failures, and serious
collision problems.

Faced with the special grape-harvesting requirement, our
group obtained the coordinates of the center of the external
rectangle based on the grape geometric profile and thus achieved
the vertical upward prediction of grape stem-cutting points.
By using the external rectangle of the grape cluster to predict
stem-cutting points, even if grapes are partially obscured by the
outline, the stem-cutting points can be predicted by the external
rectangle with little error (Figure 11).

By the fuzzy prediction method for the grape stem-cutting
points, grape clusters in horizontal trellises can be quickly
recognized. When grape clusters were partially shaded, the
external rectangle of grape clusters did not change significantly.
Stem-cutting points were predicted by the external rectangle
of grapes to reduce the errors of grape clusters in images.
When the fingers of the end effectors have curved angles, the
error of the stem-cutting points in the horizontal direction
can be enhanced. As shown in Figure 10B, the design of
the end effector produces some horizontal error tolerance
degree Lt and depth error tolerance degree Dt . It expands the
original visually identified point into an area and improves the
harvesting success rate.

It guides the stem to the area where the blade will cut.
By the end effector mechanism, the point of the grape stem
can be converted into an area range. This tolerable error
method that combines software and hardware has significantly
increased the success rate and harvesting efficiency of grapes in
horizontal trellises.

Dual-arm harvesting strategies in the
horizontal trellis
(1) Based on depth value “symmetric space segmentation”

harvesting sequence.

Dual arms are not just a superposition of the operational
efficiency of two robotic arms. The disorderly and random
distribution of grapes on horizontal trellises means that the
harvesting sequence and path for robotic arm harvesting
operations need to be planned (Takano et al., 2019). Grape
clusters captured by the camera view become harvesting
targets, and the center axis plane of the camera field is
used as the operation space segmentation reference plane. We
divided the camera view into left working space and right
working space based on the “symmetric space segmentation”
method. Finally, the coordinating information of target grapes
is sorted based on the depth values and transferred to the
Cartesian coordinate system. When the target grape coordinate
x < 0, the harvesting task is divided into the left arm
workspace, and when x > 0, it is assigned to the right
arm workspace. This ensures independent parallel operation
between two robotic arms without interference and joint
collision (Figure 12).

From Figure 12, multiple bunches of grapes L1−L3 and
R1−R3 were found in the field of view of the camera in
harvesting cycle 1. Dual arms harvest the target grape in their
respective areas until all of them are harvested. When there are
no grape targets in the camera field of view, the chassis will
automatically run into harvesting cycle 2 and will harvest grape
clusters L4–L6 and R4−R6.

(2) Danger and safety areas for dual-arm operation.
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FIGURE 11

Error tolerance combinations of the end effector and vision algorithms.

FIGURE 12

Dual-arm harvesting sequence in a horizontal trellis.

Robotic arms are used as electrical devices with independent
control centers. Dual arms may be prone to collision and even
serious damage. Therefore, we defined a dual-arm operating
space and established a danger area and safe area in the working

FIGURE 13

Danger area and safe area in dual-arm operating space.

space. The fixed area in yellow shown in Figure 13 can be
named the danger area. This means that we need to perform two
scenario analyses:

(1) When grape targets are present in the safe area, the two
arms do not collide. Therefore, the two arms can harvest
independently and speedily without the need to restrict
harvesting movement. Therefore, in this case, there is no
need to change the strategy.

(2) If multiple bunches of grapes are present in the danger area,
how to ensure that robotic arms can still complete the rapid
harvesting process without collision must be determined.
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TABLE 1 Different strategies for grape targets in different areas.

Scene Use this
strategy

Harvesting path

The two arms are out of the danger area × There is no risk of collision of the two arms, and independent and rapid harvesting can be achieved.

One arm in the danger area, the other arm
in the safety area

√
The one arm in the danger area is treated as the master arm and has the priority of harvesting. The other
arm needs to wait to complete its harvesting action before it starts moving.

The two arms are in the danger area
√

When grape targets are in the danger area, the harvesting priority of the arm needs to be determined based
on the grape-harvesting order. The robotic arm with the priority will become the master arm. It will enter
the danger area to harvest first.

(3) Asynchronous master–slave dual-robotic arm anticollision
harvesting strategy in the danger area.

The danger area is a smaller part of the operating space of the
dual arms. When multiple bunches of grape clusters are growing
in the danger area, the movement of the two arms requires
very careful planning. Otherwise, arm joints or end effectors
are prone to collision. Our group proposes an asynchronous
master–slave dual-robotic arm anticollision harvesting strategy
in the danger area. This strategy is based on the conditional
judgment of the grape cluster distribution location, as shown in
Table 1.

The danger area occupies only a small part of the working
space of the two arms. Therefore, the probability of this strategy
being employed by two arms tends to be small, which does
ensure the safety of robotic arms in harvesting work. As shown
in Figure 14A, when multiple bunches of grapes are present in
the danger area, the dual-arm strategy will be used for safe and
rapid harvesting.

From Figure 14B, three bunches of grapes are in the danger
area. Grape-harvesting tasks are divided into the left arm for
bunches 1 and 3 and the right arm for bunch 2. At this time, the
left arm acts as the master robotic arm, and it has the priority
of harvesting the danger area. The right arm is a slave arm, and
it needs to wait for the signal that the master arm has finished
harvesting tasks. Then, it starts its harvesting mission.

From Figure 14C, there was a shift in the master–slave
relationship between the two arms. The left arm moved down
and out of the danger area. It was transformed from a master
robot to a slave arm. Meanwhile, the right arm moved toward
bunch 2 of the grape cluster in the danger area. It had priority
access to the danger area for harvesting. The two arms entered
the danger area for harvesting at different times. There is a time
gap between the two arms in harvesting work.

Figures 14D–G show that converting the master–slave
relationship between the two arms can ensure that the two
arms work independently and smoothly in the danger area.
When the robot adopts this strategy, it can reasonably use the
time difference and robotic arm movement motion position
in space. The high-speed harvesting work of the two arms in
the danger area is an extremely difficult and complex task. In

agricultural non-structural environments, a reasonable motion
strategy for two arms often leads to great safety and efficiency
improvements in the robot.

As shown in Figure 14H, if there is no harvesting target
in the camera field of view, the robot will move some distance
forward. A new harvesting cycle will start.

Experiments

Materials and methods

To verify the accuracy of large tolerance of the “hand-
eye” combination and robot performance, both trellis and lab
experiments were carried out:

(1) To test the accuracy and efficiency of the robotic arm
in harvesting operations, we acquired the experimental
errors in the harvesting process. An experimental platform
was designed and built to finish grape cluster harvesting
in a room. The grape-harvesting accuracy experimental
platform is designed and produced, and two scale
plates (0.5 m × 0.5 m) with a 2 mm grid size are
combined and matched to form a coordinate experimental
platform in Cartesian coordinates. The accuracy and
performance of large error tolerance of the “hand-
eye” combination were verified by every 30 harvesting
experiments with shading grape clusters to different
degrees (0–5, 6–20, and 21–40%). This platform can
measure the coordinates of grape stem cutting point A
by converting the robotic arm base coordinate system O1

to the platform coordinate system O2, and compare it
with the visual recognition point and robotic arm motion
point to derive a visual recognition accuracy error(mm)
and arm positioning accuracy error(mm). Meanwhile, it
needs to record harvesting time(s) and harvesting success
rate (Figures 15A–D).

(2) Trellis performance experiments.

The experiments were conducted in September 2021 at the
ErYa Vineyard in Jurong City, Jiangsu Province, China, where
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FIGURE 14

Asynchronous master–slave dual-robotic arm anticollision harvesting strategy in the danger area.

grapes were grown with a horizontal trellis type of cultivation.
In this vineyard, grapes grew in good conditions, with most
of the clusters hanging vertically below the trellis. The grape

variety was Kyoho, which has large clusters, large grains, and
purple–black fruits at maturity and is the main variety grown
in grape production in China.With a horizontal trellis height
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FIGURE 15

Figures of the indoor experiment: (A) harvesting point coordinate transformation, (B) indoor experimental schematic, (C) experimental original
image, and (D) binarized image of grapes.

FIGURE 16

Dual-arm robot performing grape-harvesting operations.

of 2.0 m, a width of 2.5 m, and a trellis length of 30 m,
this robot can meet the full range of coverage for harvesting
in a single cycle inter row grape environment. There are no

other obstacles around the grape-harvesting area, which can
ensure that no exogenous emergency stopping occurs during
the operation of the robot. The robotic harvesting process was
captured in real time by the camera, recording the recognition
success rate, harvesting success rate, and harvesting time of one
grape cluster (Figure 16).

Results and discussion

(1) Lab experiments.

From Table 2, we know that the maximum visual
recognition accuracy errors in the x, y, and z directions from
the robotic arm base were 15.147, 13.689, and 16.330 mm,
respectively, as the degree of obscuration of the grape bunches
by the leaves increased, thus showing that the integrity of
grape bunches’ contours accounted for a great deal of the
impact on the visual recognition accuracy of the camera.
The motion positioning errors of the left and right robotic
arms were 2.885, 3.972, and 2.715 mm and 2.471, 3.289, and
3.775 mm, respectively, indicating that these robotic arms were
well positioned and could support end effectors in reaching
the grape-harvesting point accurately. The above errors were
adjusted by the structure and design of the end effector, which
can be applied to the grape-harvesting accuracy requirements
under the operating conditions of a horizontal trellis. The
average single-cycle completion time is 8.45 s. To explore and
optimize the visual recognition capability of this robot, harvest
failure tests were analyzed.

From harvesting failure tests, the binarized images show
grape cluster contours, and the grapes not obscured by the
leaves are easily obtained as complete contours, allowing
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TABLE 2 Accuracy experiment results.

Degree of leaf
shade (%)

Visual recognition
accuracy error (mm)

Arm positioning accuracy
error (left arm) (mm)

Arm positioning accuracy
error (right arm) (mm)

Grape harvesting
time (s)

Success
rate (%)

0–5 (10.899, 8.552, 6.337) (2.098, 3.003, 3.539) (2.964, 2.363, 2.086) 8.47 93.3

6–20 (11.502, 10.141, 12.639) (3.497, 3.551, 2.314) (3.443, 3.605, 5.203) 8.23 86.7

21–40 (15.147, 13.689, 16.330) (3.060, 5.363, 2.292) (3.414, 3.901, 4.036) 8.66 73.3

TABLE 3 Trellis performance experiment results.

Grape cluster ID/
number

Successful visual
recognition

Successful harvest One grape cluster
harvesting time/s

Damaged grains/
number

Grape damage rate

1
√ √

8.14 0 0

2
√ √

8.76 0 0

3
√ √

8.60 0 0

4
√ √

8.93 0 0

5
√ √

9.43 0 0

6 × × –

7
√ √

8.72 0 0

8
√ √

8.10 2 4.39%

9 × × –

10
√ √

8.98 0

11
√ √

9.25 1 2.02%

12
√ √

8.78 0 0

13
√ √

9.34 0 0

14
√ √

8.64 0 0

15
√ √

8.19 0 0

Average 86.7% 86.7% 8.76 0.23

FIGURE 17

Robotic arm harvesting postures: (A) initial position; (B) harvesting preparation; position (C) harvesting position; and (D) putting position.

accurate calculation of the stem-cutting location. However, the
grape area shrinks with increasing leaf occlusion resulting in
many deviations in the center of the grape contour and the
stem-cutting point coordinates. This affected the success rate
of subsequent harvesting by robotic arms. After subsequent
iterations and changes in test conditions, the factors affecting
this phenomenon were identified.

• Uneven light distribution.

Influenced by the sunlight irradiation direction and grape
growth contour, the images captured by the camera were

incomplete, with abnormalities such as mutilation, deformation,
and overlap of grape clusters within the images, resulting
in deviations in the generated grape stem-harvesting points.
However, in a normal horizontal trellis, grape leaves and
branches grow at the top of the trellis, and the sunlight intensity
generally does not interfere greatly with camera recognition.

• Shaking of the grape model.

The selected grape model was made of plastic, with
low weight and weak resistance to external interference,
resulting in slight shaking during photography. Before the
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TABLE 4 Comparison between dual arms robots.

References Products Harvesting type Harvesting
success
rate (%)

Harvesting
efficiency
(amount/hour)

Scenes

Arad et al., 2020 Sweet pepper 61 24 Greenhouse

Yu et al., 2021 Apple 72 14.6 Indoor

Ling et al., 2019 Tomato 87.5 30 Greenhouse

SepúLveda et al., 2020 Aubergine 91.67 26 Indoor

Yoshida et al., 2022 Apple / 10 Field

This research Grape 86.7 8.76 Field

trellis performance test, lighting was installed on the head
of this robot to reduce the interference of natural light on
camera recognition. The grapes planted in the trellis were hung
vertically from the top, and the average weight of each grape
cluster was close to 400 g. Thus, they were highly resistant to
external interference and therefore only slightly swayed, with
minimal effect on camera recognition.

(2) Trellis experiments.

This grape-harvesting robot advanced to the horizontal
trellis and started harvesting above this trellis with the
“sequential mirroring” strategy based on the depth information.
The grape damage rate is the mass of grape clusters from falls,
breaks, and bruises as a percentage of the mass of all harvested
grape clusters. The number of harvesting successes, single-cycle
dual-arm harvesting time, and grape damage rate was used as
the main indicators to measure the quality of the dual-arm
grape-harvesting robot in the tests (Table 3).

• Results of visual identification.

The visual images of the dual-arm grape-harvesting robot
show the fruit shape contour, segmented depth threshold, and
grape target binarization image. The vision system calculates the
image center of the grape-based on the binarization recognition
image and derives the Cartesian spatial coordinate information
of the grape stem-harvesting points. Among the 15 sets of
experiments, 13 sets of experiments were completed. The
fusion of depth information and color information determines
the harvesting order arrangement, and the visual localization
accuracy reaches 86.7% without neural network training, which
can realize fast localization recognition in normal agricultural
harvesting work.

• Continuous grape-harvesting test.

By analyzing the dynamics of each harvesting process
and stem separation points of robotic arms, we analyzed the
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displacement change relationship between the stem and grapes
during the grape-harvesting process and verified the single
journey continuous harvesting method from the initial position,
harvesting preparation point, harvesting point, and grape-
putting point. The data in Table 3 show that the success rate
of harvesting is 86.7%, and the main reason for the failure is the
small size of the grape, which affects the correct conversion of
the final harvesting coordinates. After 13 successful harvesting
tests, the average harvesting time of one grape cluster is
8.76 s. The operating speed of the robotic arm was only set to
40% of the maximum speed of joint motion, and the single-
cycle operating efficiency was still greatly improved after the
subsequent structural stabilization of the robot (Figures 17A–
D).

And we compared it with some currently used fruit and
vegetables harvesting dual arms robots as shown in Table 4.

By comparing these advanced harvesting dual arms
robots, our robot has a faster harvesting efficiency, and
reliable harvesting success rate and can be adapted to the
complex vineyard.

Conclusion

As a multipurpose fruit that easily falls off or break, how to
achieve rapid and undamaged harvesting of grapes has become
an urgent problem for the current grape industry worldwide.
In this study, a dual-arm grape-harvesting robot is developed
based on grape-harvesting demand in the special growing
environment of horizontal trellises. This robot accomplishes
the fusion and extraction of spatial multitarget information
by a single depth camera and simplifies the calculation of 3D
graphic information into spatial point coordinates. A “one eye-
to-dual hands” vision servo system is built, and a single RGB-D
camera is used to divide the field of view into equal tasks for
two robotic arms, to locate multiple grape targets quickly and
continuously, and transmit the spatial information of grape
harvesting to the corresponding two robotic arms based on
the corresponding spatial growth position distribution. The
whole process of rapidly harvesting grapes was completed by
transforming visual information and digital information into
robotic machine signals.

To simulate the real environment of grape harvesting in
the horizontal trellis, 30 sets of positioning accuracy tests
were conducted with different degrees of leaf shading. Without
neural network training, when the degree of leaf shading
was 0–5%, the harvesting success rate was 93.3%, and one
grape cluster harvesting time was 8.47 s. When the degree
of leaf shading was 6–20%, the harvesting success rate was
86.7%, and one grape cluster harvesting time was 8.23 s.
When the degree of leaf shading was 21–40%, the harvesting
success rate was 73.3%, and one grape cluster harvesting time
was 8.66 s, which met the requirements of rapid location

identification and low-loss harvesting of grape clusters in a
real horizontal trellis environment. After the trellis performance
harvesting test, out of the 15 sets of experiments, 13 sets of
experiments were completed with accurate identification, the
visual positioning accuracy reached 86.7%, and the average
harvesting time of one grape cluster was 8.76 s without neural
network training, so fast positioning identification and rapid
low-loss harvesting of grape clusters were achieved in a real
horizontal scaffolding environment.

In the next step, because grape harvesting is still not faster
than human harvesting, we will continue to work on optimizing
all aspects of the robotic arm harvesting motion process. At
the same time, we will conduct research on the minimization
of robotic arm motion paths in nonstructural environments.
The work of two arms in grape harvesting still holds great
promise for research. All the technical details will be reported
in the next study.
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