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In plants, the leaf is an essential photosynthetic organ, and is the primary harvest in
forage crops such as alfalfa (Medicago sativa). Premature leaf senescence caused
by environmental stress can result in significant yield loss and quality reduction.
Therefore, the stay-green trait is important for improving the economic value of
forage crops. Alkaline stress can severely damage leaf cells and, consequently, cause
leaf senescence. To understand the molecular regulatory mechanisms and identify
vital senescence-associated genes under alkaline stress, we used high-throughput
sequencing to study transcriptional changes in Medicago truncatula, a model plant
for forage crops. We identified 2,165 differentially expressed genes, 985 of which
were identical to those in the dark-induced leaf senescence group. Gene ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analyses showed that the 985 genes were mainly enriched in nutrient cycling processes
such as cellular amino acid metabolic processes and organic substance catabolic
processes, indicating nutrient redistribution. The other 1,180 differentially expressed
genes were significantly enriched in the oxidoreductase complex, aerobic respiration,
and ion transport. Our analysis showed the two gene sets guiding the coupled
physiological and biochemical alterations play different roles under alkaline stress with a
coordinated and integrated way. Many transcription factor families were identified from
these differentially expressed genes, including MYB, WRKY, bHLH, and NAC which
have particular preference involved in stress resistance and regulation of senescence.
Our results contribute to the exploration of the molecular regulatory mechanisms of leaf
senescence in M. truncatula under alkaline stress and provide new candidate genes for
future breeding to improve the biomass and quality of forage crops.

Keywords: alkaline stress, Medicago truncatula, leaf senescence, transcriptome analysis, senescence-
associated genes (SAGs)
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INTRODUCTION

Senescence occurs when the photosynthetic efficiency in a leaf
is constantly decreasing; its stages include a color change from
green to yellow, wilting, and death. During senescence, the
nutrients in the leaf are transferred to new buds, developing
flowers, maturing seeds, or other plant development, thus directly
enhancing plant adaptability and reproductive success in the face
of stress (Uauy et al., 2006; Lim et al., 2007). Therefore, the
timing of leaf senescence is of biological significance. Premature
senescence caused by environmental stressors can result in
significant yield loss and quality reduction. Such stressors include
darkness, drought, saline, and alkaline conditions (Guo and Gan,
2012; He et al., 2018; Guo et al., 2021). Saline-alkaline stress is a
common abiotic stress that limits plant growth and development,
and has become a serious problem restricting crop production
as well as ecological environment construction (Zhu, 2016; Wei
et al., 2021). High salinity accelerates leaf senescence, thereby
reducing plant biomass (Balazadeh et al., 2010; Allu et al., 2014;
Yang and Guo, 2018b). We confirmed this phenomenon in our
previous study, and preliminarily investigated the associated
molecular mechanisms (Dong et al., 2021).

Unlike salt stress, alkaline stress is caused mainly by NaHCO3
and Na2CO3. Therefore, Na+ stress occurs in alkali stress, as well
as HCO3

− and pH stresses (Zhang et al., 2019). It can induce ion
toxicity, osmotic stress, and oxidative damage in plants leading
to accelerated leaf senescence (Fan et al., 2021). Alkaline stress
can significantly disrupt ion balance and interfere with the uptake
of mineral elements, resulting in excessive Na+ accumulation in
leaf cytoplasm, thereby producing ion toxicity and inducing leaf
senescence (Ghanem et al., 2008; Guo et al., 2009; Yang and Guo,
2018b). The decreasing K+/Na+ ratio disrupts the ultrastructure
of chloroplasts, leading to chlorophyll degradation, a reduced
photosynthetic rate, and accelerated leaf senescence (Zhao et al.,
2001; Wang et al., 2019). Excess ions produce osmotic stress and
lead to dehydration in leaves, followed by rapid leaf senescence
(Yang and Guo, 2018a; Zhang P. et al., 2021).

The effect of oxidative damage on leaf senescence requires
investigation. High pH stress results in increased permeability
of the cell membrane in leaves by inducing the accumulation
of malondialdehyde (MDA) and reactive oxygen species (ROS),
allowing penetration by small molecules of organic substances
and electrolytes into the cell. The intracellular molecular
structures and functions are in turn damaged, accelerating leaf
senescence (An et al., 2016; Zou et al., 2020). Plants have
developed a series of regulatory adaptive mechanisms to resist
senescence, such as alleviation of osmotic stress, modulation of
ion homeostasis, and antioxidant protection (Yang and Guo,
2018b; Wei et al., 2020). It has been reported that with leaf
senescence, numerous leaf senescence-associated genes (SAGs)
are expressed and associated transcription factors (TFs) are
involved in regulation (Buchanan-Wollaston, 1997; Guo and
Gan, 2005). TF families (such as NAC, MYB, WRKY, and
bZIP) have been shown to participate, often critically, in the
regulation of senescence in plants (Hao et al., 2010; Mao et al.,
2017; Woo et al., 2019; Xu et al., 2020; Dong et al., 2021).
During leaf senescence, a large number of SAGs and TFs are

expressed at high levels, and these genes constitute several
complex senescence regulatory networks that are interlinked and
regulated by each other to control leaf senescence. However, there
is little understanding of the relationship between SAGs and
alkaline stress.

In recent years, significant progress has been made in
elucidating the relationship between SAGs and abiotic stresses in
Arabidopsis thaliana (Breeze et al., 2011), tobacco (Pageau et al.,
2006) and rice (Lee et al., 2001). At present, few reports have been
published on the mechanism of leaf senescence in leguminous
forage species (Chao et al., 2018; Yuan et al., 2020). However,
the key regulators of leaf senescence induced by alkaline stress
remain unclear. Alfalfa (Medicago sativa L.) is considered to be
one of the most important forages in the world because of its
high yield, high quality, and wide range of adaptations (Bouton,
2007; Wang et al., 2016). Most of nutrients in alfalfa are stored
in the leaves, and leaf senescence can greatly affect the nutritional
quality of the plant, especially when affected by environmental
factors such as saline and alkaline stress. Therefore, preventing
premature senescence or delaying senescence appropriately to
increase biomass accumulation is important for improving
alfalfa quality and increasing agricultural economic efficiency
(Zhou et al., 2011). Medicago truncatula has been adopted as a
suitable model for studying forage crop improvements and leaf
senescence (Barker et al., 1990; Zhang et al., 2014). The highly
controlled repeatable detached leaves are widely used to evaluate
leaf senescence in different plant species (Mao et al., 2017; He
et al., 2018; Sakuraba et al., 2018).

In a previous study, we investigated salt- and dark-induced
leaf senescence in M. truncatula by collecting transcriptional data
over the course of leaf senescence. In this study, we investigated
the relationship between leaf senescence and alkaline stress by
analyzing detailed expression profiles and annotating the SAGs.
The purpose of this study was to identify the genes involved in
alkali-induced leaf senescence so as to provide new candidate
genes for breeding management strategies.

MATERIALS AND METHODS

Plant Material and Alkaline Stress
Treatments
The M. truncatula ecotype R108 was used in this study. Seeds that
had already been vernalized for 2 days were sown in dishes with
moistened filter paper and grown in a light incubator for 7 days.
They were then transferred into Hoagland’s nutrient solution
for hydroponic growth cultivation, and the culture medium was
changed every 3 days. Plants were placed in a light incubator with
a 16 h photoperiod, day/night temperatures of 25◦C/22◦C, and a
relative humidity of 60–70%.

After 5 weeks, the third compound leaf of each plant
was removed and immediately transferred into Petri dishes
containing 0, 10, 20, and 40 mM NaHCO3 solution [prepared
with half Murashige–Skoog medium, 3 mM MES (2-morpholine
ethyl sulfonic acid) buffer, adjusted to pH 5.8]. The Petri dishes
were then placed under light or dark conditions, with the growth
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conditions: 16 h light (25)/8 h darkness (22◦C), relative humidity
of 60–70%, and light intensity of 300 mol/m2

·s.
Individual samples were harvested at 0, 2, 4, and 6 days

post-alkaline salt stress treatment and briefly immersed in
liquid nitrogen before being stored at −80◦C. The sampled
materials were used to measure physiological indicators
[chlorophyll, MDA, H2O2, and abscisic acid (ABA)] and for
transcriptomic sequencing.

Three biological replicates were analyzed for each sample
group. All data were subjected to one-way analysis of
variance (ANOVA) using SPSS 26 (IBM Corp., Armonk,
NY, United States). Mean differences were analyzed using
Duncan’s multiple range test, and statistical significance was set
at P < 0.05. All charts were created using Microsoft Excel 2019
(Microsoft Corp., Redmond, WA, United States).

A dark treatment group (dark) was established as a positive
control to better screen the SAGs (Sobieszczuk-Nowicka et al.,
2018). In addition, a light control group (control-light) was
established to remove background effects, so as to acquire SAGs
involved in senescence upon alkaline stress, not just the genes
reacting to alkaline stress.

RNA Quantification and Qualification
Total RNA extraction and quality control were conducted as per
the method in an earlier study (Dong et al., 2021). Only high-
quality RNA samples (OD260/280 = 1.8–2.2, ≥ 50 ng/µL, > 1 µg)
were used for sequence library constructions.

Library Preparation and Transcriptome
Sequencing
RNA libraries were prepared using the TruSeqTM RNA
sample preparation kit from Illumina (San Diego, CA,
United States) using 1 µg of RNA. Messenger RNA (mRNA)
was enriched and randomly fragmented into small fragments
of approximately 200 bp, and cDNA synthesized using a
SuperScript double-stranded cDNA synthesis kit (Invitrogen,
CA, United States). The synthesized cDNAs were subjected to
end-repair, phosphorylation, and “A” base addition according
to Illumina’s library construction protocol. Libraries were size
selected for 200–300 bp cDNA target fragments using 2% Low
Range Ultra Agarose electrophoresis followed by enrichment of
PCR (sample preparation kit; Illumina, San Diego, CA). After
quantification using TBS380 (Turner BioSystems, Sunnyvale,
CA, United States), the paired-end RNA-seq sequencing library
was constructed on an Illumina HiSeq xten/NovaSeq 6000
platform, and 150 bp paired-end reads were generated.

Raw reads were trimmed, and their quality controlled by Fastp
(Version: 0.19.5)1 to acquire clean reads. All downstream analyses
were based on clean data.

All obtained high-quality and clean reads were separately
aligned to the reference genome of M. truncatula (reference
genome version MedtrA17_4.0; reference genome source can
be accessed via http://plants.ensembl.org/Medicago_truncatula/
Info/Index with orientation mode using hisat2 (Version 2.1.0)2

1https://github.com/OpenGene/fastp
2http://ccb.jhu.edu/software/hisat2/index.shtml

software. The mapped reads of each sample were assembled using
StringTie (version 1.3.3 b).3

Quantification of Gene and Differential
Expression Analysis
StringTie was used to count the number of reads mapped to
each gene. The transcripts per million reads (TPM) of each
gene were calculated from gene length and the read count
mapped to it. RNA-Seq by Expectation-Maximization (RSEM,
Version 1.3.1)4 was applied to quantify gene abundance for each
group and time point.

Differential expression analysis was performed using R
statistical package software (EdgeR, Version 3.24.3).5 The
resulting P-values were adjusted using Benjamini and Hochberg’s
approach in order to control the false discovery rate. Genes
with adjust < 0.05, |log2FC| ≥ 1 by EdgeR were defined as
significantly different.

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Pathway
Enrichment Analysis of Differentially
Expressed Genes
Gene Ontology (GO)6 functional enrichment was conducted
using Goatools (Version 0.6.5)7 and Fisher’s precision tests. GO
terms with BH-corrected P adjustment (<0.05) were considered
significantly enriched by DEGs.

We used KOBAS (Version 2.1.1)8 and Fisher’s precision test
for DEGs in the Kyoto Encyclopedia of Genes and Genomes
(KEGG)9 pathways. The metabolic pathways were considered
significantly enriched by DEGs at a BH-corrected value of
P < 0.05.

Transcription Factor Analysis
TFs are a class of proteins that bind to specific DNA sequences
and are widely found in living organisms. They have an activating
or blocking effect on gene expression. TF analysis was undertaken
using PlantTFDB 4.0 (Version 4.0).10 A threshold of less than e−5

was used for the Hmmscan search.

Time-Course Senescence-Associated
Gene Analysis
Time-series SAG analysis based on the microarray Significant
Profiles (maSigPro, Version 1.56.0)11 was performed to obtain
genes with different expression profiles throughout the series of
sampling time nodes.

A short time-series expression miner (STEM, Version 1.3.11)
with a P < 0.05 threshold was used for temporal pattern analysis.

3https://ccb.jhu.edu/software/stringtie/
4http://deweylab.biostat.wisc.edu/rsem/
5http://bioconductor.org/packages/stats/bioc/edgeR/
6http://www.geneontology.org/
7https://github.com/tanghaibao/Goatools
8http://kobas.cbi.pku.edu.cn/home.do
9http://www.genome.jp/kegg/
10http://planttfdb.cbi.pku.edu.cn/
11http://www.bioconductor.org/packages/release/bioc/html/maSigPro.html
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Quantitative Real-Time PCR Analysis
Quantitative real-time PCR (qRT-PCR) was used to verify the
reliability of RNA-seq data. The RNAs were reverse transcribed
using the M5 Super Plus qPCR RT kit with gRNA remover (mei5
Biotech Co., Ltd., Beijing, China) and then subjected to qRT-PCR
using ChamQ SYBR color qPCR Master Mix (Vazyme Biotech
Co., Ltd., Nanjing, China). Three replicates were performed
for each reaction. Twenty-five genes were chosen for qRT-PCR
with the following criteria: TFs (Supplementary Table 5), 15
upregulated genes and 9 downregulated genes, belonging to
profiles 21 and 4 of 985 SAGs, and differential expression in
different groups. Mt UBC Q-2 served as the reference gene.

Gene-specific primers were designed using Primer 5.0 and are
shown in Supplementary Table 1.

RESULTS

Phenotypic and Physiological Responses
of Detached Leaves to Alkaline Stress
The detached leaves showed different phenotypic changes across
different groups (Figure 1A). In the control light group, leaves
remained green throughout 6 days; in the dark group, leaves
showed progressive yellowing from days 4 to 6; in the alkaline-
stress groups, leaves treated with concentrations of 10 and 20
mM NaHCO3 turned yellow on day 2 and formed eroded lesions;
over time, the leaves slowly turned transparent from necrosis.
There was a significant correlation between the concentration of
NaHCO3 and leaf phenotypic change.

The physiological response of detached leaves treated with 20
mM NaHCO3 was investigated through measuring chlorophyll,
H2O2, MDA, and ABA contents. These four physiological and
biochemical indicators are commonly used to evaluate the leaf
senescence process. The chlorophyll content in both the alkaline-
stress and dark groups decreased distinctly from days 2 to 6 in
comparison to the slight reduction in the control-light group.
Moreover, the chlorophyll content was even undetectable in the
20 mM NaHCO3 group on day 6 (Figure 1B). As expected, H2O2
levels in the alkaline-stress group increased progressively from
days 2 to 6 during leaf senescence; those in the dark-induced
group followed the same trend, steadily increasing from days 2
to 4, and decreasing at day 6, as found in an earlier study (Dong
et al., 2021; Figure 1C). MDA content in the alkaline stress and
dark groups significantly increased to a maximum on day 4 and
then dropped slightly on day 6 compared to the mild increase
in the control-light group (Figure 1D). ABA content in both
the treatment and control groups peaked on day 4, and then
decreased, remaining above the initial value (Figure 1E).

Transcriptome Sequencing
The detached leaves were treated under the conditions of control-
light, dark, 10 mM, and 20 mM NaHCO3 for 0, 2, 4, and
6 days; a total of 13 groups with three biological replicates
in each group (in total 39 samples) were sampled for library
construction and subsequent sequencing. A total of 283.60 Gb
high-quality clean data were obtained. The clean reads from each

sample exceeded 7.27 Gb, and the matching to the reference
genomic sequence was 81.78–89.05%. The GC content was above
42.60% and the percentage of Q30 bases was at least 92.82%
(Supplementary Table 2). Principal component analysis (PCA)
showed higher similarity among biological replicates of the
same group and higher variability among different groups under
different conditions (Figure 2A). The high Pearson correlation
values of the biological replicates for the 39 samples achieved
the expectation of the experimental design (Supplementary
Figure 1). The specific gene expression profiles obtained by qRT-
PCR analysis were used for the validation of RNA-Seq data, and
the results showed similar expression profiles between RNA-Seq
and qRT-PCR analysis (Figure 2B and Supplementary Figure 2).

Identification of Differentially Expressed
Senescence-Associated Genes
Compared with day 0 levels, the upregulated and downregulated
genes in both the control-dark and 20 mM NaHCO3 treatment
groups ranged from 8,700 to 11,910, while the number of
DEGs in the control-light group was much smaller than that
in the treatment group, ranging between 3,800 and 5,300 DEGs
(Figure 3A and Supplementary Table 3). The number of
upregulated and downregulated genes in the alkaline stress group
decreased with extended treatment time, while there was an
opposite trend in both control groups.

Venn diagrams at three time points based on all DEGs from
both the 10 and 20 mM NaHCO3 treatments groups compared
with the DEGs from the control-light group were constructed
to obtain SAGs in order to identify genes associated with leaf
senescence (Figure 3B). We identified 2,165 unique genes in the
10 and 20 mM NaHCO3 treatment groups compared with the
control group. These genes were then divided into two parts after
taking the intersection with the set of SAGs obtained from the
dark-induced groups: 985 SAGs and 1,180 genes (Supplementary
Table 4). STEM temporal pattern analysis showed genes with
the same expression type were grouped into the same profile
(Figure 3C). The 985 SAGs were divided into four significant
gene expression profiles (P < 0.05), including one upregulated
profile (red; profile 21; 340 genes), two downregulated profiles
(green; profiles 3 and 4; 71 and 394 genes), and one other profile
(gray; profile 6; 60 genes). The 1,180 genes were divided into
six significant gene expression profiles: three being upregulated
(profiles 21, 23, and 24; with 461, 42, and 127 genes, respectively),
two downregulated (profiles 3 and 4; with 106 and 219 genes,
respectively), and one other profile (profile 6; 30 genes).

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Pathway
Enrichment Analysis
GO enrichment analysis characterizes the gene function and
relations in three categories: biological processes (BP), molecular
functions (MF), and cellular components (CC). As shown in
Table 1, the GO terms with the top 10 highest enrichment
degree were all went to BP category for 985 SAGs, while for
1,180 DEGs the top 10 highest enrichments were classified into
CC and BP categories. For the 985 SAGs, the top GO terms
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FIGURE 1 | Alkali stress-induced leaf senescence and physiological analysis in Medicago truncatula. (A) Leaf senescence progression and color change of
detached M. truncatula leaves under dark (Dark), normal light (Control-light), and 10, 20, 40 mM NaHCO3 (10 mM NaHCO3-light, 20 mM NaHCO3-light and 40 mM
NaHCO3-light) conditions for 0, 2, 4, and 6 days. DAT: days after treatment. Scale bar = 1 cm. (B) Chlorophyll (a + b), (C) H2O2, (D) malondialdehyde (MDA), and (E)
abscisic acid (ABA) in detached M. truncatula leaves exposed to different conditions during senescence. Values are presented as mean ± SE of three independent
biological replicates per time point. Different letters indicate significant differences among treatments according to the analysis of variance (ANOVA, P < 0.05). Error
bars correspond to standard error. FW, fresh weight.
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FIGURE 2 | The PCA analysis and qRT-PCR validation of transcriptome data derived from alkali stress-induced detached leaf senescence in M. truncatula.
(A) Principal component analysis (PCA) plot of transcriptome profiles from different conditions. (B) Validation of RNA-seq data by qRT-PCR analysis. Correlation of
expression changes observed by RNA-seq (Y-axis) and qRT-PCR (X-axis) relative expression levels from log2 fold change of 25 genes in 20 mM NaHCO3-light-2
day; data for other groups are shown in Supplementary Figure 2.

were mainly involved in “small molecule catabolic and metabolic
process,” “cellular amino acid metabolic processes,” “carboxylic
acid catabolic and metabolic process,” and “organic acid and
substance catabolic process” of BP category; while among the
1,180 DEGs, the top GO terms in BP category were “aerobic
respiration,” “aerobic electron transport chain,” “ion transport,”
and “cation transport”; also in CC category, “mitochondrion,”
“oxidoreductase complex,” “NADH dehydrogenase complex,”
and “Membrane-bounded organelle” were significantly enriched.
In all, the enrichment of GO terms with higher degrees from
the two gene sets (985 SAGs and 1,180 DEGs) was remarkably
significantly different, indicating that the genes of the two gene
sets play different roles under alkaline stress.

KEGG enrichment analysis showed that the most significantly
enriched pathways in 985 genes were related to “glyoxylate
and dicarboxylate metabolism,” “valine, leucine, and isoleucine
degradation,” “tyrosine metabolism,” and “arginine and proline
metabolism.” On the contrary, thermogenesis, and oxidative
phosphorylation were the enriched KEGG pathway terms for
the 1,180 genes.

It is reported that regulation of plasma membrane (PM)
H+-ATPase activity is important for plant adaptation to alkali
stress and enhancement of higher leaf photosynthesis (Fuglsang
et al., 2007; Yang et al., 2010, 2019; Zhang M. et al., 2021). Four
key genes related to PM H+-ATPase are up-regulated expression,
and phylogenetic analysis indicated that MTR_5g009720,
MTR_6g011310, MTR_7g117500, and MTR_1g064540 are
orthologs of Arabidopsis PM H+-ATPase (Figure 4).

Transcription Factor Analysis
TFs play an important role in regulating leaf senescence; the
PlantTFDB 4.0 match analysis was used for predicting TFs.
We identified 101 and 173 TFs in 985 SAGs and 1,180 DEGs,
belonging to 16 and 26 TF families, respectively (Supplementary
Table 5). The most typical representative TF families in 985 SAGs
included bHLH (seven genes), MYB (four genes), and WRKY
(three genes), while B3 (seven genes), MYB (seven genes), and
HB-other (six genes) were the most representatives in 1,180 DEGs

(Table 2). As shown in Table 2 for the representatives from 1,180
DEGs, most B3, HB-other, and ARF TFs were downregulated,
whereas the MYB and WRKY TF families were upregulated.

The families and numbers of TFs have big differences in the
two gene sets. TheNAC and bZIP TF families belong to 985 SAGs,
and these TF families are widely reported in the regulation of
senescence. The B3, HB-other, and ARF TF families in the 1,180
DEGs play an important role in abiotic stress defense responses.
The MYB, WRKY, and bHLH families are multifunctional but
essentially regulate plant senescence directly or indirectly.

Time-Course Senescence-Associated
Gene Analysis
Time-course gene expression analysis found that 985 SAGs and
1,180 DEGs (Figure 3B) were divided into eight clusters, each of
which included certain genes with the same expression patterns.
The gene expression trend differences between the control and
treated groups are illustrated in Figure 5. Among the 985 SAGs,
the 106 genes were upregulated in clusters 1, 2, 5, 6, and 8, and
the 108 downregulated genes (50.5%) were enriched in clusters
3, 4, and 7 (Figure 5A). In clusters 1, 2, 4, 6, 7, and 8 of 1,180
DEGs, 81 genes were upregulated, while in clusters 3 and 5, 34
genes (29.6%) were downregulated (Figure 5B). The expression
patterns of all genes are shown in Supplementary Figure 3.

To elucidate the expression pattern and function of genes in
different clusters of 985 SAGs and 1,180 DEGs, we performed
KEGG pathway enrichment analysis. Among the 985 SAGs, the
genes related to nutrient cycling are enriched in the clusters of
upregulated genes, including clusters 1, 2, and 8 with strikingly
expressed amino acid metabolism-related genes. The genes
related to photosynthesis are enriched in clusters 3, 4, and 7
with downregulated expression patterns. There was a strong
difference of enriched genes’ function between 985 SAGs and
1,180 DEGs. Among the 1,180 DEGs, the genes related to
oxidative phosphorylation and thermogenesis are enriched in
clusters of upregulated genes, especially in clusters 1 and 5. It
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FIGURE 3 | Analysis of differentially expressed senescence-associated genes (SAGs) under alkali stress. (A) The number of differentially expressed genes that were
upregulated or downregulated during leaf senescence compared with 0 day control prior to treatment, as assessed using the difference analysis software edgeR at
thresholds of | log2FC| ≥ 1 and P < 0.05. (B) Venn diagram of DEGs (|log2FC| ≥ 1 and P < 0.05) in the 10 mM, 20 mM NaHCO3 treatments and darkness on day
2, 4, and 6 compared with control-light condition. There were 985 SAGs shared by darkness and NaHCO3 treatments across three time points. (C) Short
time-series expression miner (STEM) analysis of 985 and 1,180 genes across three time points. Each square box indicates a type of expression profile, with the
profile order on the upper left and the P-value on the bottom left. Only significantly enriched cluster profiles with a P < 0.05 threshold are shown.
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TABLE 1 | Gene ontology (GO) and Kyoto Encyclopedia of genes and genomes (KEGG) pathways enrichment analysis of DEGs (Figure 3B, 985 SAGs and 1,180 genes) shared by darkness and alkaline-induced leaf
senescence at three time points.

From No. GO/KEGG pathway id GO/KEGG pathway term Category Sample gene number Background gene number Rich factor P-adjust

Total Up Down

985 SAGs 1 GO:0010027 Thylakoid membrane organization Biological process 17 0 17 104 0.16346 0.00076

2 GO:0044282 Small molecule catabolic process Biological process 23 18 5 224 0.10268 0.00076

3 GO:0006520 Cellular amino acid metabolic process Biological process 32 15 17 569 0.05624 0.00076

4 GO:0019752 Carboxylic acid metabolic process Biological process 51 28 23 1160 0.04397 0.00076

5 GO:0016054 Organic acid catabolic process Biological process 14 12 2 150 0.09333 0.00076

6 GO:0046395 Carboxylic acid catabolic process Biological process 14 12 2 150 0.09333 0.00076

7 GO:1901575 Organic substance catabolic process Biological process 68 42 26 1670 0.04072 0.00076

8 GO:0044281 Small molecule metabolic process Biological process 82 39 43 2000 0.04100 0.00076

9 GO:0019252 Starch biosynthetic process Biological process 10 2 8 75 0.13333 0.00076

10 GO:0043436 Oxoacid metabolic process Biological process 54 28 26 1248 0.04327 0.00076

1 GO:0005739 Mitochondrion Cellular component 49 42 7 747 0.06560 0.00107

1180 Genes 2 GO:1990204 Oxidoreductase complex Cellular component 12 12 0 92 0.13043 0.00107

3 GO:0009060 Aerobic respiration Biological process 7 7 0 29 0.24138 0.00127

4 GO:0030964 NADH dehydrogenase complex Cellular component 7 7 0 31 0.22581 0.00160

5 GO:0019646 Aerobic electron transport chain Biological process 5 5 0 13 0.38462 0.00185

6 GO:0006811 Ion transport Biological process 51 37 14 1136 0.04489 0.00315

7 GO:0006812 Cation transport Biological process 35 24 11 690 0.05072 0.00616

8 GO:0043227 Membrane-bounded organelle Cellular component 236 156 80 7800 0.03026 0.00746

9 GO:0055085 Transmembrane transport Biological process 64 52 12 1608 0.03980 0.01016

10 GO:1902600 Proton transmembrane transport Biological process 15 14 1 227 0.06608 0.04282

1 Map00630 Glyoxylate and dicarboxylate metabolism Carbohydrate metabolism 10 4 6 112 0.08929 0.029559

985 SAGs 2 Map00280 Valine, leucine and isoleucine degradation Amino acid metabolism 8 6 2 68 0.11765 0.033328

3 Map00350 Tyrosine metabolism Amino acid metabolism 7 6 1 65 0.10769 0.033824

4 Map00330 Arginine and proline metabolism Amino acid metabolism 9 5 4 103 0.08738 0.043300

1180 Genes 1 Map04714 Thermogenesis Environmental adaptation 22 21 1 256 0.08594 0.00056

2 Map00190 Oxidative phosphorylation Energy metabolism 22 22 0 291 0.075601 0.00207
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FIGURE 4 | Phylogenetic analysis of PM H+-ATPase gene family members in
M. truncatula and Arabidopsis thaliana. The upward red arrows indicates that
the genes are up-regulated in the alkali stress-induced detached leaf
senescence in M. truncatula; and the asterisk shows the
alkaline-stress-regulated PM H+-ATPase gene in Arabidopsis. The scale bar
indicates the sequence divergence is 0.10 per unit bar.

is worth noting that there are arginine and proline metabolism-
related genes present in clusters 7 and 8, and these genes are
acting to relieve osmotic stress (Supplementary Table 6).

Integration Analysis of the Physiological
Data and Transcriptome
Physiological indicators were closely linked to the transcriptome
during plant leaf senescence (Table 3). A large number
of genes related to nutrient metabolism were differentially

expressed, such as 59 DEGs involved in amino acid metabolism,
which could be expected to rapidly loose and shift nutrients
during leaf senescence; and 76 chloroplast and thylakoid
metabolism-related genes were observed, consistent with leaf
yellowing and chlorophyll breakdown. Alkaline stress induced
ROS production and accelerated leaf senescence; 178 genes
related to oxidation activity were differentially expressed,
in alignment with the increased H2O2 and MDA contents
observed. Furthermore, the accumulation of ROS increased
the permeability of the cell membrane in leaves, causing 169
genes related to ion transport to be differentially expressed
(Supplementary Table 7).

The enrichment network map for GO terms described in
Table 3 is displayed in Figure 6, and highlights the relationships
between GO terms and GO terms, and between GO terms and
genes. Functionally related GO terms were highly correlated.

Responses of Detached Leaves to Salt
Stress and Alkali Stress
The transcription profiles of salt stress have been analyzed in our
previous study (Dong et al., 2021). Combined with the previous
data, analysis showed that 1,463 DEGs were induced by both
salt and alkali stresses, and these genes were mostly associated
with nutrient cycling metabolism. The 702 DEGs were induced
by alkali stress and enriched in thermogenic and oxidative
phosphorylation pathways; 1,518 DEGs were induced by salt
stress and enriched in porphyrin and chlorophyll metabolism,
the citrate cycle (TCA cycle), and photosynthesis (Figure 7A
and Supplementary Table 8). On this basis, we focused on
the differential expression of senescence-associated genes in the
two stresses; 792 SAGs were induced under both salt and alkali
stresses (Figure 7B).

DISCUSSION

We obtained high-precision RNA-seq data from highly
controlled and detached leaves from individual M. truncatula
plants at four time points; and analyzed data through standard
procedures. In addition, we compared the data from this
study (alkali stress-induced leaf senescence) with data from a

TABLE 2 | Transcription factors (TFs) predicted from 985 SAGs and 1,180 DEGs (Figure 3B).

No. TF family 985 SAGs Gene number Up Down TF family 1180 DEGs Gene number Up Down

1 bHLH 7 3 4 B3 7 1 6

2 MYB 4 2 2 MYB 7 6 1

3 WRKY 3 1 2 HB-other 6 0 6

4 CO-like 3 0 3 ARF 5 0 5

5 Dof 3 2 1 GRAS 5 2 3

6 DBB 2 0 2 WRKY 5 4 1

7 MYB-related 2 2 0 ERF 3 3 0

8 NAC 2 2 0 MIKC 3 2 1

9 bZIP 2 2 0 M-type 3 2 1

10 ERF 2 0 2 bHLH 3 1 2
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FIGURE 5 | Data visualization according to the cluster analysis. Each map shows the average expression profiles of the gene clusters from all samples. The
horizontal coordinates represent different time points, and the vertical coordinates represent the treated expression values. Different colored lines represent different
groups (red, blue, and green lines represent the control light, 10 mM NaHCO3-light, and 20 mM NaHCO3-light groups, respectively) and show the actual average
value of gene expression at each time point. Different points represent the actual average expression levels for specific individual samples. The dotted lines represent
the fitted curves of gene expression at each time point. (A,B) Are the cluster analysis for 985 SAGs and 1,180 DEGs, respectively.

previous study (salt stress-induced leaf senescence) to construct
a complete and rigorous experimental design strategy.

Salinity and alkaline conditions are widely recognized as
abiotic stresses which restrict crop production as well as
ecological environment construction. High salinity can affect
the growth and development of plants by accelerating leaf
senescence and plant death (Guo et al., 2021). In this process,
chlorophyll degrades, and leaf color changes from green to
yellow (Xue et al., 2021). Our physiological data confirmed this

phenomenon (Figures 1A,B). We found that alkaline stress was
more toxic than salt stress because of more rapid chlorophyll
breakdown and more severely eroded leaves. Transcriptome data
also showed that the molecular mechanisms of leaf senescence
induced by the two stresses were not the same (Figure 7
and Supplementary Table 8), and many studies have reached
similar conclusions (Guo et al., 2009; Yang et al., 2009; Li
et al., 2010). Salt stress (mainly NaCl) and alkali stress (mainly
Na2CO3 and NaHCO3) can accelerate leaf senescence through
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9 ion toxicity, osmotic stress, and oxidative stress. However, alkali
stress causes more damage to leaves in less time, and the
molecular mechanism is more complex (Guo et al., 2015). We
propose a model of the physiological activities and molecular
mechanisms of M. truncatula leaf responding to alkali stress.
As shown in Figure 8, in the early stage of leaves upon
to alkali stress, plant mainly faces to resist the stress. The
corresponding physiological activities included ion transport,
alleviation of osmotic stress, pH rebalance, hormone regulation,
ROS protection; In molecular mechanisms, more changes focus
on: (1) signal Transduction Pathways; (2) expression of alkali
resistance-associated genes; (3) Ca2+ signaling system; (4)
transcription factors; (5) epigenetic Changes. In the late stage of
leaves under alkali stress, plant mainly shift to nutrient transport.
The corresponding physiological activities included chlorophyll
degradation, protein degradation and nutrient recycling. This
strategy adjustment means that plant is about to give up the leaves
that suffer from alkali stress.

Alkaline stress greatly disrupts the ionic dynamic balance in
plants and interferes with the uptake of mineral elements, leading
to excessive accumulation of Na+ in the leaf cytoplasm, causing
ion toxicity which damages cell organelles (Yang et al., 2008; Ruiz
et al., 2016). In our assay, enrichment of DEGs related to ion
transport and transmembrane transport was detected, with most
being upregulated (Table 1). It has been reported that alkali stress
can affect the distribution of ions in plant organs; for example,
a large amount of Na+ and Cl− accumulates in old leaves, and
the content of Na+ and Cl− in new leaves is lower (Foolad, 2004;
Wang et al., 2012). The Na+ content in the leaves also increases
significantly with increasing alkali stress (Dai et al., 2014; Abdel
Latef and Tran, 2016). Plants maintain ion balance through ion
metabolism, an important mechanism for adaptation to alkali
stress (Blumwald et al., 2000).

Alkali stress can lead to massive water shortages in the leaves
and accelerate leaf senescence (Zhang P. et al., 2021). In our
study, genes related to metabolic intermediates, such as organic
acid catabolic process and proline metabolism, were found to be
significantly enriched; these metabolic intermediates act to relieve
osmotic stress and contribute to the maintenance of normal water
content in the leaves (Ali et al., 2008).

The effect of oxidative damage on leaf senescence is notable.
High salinity can induce superoxide radicals, resulting in
membrane lipid peroxidation and disruption of membrane
integrity, which is a direct and important cause of leaf
senescence. MDA is one of the main products of membrane lipid
peroxidation (Bao et al., 2009), and we found that MDA content
accumulated during leaf senescence (Figure 1D), suggesting
that leaves suffered oxidative damage under alkaline stress.
Similar results have been reported elsewhere (Zou et al., 2020;
Wei et al., 2021; Wu et al., 2021). H2O2 is a common ROS
involved in plant senescence. It can oxidize macromolecules
and damage cell membranes, causing senescence (Halliwell,
1984; Chen et al., 2012). The H2O2 content increased during
alkaline-induced senescence (Figure 1C). Transcriptional profile
analysis also confirmed this result, with a large number of
DEGs enriched in the oxidation-reduction process, energy
derivation by oxidation of organic compounds, lipid oxidation,
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FIGURE 6 | Enrichment network map for GO terms (Table 3), highlighting the relationship between GO terms and GO terms, GO terms and genes.

and fatty acid oxidation (Table 3). The levels of MDA and
H2O2, as markers of oxidative stress-induced cellular damage,
are widely used to assess the degree of plant senescence in
Arabidopsis (Cui et al., 2013), alfalfa (Wei et al., 2021), rice
(Chen et al., 2018), and adzuki bean (Li et al., 2020). Plants
have ROS scavenging systems, including secondary metabolites
and antioxidant enzymes, to reduce accumulated ROS and
defend against oxidative damage (Gong et al., 2013; Wu et al.,
2021). Secondary metabolites act as antioxidants to help plants
scavenge ROS, such as ASA, carotenoids, glutathione, and
certain low-molecular-weight compounds (Fan et al., 2021; Fang
et al., 2021). Our transcriptome analysis showed that DEGs
were enriched in KEGG pathways of secondary metabolites,
such as carotenoid biosynthesis and glutathione metabolism
(Supplementary Figure 4 and Supplementary Table 9). These
DEGs may be involved in ROS elimination. Antioxidant enzymes
play the most important role in the ROS scavenging system, and
mainly include superoxide dismutase, peroxidase, and catalase,
which catalyze H2O2 into O2 and H2O (Sun et al., 2019),
and ascorbic acid peroxidase, which reduces membrane lipid
peroxidation by scavenging MDA (Fang et al., 2021). It has been
reported that overexpression of Cu/Zn-superoxide dismutase
can increase the degree of tolerance to H2O2, thus reducing
the damage caused by alkaline stress in plants (Wu et al.,

2016). Additionally, antioxidant enzymes and antioxidants work
together to effectively scavenge ROS and alleviate oxidative stress
(Fu et al., 2017). Although plants have developed a series of
regulatory adaptive mechanisms to resist alkali stress-induced
senescence, the regulatory adaptive mechanisms of plants lose
their effect if the concentration of alkali stress exceeds a threshold,
leading to senescence and death.

In our assay, 2,165 DEGs were identified through
transcriptomics of alkali-induced detached leaves. For further
analysis, we divided the 2,165 DEGs into two parts: 985 SAGs
and 1,180 DEGs; 985 genes were identical to the SAGs of the
dark treatment group, which we believe are directly involved
in the leaf senescence process. The remaining 1,180 genes may
indirectly regulate leaf senescence (Figure 3B). GO and KEGG
pathway enrichment analysis confirmed our conjecture that the
genes of the two gene sets play different roles in leaf senescence:
985 SAGs were mainly enriched in nutrient cycling processes,
such as cellular amino acid metabolic processes and organic
substance catabolic processes, indicating nutrient redistribution.
The 1,180 SAGs were significantly enriched in oxidoreductase
complex, aerobic respiration, and ion transport (Table 1), most
of which were upregulated during senescence (Figure 5).

TFs are the most significant components in the regulation
of leaf senescence (Guo et al., 2004; Balazadeh et al., 2008). In
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FIGURE 7 | Venn diagram analysis of DEGs induced by alkaline stress and by salt stress. (A) Differences between DEGs induced by alkaline stress and by salt
stress. (B) Differences between SAGs induced by alkaline stress and by salt stress.

FIGURE 8 | A model of leaf senescence regulation under alkaline stress in M. truncatula.

Frontiers in Plant Science | www.frontiersin.org 13 April 2022 | Volume 13 | Article 881456

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-881456 April 23, 2022 Time: 14:0 # 14

Dong et al. Alkaline-Iduced Leaf Senescence in M. truncatula

our study, we identified 101 and 173 TFs among the 985 SAGs
and 1,180 DEGs, respectively. The MYB, WRKY, NAC, and bZIP
TF families belonged to the 985 SAGs, which are known to
be involved in the regulation of senescence (Guo et al., 2004;
Ay et al., 2010; Guo and Gan, 2011). The B3, HB-other, and
ARF TF families in the 1,180 DEGs play an important role
in abiotic stress defense responses. MYB, WRKY, and bHLH
are multifunctional but essentially regulate plant senescence
directly or indirectly.

The leaf is an important site for photosynthesis in plants and
is sensitive to senescence. Premature leaf senescence caused by
numerous environmental stresses (such as darkness, drought,
salt, and alkali stress) can result in significant yield loss and
quality reduction, especially in plants that focus on harvesting
leaves, such as alfalfa. Therefore, the regulation of appropriate
senescence time under abiotic stress needs investigation, with the
aim to obtain varieties with an ideal senescence time. Alfalfa is
considered a major forage crop worldwide, due to its high yield,
high nutrient quality, and wide range of adaptation; however,
premature leaf senescence caused by stress affects the quality and
yield of alfalfa.

In summary, this study described detailed expression profiles
of leaf senescence induced by alkali stress in M. truncatula, and
annotated many SAGs. New candidate genes have been identified
for further senescence resistance breeding, in order to improve
the biomass and quality of forage crops under alkaline stress.
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