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An increase in temperature and extreme heat stress is responsible for the global
reduction in maize yield. Heat stress affects the integrity of the plasma membrane
functioning of mitochondria and chloroplast, which further results in the over-
accumulation of reactive oxygen species. The activation of a signal cascade
subsequently induces the transcription of heat shock proteins. The denaturation and
accumulation of misfolded or unfolded proteins generate cell toxicity, leading to death.
Therefore, developing maize cultivars with significant heat tolerance is urgently required.
Despite the explored molecular mechanism underlying heat stress response in some
plant species, the precise genetic engineering of maize is required to develop high heat-
tolerant varieties. Several agronomic management practices, such as soil and nutrient
management, plantation rate, timing, crop rotation, and irrigation, are beneficial along
with the advanced molecular strategies to counter the elevated heat stress experienced
by maize. This review summarizes heat stress sensing, induction of signaling cascade,
symptoms, heat stress-related genes, the molecular feature of maize response, and
approaches used in developing heat-tolerant maize varieties.

Keywords: abiotic stress, gene signaling cascade, heat stress, molecular response, Zea mays

INTRODUCTION

Heat stress is the most devastating abiotic stress factor influencing seasonal growth and spatial
variations in various crops (Sallam et al., 2018; Magaña Ugarte et al., 2019). Global warming
caused by the increasing growth of the population and the accompanying industrial development
has become a concern that cannot be overlooked (Baus, 2017). Also, the average rise in global
temperature between 1900 and 2020 was 1.13◦C, and it is expected to increase by 1.4–5.8◦C in 2100
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GRAPHICAL ABSTRACT | This review summarized heat stress-mediated morphological and physiological changes in maize and elucidated the molecular
mechanisms responsible for maize response to heat stress. Furthermore, plausible approaches to dissecting the regulatory network associated with heat stress
response and improving maize adaptation to global warming have been discussed. This figure was made using BioRender.

(Figure 1; Houghton et al., 2001). This gradual increase in global
warming and heat waves have become a serious threat to crop
productivity (Hoegh-Guldberg et al., 2019). Data published by
the Food and Agriculture Organization has revealed the annual
relative yield loss in major cereal crops (Faostat, 2019). Also,
recent studies have shown that effective heat stress tolerance
via genetic improvement is the only possible remedy; otherwise,
every 1◦C temperature rise will cause a 6.0% yield loss of wheat,
3.2% of rice, 7.4% of maize, and 3.1% of soybean (Zhao et al.,
2017; Kraus et al., 2022). However, due to increasing population
growth, crop yield ought to increase by 70% for sustaining food
security to meet the demand of a projected 9 billion population
rise in 2050 (Popp et al., 2013; Dawson et al., 2016).

Maize (Zea mays) is an important cereal crop that belongs to
the Poaceae family (Li et al., 2022) and has ensured global food
security with a worldwide production ≥1 × 109 t (1012 kg) since
2013 (Faostat, 2017). Maize was initially cultivated in tropical
areas under rainfed conditions (Li J. et al., 2021; Maitra et al.,
2021). However, there is an increased demand for maize due
to its utilization of carbohydrates as biomass for ethanol fuel
production, leaves and stem as livestock fodder, grains as raw
material in the baking industry, and food and feed crop in many
countries (Rooney et al., 2007; Parmar et al., 2017; Dar et al.,
2021). Maize is a rich source of starch and calcium in addition
to numerous essential minerals, vitamins, and fiber. However, it
labors to some nutrients, such as vitamins B12 and C (McKevith,
2004). Iron absorption, particularly the non-heme iron present
in maize, can be inhibited by some components of the diet
being consumed, such as vegetables, coffee (e.g., polyphenols),

tea (e.g., oxalates), milk (e.g., calcium), and eggs (e.g., phosvitin)
(Ranum et al., 2014).

Elevated temperature accelerates crop growth but shortens its
growing season (Mo et al., 2016; Hu et al., 2017; Ahmed et al.,
2018; Ihsan et al., 2019). Additionally, maize growth requires an
optimum daytime temperature range of 28–32◦C, comparatively
higher than the optimum temperature necessary for other cereal
crops, such as wheat (Triticum aestivum) and rice (Oryza sativa)
(Sánchez et al., 2014).

The global change resulting from harsh climatic conditions
has negatively affected maize crop yields (Lobell et al., 2011;
Ahmed et al., 2018; El-Sappah and Rather(eds)., 2022). Also,
increased temperature stimulates the over-accumulation of
phenolic compounds, resulting in cell necrosis, consequently
contributing to maize yield loss (Tebaldi and Lobell, 2018).
Furthermore, heat stress (>32◦C) causes the deterioration of
several metabolic processes in maize plants, including a severe
break in photosynthesis, increased surface transpiration rate
(Crafts-Brandner and Salvucci, 2002; Sharma et al., 2020),
pollen-sterilization at anthesis (flowering stage) (Gourdji et al.,
2013), kernels shortening at grain-filling stage (Singletary
et al., 1994; Rezaei et al., 2015), cumulatively resulting in a
significant yield loss.

The approval of multiple agronomic and breeding alternatives
along with advanced genomic tools is inevitable to cope with
the deleterious effects of extreme temperatures (Waqas et al.,
2021). Several agronomic management practices, such as the
management of soil and nutrients, crop rotation, plantation rate,
timing, and irrigation, are beneficial for the development of heat
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FIGURE 1 | (A) Map of annual mean temperature change (◦C) during 1900–1910 and 2010–2020. (B) The zonal means plot. Air temperature data of the land
surface was retrieved from GHCNv4 (GISS analysis based on global historical climatology network v4), and sea surface temperature data was retrieved from
ERSST_v5 (NOAA/NCEI’s extended reconstructed sea surface temperature v5). The number at the top right-hand corner of the map plot is an estimate (◦C) of the
global mean of the calculated area. The maps were made using GISS Surface Temperature Analysis software (https://data.giss.nasa.gov/gistemp/maps/index.html).

tolerance in maize (Sabagh et al., 2020). Genetically modified
crops could also be a valuable resource for the development
of novel traits that enhance the survival of plants under harsh
conditions (Jha et al., 2020). In recent years, the rate of crop
improvement has accelerated owing to the rapid progress in plant
molecular biology. In several crops, different genetic approaches,
including marker-assisted selection (MAS), map-based gene
cloning, quantitative trait locus (QTL) mapping, and genome
editing (such as RNA interference [RNAi] and CRISPR)/CRISPR-
associated-9, Cas9), have been utilized for the selection and
improvement of plant traits (Waqas et al., 2021).

This review summarized heat stress-mediated morphological
and physiological changes in maize and elucidated the molecular
mechanisms responsible for maize response to heat stress. We
also discussed plausible approaches in dissecting the regulatory
network associated with heat stress response and improving
maize adaptation to global warming.

IMPACT OF HEAT STRESS ON
DIFFERENT GROWTH STAGES

Vegetative Stage
Technically, the growth of stems, leaves, and roots, usually
referred to as vegetative growth, is also known as germination,
leaf, and tasseling (Dolatabadian et al., 2010). Heat stress affects
the abovementioned growth stages (Figure 2) significantly. Also,
the optimum soil temperature for maize seeds germination is
21◦C, whereas <13◦C causes a severe stoppage in germination
and <10◦C causes a total cessation (Kaspar and Bland, 1992;
Towil, 2010; Sánchez et al., 2014). The germination rate of
spring sowing of maize seeds cultivated in higher altitudes,
such as North Europe and North America, is comparatively
low due to low soil temperature (Paul et al., 1996). Early seed
germination may expose the crop to freezing temperature, and
early flowering leads to short crop duration leading to severe

yield loss (Jagadish et al., 2016). However, late cultivation for
optimum temperature conditions caused a severe loss in yield due
to pest attacks (Rosenzweig et al., 2001). Therefore, only the day-
neutral spring maize is favorably cultivated in higher altitudes
(Colasanti and Muszynski, 2009).

Notably, the younger seedlings are less susceptible to high
temperatures (Sánchez et al., 2014). The overall required
temperature range for early maize seedling growth is 30–35◦C,
and the optimal temperature is around 20◦C (Khaeim et al.,
2022), 4–6◦C higher than the suitable temperature for wheat
and barley growth (Sánchez et al., 2014). Importantly, depending
upon maize variety and below 20◦C, every 0.5◦C downfalls in
daily temperature resulted in 10–20 days extended crop duration
(Rahman et al., 2009). At an average daytime temperature
of 15◦C may take 200 days for the maturity of maize crop
(Wilson et al., 1995).

Maize is susceptible to cold temperature but can recover
from its effects if height is less than 15 cm when exposed to
cold (Sakai and Larcher, 2012). Temperature below 10◦C causes
stunted root growth, whereas 17◦C temperature results in 1.5 mm
root growth per day, and temperature above 40◦C inhibits root
growth (Ryel et al., 2002). Maize seedlings can recover from
constraints of drought stress because it is naturally resistant
to drought (Daryanto et al., 2016). In conclusion, maize can
recover from adverse climatic conditions if exposed at very
early vegetative growth stages. The early cultivation of maize
also facilitates the avoidance of pest attacks and the possible
development of diseases (Bruns, 2003). So, early sowing of maize
is highly recommended.

Reproductive Stage
The fruit setting stage is the reproductive stage that begins
with vegetative growth termination and flowering initiation. The
stage is susceptible to unexpected fluctuation in temperature,
i.e., >32◦C temperature, or frost causing severe yield loss (Silim
et al., 2006; Siebers et al., 2017). Also, hailstorm adversely affects
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FIGURE 2 | Morphological and physiological characteristics of maize under heat stress. This figure was made using BioRender.

outcomes at the jointing and silking stage (Chen K. et al.,
2018). Similarly, soil moisture contents before, during, and after
silking result in a severe reduction in yield by 25, 21, and 50%,
respectively (Pandey et al., 2000). The optimum temperature at
tasseling is between 21 and 30◦C (Kiniry and Bonhomme, 1991).

Additionally, elevated temperature encourages respiration (Guo
et al., 2019) and shortens grain-filling duration, contributing to
a significant yield loss (Sánchez et al., 2014). Conversely, low-
temperature extends the length of the grain-filling period, the
appropriate phase change of photosynthesis to dry matter, and
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grain filling, resulting in a higher yield (Dordas, 2009; Edreira
et al., 2014; Chao et al., 2016). Overall, during pollination and
grain filling, temperatures ≥35◦C suppress fertilization in maize
and decreases its yield by 101 kg/ha per day (Naveed et al., 2014;
Dawood et al., 2020).

PHYSIOLOGICAL EFFECTS OF HEAT
STRESS

Membrane Damage and Reactive
Oxygen Species Over-Accumulation
Heat stress causes cell physiological changes, such as inactivating
the photosystem II (PSII) reaction center and the denaturation
of the lipid bilayer and embedded proteins in the thylakoid
membrane, resulting in the damaging of the cell membrane
(Yang et al., 1996; Nijabat et al., 2020). The damaged cell
membrane has caused severe retardation of ion exchange, leakage
of electrolytes, viscous cytosol due to water loss, toxic compounds
production, and homeostasis disruption (Stanley and Parkin,
1991; Demidchik, 2015). Also, these changes have resulted in
plant growth cessation through leaf wilt, reduced leaf area,
and leaf abscission (Bartels and Sunkar, 2005; Mafakheri et al.,
2010). Furthermore, the cell membrane stability varies with plant
tissue age, growth stage, growing season, plant species, and heat
intensity (Nijabat et al., 2020). Therefore, the plant’s retention
of its cell membrane stability and water contents under heat
stress during the vegetative and reproductive growth period has
generated higher yields (Khakwani et al., 2012).

Heat stress stimulates ROS biosynthesis that promotes
membranous lipids peroxidation, leakage of cellular contents,
protein degradation, enzymatic inactivation, bleaching of
chlorophyll pigments, and DNA damage, consequently
resulting in necrosis (He and Häder, 2002; Mujahid et al.,
2007). Phospholipids-peroxidation causes the production of
malondialdehyde (MDA) which causes damage to the cell
membrane (Pamplona, 2008; Wadhwa et al., 2012). Additionally,
ROS causes polyunsaturated fatty acid peroxidation, leading to
chain breakage contributing to increased membrane permeability
and fluidity (Catalá, 2009). Notably, the increased accumulation
of H2O2 causes lipid peroxidation and membrane damage
(Banerjee and Roychoudhury, 2018; Yadav et al., 2018). Heat
stress-mediated genetic variations have been investigated
in several cereal crops, including wheat, barley, rice, and
maize (Kumari et al., 2009; Khajuria et al., 2016; Swapna and
Shylaraj, 2017). Balanced redox reaction system activation
via enzymatic antioxidants, such as superoxide dismutase,
catalase, ascorbate peroxidase, glutathione reductase, and non-
enzymatic antioxidants, such as NADH; NADPH; ascorbic acid,
glutathione, and secondary metabolites play a crucial role in heat
stress tolerance (Wahid et al., 2007; Foyer and Shigeoka, 2011).

Loss of Photosynthesis
Photosynthetic apparatus is highly vulnerable to damage when
exposed to heat stress and intense light (Essemine et al., 2012; Li
Y. T. et al., 2020). Therefore, heat stress causes a severe reduction

in carbon assimilation, restricts electron transfer, aggravates
oxidative damage and photoinhibition of PSII, resulting in
significant yield loss (Elferjani and Soolanayakanahally, 2018;
Li Y. T. et al., 2020). Heat stress also denatures vital enzymes
associated with the Calvin cycle, such as rubisco, and reduces
carbon assimilation in C3 plants (Dias and Brüggemann, 2010;
Zhang et al., 2020a). However, C4 plants, such as maize,
harbor the CO2 concentration mechanism (Dai et al., 1993;
Majeran and van Wijk, 2009), reducing the restriction of
photosynthetic carbon assimilation via the Calvin cycle (von
Caemmerer and Furbank, 2016). Furthermore, Phosphoenol
pyruvate carboxylase is the highly thermostable initial enzyme
involved in the C4 cycle (O’Leary et al., 2011), suggesting
that other photosynthesis pathways contribute to declining
photosynthetic carbon assimilation under heat stress in maize
(Li Y. T. et al., 2020). Notably, the photosynthetic apparatus
acclimatizes to heat stress by improving its antioxidant capacity
and changing leaf structure and metabolism (Li Y. T. et al.,
2020). However, shock heat stress during flowering causes
irreparable yield loss by damaging the leaves, rendering them
unable to sprout again due to the completion of vegetative growth
(Li Y. T. et al., 2020).

Respiration plays a crucial role in photosynthesis, whereas
its inhibition suppresses CO2 fixation and photoinhibition
(Gardeström and Igamberdiev, 2016). However, stomatal closure
does not limit the exchange of gases like CO2 but limits
the transpiration rate through leaves. The CO2 concentration
mechanism of C4 plants, such as maize leaves, provides
more robust resistance to stomatal restriction than in C3
plants (Markelz et al., 2011). Additionally, the blockage of
respiratory electron transfer inhibits photorespiration resulting
in PSII photoinhibition (Rochaix, 2011; Zhang et al., 2017).
Transpiration through stomata is an important heat-dissipating
mechanism, with their closure under heat stress resulting in
severe loss in net photosynthetic rate (Pn) (Caine et al., 2019).
The lower stomatal conductance (Gs) in maize leaves maintains
water-use efficiency but damages photosynthetic apparatus under
heat stress. Therefore, the lower Gs due to stomata closure
indicates less heat dissipation via the transpiration mechanisms
in the leaves of C4 plants, such as maize, compared to C3 plants
(El-Sharkawy, 2007; Li Y. T. et al., 2020).

Photoinhibition of photosystems (PSI and PSII) in the
chloroplast results from the degradation of the light receptors
under heat stress contributing to the significant halt in
photosynthesis (Zivcak et al., 2015). The oxygen-evolving
complex (OEC) of PSII is highly sensitive to heat stress than
of high-intensity light, whereas the D1 protein of PSII is
more sensitive to high-intensity light instead of heat stress
(Vass and Cser, 2009; Tóth et al., 2011). It is reported
that heat stress significantly affects the acceptor site of PSII
instead of PSI in maize leaves (Yan et al., 2013; Li Y. T.
et al., 2020). Accordingly, OEC is the primary site in maize
leaf cells affected by heat stress, whereas D1 is the primary
site affected by high-intensity light. The over-accumulation
of ROS is another cause of D1 protein denaturation (Kong
et al., 2013). Therefore, overexpression of OEC and D1
protein and downregulation of ROS via genetic engineering
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and breeding techniques will improve heat tolerance in maize
(Li and Howell, 2021).

Imbalance/Deregulation in Primary and
Secondary Metabolism
Traditionally, metabolites are divided into primary and
secondary/specialized metabolites. Primary metabolites reinforce
cell and secondary/specialized metabolites are concerned with an
organism’s interaction with its environment. Primary metabolism
produces precursors for secondary metabolite biosynthesis and
plays a direct and central role in plant growth, development,
and reproduction. It also produces precursors for secondary
metabolite biosynthesis (Medeiros et al., 2021). Secondary
metabolites possess functional and chemical diversity (Erb and
Kliebenstein, 2020). Thousands of metabolites serve as mediators
for the various interactions between plant and the environment
(Medeiros et al., 2021). During a stress response, plants fine-
tune their metabolic production accordingly; however, the
mechanisms, reasons, and regulations for this process are only
partially understood.

Leaf metabolites were most affected by long-duration salt,
heat, or drought stress treatments compared with the rest of
the maize organs. The raffinose pathway metabolites (raffinose
and galactinol) and some amino acids such as threonine,
tryptophan, and histidine also stood out in the heat stress
metabolome profile (Joshi et al., 2021). In the metabolic
studies of Joshi et al. (2021), 2,549 genes were upregulated
including galactinol synthase (Zm00001d028931), stachyose
synthase (Zm00001d039685), and a putative inositol transporter
(Zm00001d018803), while 2,587 genes were downregulated as a
result of heat stress. Two stress-induced arginine decarboxylase
paralogs exhibited a similar dichotomy with drought and
heat, inducing Zm00001d051194. However, the responses
from pairing drought and heat stressors contrasts with the
pattern exhibited by the raffinose pathway genes described
above where the effects of heat and salt were correlated
(Joshi et al., 2021).

Heat stress adversely affects carbohydrate catabolism by
denaturing relevant enzymes resulting in the over-accumulation
of starch and sucrose (Ruan et al., 2010; Xalxo et al., 2020).
Varied expression patterns of genes and proteins involved in
carbohydrate metabolism were observed in Arabidopsis exposed
to heat stress (Kaplan et al., 2004). In addition, heat stress
causes over-accumulation of maltose, sucrose, and cell wall-
specific monosaccharides (Lima et al., 2013; Sengupta et al.,
2015). Additionally, the metabolic profiling of plants exposed to
two abiotic stress factors, such as drought and heat, showed over-
accumulation of glucose, fructose, sucrose, trehalose, maltose
responsible for maintaining cell turgor pressure, stabilizing
cell membranes and proteins (Rodziewicz et al., 2014; Kumar
et al., 2021). During unfavorable conditions, plants digest
starch molecules to get energy as a substitute for glucose;
however, extended heat stress causes depletion of all carbohydrate
reservoirs and causes plants starvation (Kaplan et al., 2004;
Djanaguiraman et al., 2010).

Temperature significantly affects starch biosynthesis in maize
kernels, which contributes to the total dry weight of grains

(Keeling et al., 1994). Heat stress stimulates the production of
osmolytes including fructose, mannose, sucrose, and proline,
which plays a vital role in heat stress tolerance (Slama et al.,
2015; Sharma et al., 2019). The grain-filling rate and duration
are determined by the sucrose contents available in kernels and
enzyme activity level (Singletary et al., 1994; Alam et al., 2021).
Short interval time series analysis revealed that the “tipping
point” for maize metabolome perturbation is lengthened at a >1
day of drought stress, including a combined effect of drought
and heat stress (Bechtold et al., 2016). Generally, heat stress
causes mechanical changes, whereas drought stress results in the
disequilibrium of osmosis in plants cell (Haswell and Verslues,
2015). Therefore, abiotic stress-mediated changes in metabolic
responses are probably attributed to adaptations to drought and
heat stresses (Kaplan et al., 2004; Khan et al., 2015).

Osmolytes also contribute a crucial role in maintaining
membrane structure (Sharma et al., 2019), alleviating proteins
degradation, reducing ionic toxicity, protecting cell organelles,
scavenging ROS, protecting antioxidant compounds, and
maintaining redox equilibrium (Hasanuzzaman et al., 2020).
Osmolytes, such as sucrose, fructose, and mannose, are
resources of energy, nutrition, structural materials, signaling
molecules, and crucially contribute to seed germination and
the growth of plantlets (Osuna et al., 2015). Maize (Zea
mays L.) seedlings exposed to heat stress displayed sudden
degradation of glycan contents and upregulated fructose and
mannose metabolism (Lieu et al., 2021). The expression of genes
involved in fructose, mannose, and sucrose biosynthesis was also
upregulated in 21-day-old maize seedlings exposed to heat stress
(Stavridou et al., 2021).

The mitochondria and nuclear membrane structure were
also disrupted by heat stress, more severe in the heat-sensitive
hybrid (Török et al., 2014; Li Y. T. et al., 2020). Also,
disruption of mitochondrial membrane structure decreases the
efficiency of oxidative phosphorylation, requiring increased
consumption of carbohydrates to supply sufficient ATP and
further reducing light energy utilization (Li Y. T. et al., 2020).
Additionally, many chloroplast proteins are encoded by the
nuclear genome; hence, destruction of the nuclear envelope
may inhibit the upregulation of photo-protection mechanisms,
aggravating the photosynthetic mechanism damage and delaying
photo inhibition repair and structural damage (Kumar and
Kaushik, 2021). The less grouped PSII units are more sensitive
to light, partly explaining the more severe PSII under heat stress
(Strasser et al., 2004).

Hormonal Imbalance
Phytohormones, such as auxin/indole acetic acid (IAA),
gibberellic acid (GA), abscisic acid (ABA), cytokinin (CTK),
ethylene (ET), salicylic acid (SA), brassinosteroids (BRs),
strigolactone (SL), and jasmonic acid (JA) importantly regulates
cellular processes which are ubiquitous to plant growth under
abiotic stress factors (Sharma et al., 2019). Heat stress causes
over-accumulation of ABA and the downregulation of CTK,
resulting in the improper development of maize kernels
(Cheikh and Jones, 1994; Niu et al., 2021). The application of
benzyladenine on maize seedlings maintains a proper balance
between ABA and CTK, causing an increased heat tolerance
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(Cheikh and Jones, 1994). Similarly, the treatment of maize
seedlings with Ca2+ ions solution and ABA improves the
antioxidant enzyme activity, reduces lipid peroxidation, and
improves heat tolerance (Hossain et al., 2015; Yang et al., 2021).
Similarly, SA, GA, and H2S stimulate the biosynthesis of proline,
betaine, and trehalose, contributing to the enhanced antioxidant
activity in maize (Li, 2015; Li Z. G. et al., 2015; Zhou et al.,
2018). Overexpression of ZmbZIP4 induces longer primary
roots, more lateral roots, and enhanced biosynthesis of ABA,
which cumulatively results in enhanced abiotic stress tolerance
(Ma et al., 2018).

MOLECULAR MECHANISMS OF PLANT
RESPONSES TO HEAT STRESS

Heat Stress Sensing
Plant cells and organelles harbor an efficient heat sensing
mechanism that subsequently stimulates a signaling cascade
for rapid adaptive modifications (Figure 3; Nievola et al.,
2017; Niu and Xiang, 2018). For example, calcium ions
(Ca2+) flow through their conducting channels, acting as
messengers in a signaling cascade to sense and respond to
heat stimuli (Jammes et al., 2011). The plasma membrane
is also a primary heat-sensing organelle that contains three
types of Ca2+ conducting channels, including voltage-dependent
Ca2+-permeable channels (VDCCs), voltage-independent Ca2+-
permeable channels (VICCs), depolarization-activated Ca2+-
permeable channels (DACCs), and hyperpolarization-activated
Ca2+-permeable channels (HACCs) (Horváth et al., 2012; Liu
et al., 2018). These channels are also known as cyclic nucleotide-
gated ion channels (CNGCs), naturally tetrameric cationic,
and comprise six transmembrane domains (Urquhart et al.,
2011). Notably these CNGCs can be genetically modified as
homotetrameric or heterotetrameric to improve their ability to
respond to diverse and variable intensities (Ketehouli et al., 2019;
Tan et al., 2020).

In maize, 11 plasma membrane-localized CNGC genes were
identified, contributing a major role in heat tolerance (Hao
and Qiao, 2018). The downregulation of AtCNGC2, AtCNGC6,
PpCNGCb, and PpCNGC resulted in an increased accumulation
of the following heat shock proteins; Hsp18.2, Hsp25.3, and
Hsp70 (Gao et al., 2012; Finka and Goloubinoff, 2014). Glutamate
heat receptor-like channels also stimulated the Ca2+ signaling
cascade on exposure to heat stress, and the exogenous application
of glutamate resulted in improved heat tolerance in maize
(Li et al., 2019). Other calcium channel families have been
identified as responsible for the heat tolerance capability in maize,
such as downregulation of synaptotagmin A that caused the
downregulation of HSPs (Yan et al., 2017; Bourgine and Guihur,
2021). Under heat stress, maize annexin, such as AnxZm33 and
AnxZm35 expression stimulated HACCs in the roots and cytosol
(Bassani et al., 2004; Nichols, 2005; Mortimer et al., 2008; He
et al., 2019). Phosphoinositide-specific phospholipases C (PLCs)
genes, such as PLC3 and PLC9 are plasma membrane-localized
heat sensors that stimulate phosphoinositide-signaling mediated
Ca2+ channels (Rupwate and Rajasekharan, 2012; Hayes et al.,

2021). For example, ZmPLC1 encodes a PI-PLC, which plays a
major role in maize roots during drought stress (Zhai et al., 2013).

Additionally, heat stress alters the normal working of the
chloroplasts and mitochondria membranes, resulting in the
over-accumulation of ROS simultaneously stimulating the Ca2+

signaling pathway (Li B. et al., 2018; Navarro et al., 2021). ROS,
including NADPH-oxidase (NOX) and respiratory burst oxidase
homolog, also stimulate signaling cascade for heat tolerance
(Sagi and Fluhr, 2006; Takemoto et al., 2007; Chapman et al.,
2019). However, the over-accumulation of ROS stimulates a Ca2+

based signaling cascade in the cytosol, which then stimulates
phosphorylation mediated calcium-dependent protein kinases
(CDPKs), causing a direct activation of the respiratory burst
oxidase homolog D (RBOHD) (Gao et al., 2014; Marcec et al.,
2019). RTH5 family proteins comprise four transmembrane
functional domains responsible for membrane embedding and
two EF motifs, FAD and NAD, required for Ca2+transport
(Lin et al., 2009; Nestler et al., 2014). In maize, RTH5
protein encodes NOX, distributed among all eukaryotic species
(Bedard et al., 2007).

Heat-Induced Signal Cascades
Heat-sensitive CNGC gene families comprise the cyclic
nucleotide-binding domain and calmodulin-binding domain
(CaMBD), facing toward cytosol (Gao et al., 2012; Duszyn et al.,
2019). Ca2+ sensor-dependent transcription regulation depends
upon calcineurin b-like protein (CBL), CDPK, and calmodulin
(CaM) (Reddy et al., 2004, 2011; Hashimoto and Kudla, 2011).
CDPKs can sense Ca2+ to assist their EF-hand domain and
transduce Ca2+ signals via their protein kinase domain (Shi
et al., 2018). In maize, 35 CDPKs were identified (Ma et al.,
2013), and ZmCDPK1 has been characterized in cold-stressed
roots and leaves (Weckwerth et al., 2015). CaMs bind with the
C-terminal of CNGC family genes to activate the heat shock
signaling pathway (Hao and Qiao, 2018), as mitogen-activated
protein kinase 6 and calmodulin-binding protein kinase 3
(CBK3) (Yan et al., 2017). In maize, the Ca2+–CaM contributes
to the activation of ABA-induced antioxidants and nitric oxide
(NO) production (Hu et al., 2007; Sang et al., 2008).

Many TFs, such as bZIP, CAMTA, MYB, and WRKY, bind with
CaM proteins due to various abiotic and biotic stresses effects
(Table 1; Yang et al., 2013). Among all, the CAMTA-mediated
transcriptional regulation network is dominant, contributing
against the diverse environmental stresses, including heat stress,
salinity, drought, heavy metals, and exogenous application of
hormones (Pandey et al., 2013; Yang et al., 2013; Yue et al.,
2015). Additionally, CAMTA genes also play a key role in the
mutual induction of regulation in expressing different stress-
responsive genes and hormones (Reddy et al., 2000; Yang and
Poovaiah, 2002). For example, heat stress induces upregulation
of multiple ZmCAMTA genes in maize plants (Atkinson et al.,
2013). In maize, ZmCAMTA1, ZmCAMTA2, and ZmCAMTA3
have been identified, and their expression was upregulated during
heat stress (Yue et al., 2015).

Heat stress affects plasma membrane, mitochondria,
endoplasmic reticulum, and chloroplasts, resulting in ROS
over-accumulation, a critical secondary signaling messenger
(Sewelam et al., 2014; Czarnocka and Karpińskiski, 2018).
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TABLE 1 | Heat stress-related transcription factor (TF) families in maize.

Family Gene Function/stress References

HSF ZmHsf-01 Heat stress response The upregulation of ZmHsf-01 is probably with H3K9 hyperacetylation in
the promoter region after heat treatment

Lin et al., 2011; Kim et al., 2012; Zhang
et al., 2020c

ZmHsf-03 Heat stress response Lin et al., 2011

ZmHsf-04 Heat stress response Lin et al., 2011

ZmHsf05 Heat stress response Jiang et al., 2017

ZmHsf06 Heat stress response Li H.-C. et al., 2015

HSFA6b Heat stress response Connects ABA signaling and ABA-mediated heat responses Huang et al., 2016; Gao et al., 2019

HSFA1 Stimulates immediate expression of different heat shock responsive transcription factors (TFs),
including DREB2A, HSFA2, HSFA7, HSFBs, and multiprotein-bridging factor 1C (MBF1C)

Yan et al., 2020; Zhao J. et al., 2021

Hsftf13 Responses to ABA And thermotolerance Activate the Hsp90 and other HSFs Huang et al., 2016; Li Z. et al., 2020

ZmHsf-11 Heat stress response Lin et al., 2011

ZmHsf-17 Heat stress response Lin et al., 2011

ZmHsf-23 Heat stress response Lin et al., 2011

ZmHsf-25 Heat stress response Lin et al., 2011

DREB/CBF ZmDREB2A Salt, heat, drought, and cold Qin et al., 2007

AP2/EREBP Zm00001d008546 Heat stress response Jagtap et al., 2020

MYB/MYC ZmMYB-R1 Cold, salinity, drought, ABA, and heat Liu et al., 2012

bZIP ZmbZIP60 (Zm00001d046718) Heat stress bzip28 and bzip60 double-mutant plants are sensitive to heat stress Activates the
expression of a type-A HSF, Hsftf13, which, in turn, upregulates the expression of a
constellation of HSP genes

Liu et al., 2012; Li Z. et al., 2020

ZmbZIP17 Drought, ABA, heat, and salt Jia et al., 2009

ZmbZIP28 Encodes an ER membrane-associated bZIP transcription factor, contributes to the upregulation
of heat-responsive genes and to heat tolerance bZIP28 binds directly to the promoters of
heat-responsive genes

Gao et al., 2008; Zhang et al., 2017

ZmbZIP4 Heat, cold, salinity, and ABA Contributes to stress resistance in maize by regulating ABA
synthesis and root development

Ma et al., 2018

NAC Zm00001d010227 Drought and heat stress Jagtap et al., 2020

GARP Zm00001d044785 (ZmGlk1) Heat stress The expression of ZmGLK1 or ZmG2 in rice leads to elevated levels of Chl,
carotenoid, and xanthophyll cycle pigments and to increased levels of some PSII components

Jagtap et al., 2020; Yeh et al., 2021

WRKY ZmWRKY44 Salt, heat, ABA, and H2O2 Have transcriptional activation functions Kimotho et al., 2019

ZmWRKY106 Drought, high temperature, ABA, and salt Play a role in the abiotic stress response by regulating
stress-related genes through the ABA-signaling pathway Reactive oxygen species (ROS)
scavenging

Wang et al., 2018a

ZmWRKY40 Drought, salinity, heat, and ABA Regulating stress-responsive genes, such as DREB2B and
RD29A

Wang et al., 2018b; Leng and Zhao,
2020

HSP ZmERD2 Heat, salinity, cold, PEG, and dehydration Song et al., 2016

ZmERD3 mRNA accumulation Song et al., 2018

NF-Y ZmNF-YA3 Drought and heat ZmNF-YA3 is directly bound to the promoter regions of two bHLH TFs
(bHLH92 and FMA) and one bZIP TF (bZIP45) involved in the ABA-related pathway

Su et al., 2018; Kimotho et al., 2019
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TABLE 2 | Key genes related to heat stress mechanisms.

Genes Gene description Function References

Zm00001d044732 ABA ABA-induced protein Acts as a signaling hormone in plants against abiotic stress, but
its function in energy homeostasis under heat stress

Cheikh and Jones,
1994

Zm00001d045675 (AS) Asparagine synthetase homolog 1 Elevated maximum daily temperature induces alternative
splicing and the roles of SR (serine/arginine-rich) 45a

Li and Howell, 2021

Zm00001d047847 (SR45a) Serine/arginine-rich splicing factor SR45a Elevated maximum daily temperature induces alternative
splicing and the roles of SR (serine/arginine-rich) 45a

Li and Howell, 2021

GRMZM2G388045
GAMETE EXPRESSED 1
(GEX1)

Encode GAMETE EXPRESSED 1 (GEX1) Protective roles for reproductive stage under HS Gao et al., 2019

GRMZM2G377194
CYCD5;1

Encode cyclin D5;1 Protective roles for reproductive stage under HS Increased
seed set

Gao et al., 2019

GRMZM2G406715 Encodes a bZIP transcription factor Gao et al., 2019

GRMZM2G062914
(MPK14)

Expresses a maize mitogen-activated protein kinase, MPK14. Its Arabidopsis ortholog is AtMPK1 can mediate and augment
ABA signaling

Gao et al., 2019

GRMZM2G059225 (ARF) Discolored-paralog3 putative ARF GTPase-activating domain
protein with ankyrin repeat-containing protein

GTPase activator activity Gao et al., 2019

Zm00001d028408 (HSP26) Heat shock protein 18 (Heat shock protein 26) Early heat stress marker gene Nieto-Sotelo et al.,
1990; Abou-Deif et al.,
2019

Zm00001d006036
(ZmHSP70)

Heat shock 70 kDa protein Heat stress response Induced by heat in diurnal temperature
cycles

Rashed et al., 2021

Zm00001d003554
(ZmHSP22)

22.0 kDa class IV heat shock protein Heat stress response Induced by heat in diurnal temperature
cycles

Rashed et al., 2021

Zm00001d028557
(ZmHSP17.9)

17.9 kDa class I heat shock protein Heat stress response Induced by heat in diurnal temperature
cycles

Rashed et al., 2021

Zm00001d047542
(ZmHSP17.6)

17.6 kDa class II heat shock protein Heat stress response Induced by heat in diurnal temperature
cycles

Rashed et al., 2021

Hsp18.2 Heat shock protein 18.2 Heat stress response Borghi, 2010

HSP90 Heat shock protein 90 Induced by heat in diurnal temperature cycles Marrs et al., 1993

Zm00001d038806
(HSP101)

Heat shock protein 101 Induced by heat in diurnal temperature cycles Play essential
roles in both induced and basal thermotolerance and primary
root growth

Nieto-Sotelo et al.,
2002

Zm00001d014090 Mitochondrial heat shock protein 60 Induced by heat in diurnal temperature cycles Prasad et al., 1990

(Continued)
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TABLE 2 | (Continued)

Genes Gene description Function References

GRMZM2G409658 Encodes a Calcineurin b-like protein-interacting protein kinase
(CIPK)

Involved in the stress response process Function in signal
transduction

Gao et al., 2019

GRMZM2G116452 Encodes Peroxidase superfamily protein Involved in the stress response process Gao et al., 2019

GRMZM2G060349 Encodes a DNA mismatch repair protein, MutS2 Upregulated by high temperature Involved in the stress
response process

Gao et al., 2019

GRMZM2G023081 Encodes a cysteine-rich domain-containing protein Involved in the stress response process Gao et al., 2019

GRMZM2G061515 Auxin-responsive GH3 family protein expresses an
indole-3-acetic acid-amido synthetase

Involved in the stress response process Function in signal
transduction Involved in maintaining auxin homeostasis in vivo
through catalyzing excess IAA conjugation to amino acids

Ludwig-Müller, 2011

GRMZM2G377194 Encodes a D-type cyclin, CYCD5;1 Upregulated by high temperature Gao et al., 2019

GRMZM2G026892 Encodes a cysteine-rich protein (CRP) Lose its stability under HS, and thus mean that it is unable to
protect the process of seed-set

Gao et al., 2019

GRMZM2G176605 Encodes an ankyrin repeat domain-containing protein Both pollen tube growth and germination are damaged due to
the downregulation of an ankyrin repeat-containing protein

Huang et al., 2006

ZmHSP17.0 and
Zm00014a_022730
(ZmHSP17.8)

Heat shock protein 17.2 and Heat shock protein, respectively Form dodecamers at temperatures lower than heat shock (HS)
Protect cellular proteins from aggregation during times of heat
stress

Klein et al., 2014

chloroplast sHSP26 Small heat shock protein, chloroplastic Involved in maize heat tolerance Hu et al., 2015

Zm00014a018076
ZmHSP16.9

Class I heat shock protein 1 Expressed in root, leaf, and stem tissues under 40◦C treatment,
which HS and exogenous H2O2 upregulate

Sun et al., 2012

Zm00001d028325 brs1;brassinosteroid synthesis1 Confers thermotolerance Dhaubhadel et al., 1999

Zm00001d029149 Zinc finger protein CONSTANS-LIKE 13 Heat response gene Jagtap et al., 2020

Zm00001d029892 Metalloendoproteinase 1-MMP Heat response gene Jagtap et al., 2020

Zm00001d033805 Glutamate decarboxylase 1 (GAD 1) Heat response gene Ca2+/calmodulin has been shown to bind
GAD and stimulate its activity

Sachs et al., 1996;
Jagtap et al., 2020

Zm00001d002597 Rho GTPase-activating protein 3 Heat response gene Jagtap et al., 2020

Zm00001d003643 L-Ascorbate peroxidase S chloroplastic/mitochondrial Heat response gene Jagtap et al., 2020

(Continued)
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TABLE 2 | (Continued)

Genes Gene description Function References

Zm00001d006036 Heat shock 70 kDa protein 9 mitochondrial Heat response gene Jagtap et al., 2020

Zm00001d041701 Acyl carrier protein 2 chloroplastic Heat response gene Jagtap et al., 2020

Zm00001d048592 rca2; RUBISCO activase2: encodes the beta form of RUBISCO
activase

Heat response gene Jagtap et al., 2020

Zm00001d051056 S-adenosylmethionine decarboxylase proenzyme Heat response gene Jagtap et al., 2020

Zm00001d017729 Serine/threonine-protein kinase MHK Heat response gene Jagtap et al., 2020

Zm00001d017992 Metalloendoproteinase 1 Heat response gene Jagtap et al., 2020

Zm00001d037273 Peptide methionine sulfoxide reductase msrB Heat response gene Jagtap et al., 2020

Zm00001d037663 NADH-ubiquinone oxidoreductase 10.5 kDa subunit Heat response gene Jagtap et al., 2020

Zm00001d039188 Putative leucine-rich repeat receptor-like protein kinase family
protein

Heat response gene Jagtap et al., 2020

Zm00001d011760 DNAJ heat shock N-terminal domain-containing protein Heat response gene DNAJ proteins are co-chaperones of the
Hsp70 machine, which play a critical role by stimulating Hsp70
ATPase activity, thereby stabilizing its interaction with client
proteins

Pegoraro et al., 2011;
Jagtap et al., 2020

ZmNIP2-3 Aquaporin NOD26-like membrane integral protein Heat response gene Differentially phosphorylated under heat
stress Encode aquaporins involved in silicon transport

Brusamarello-Santos
et al., 2012; Jagtap
et al., 2020

Zm00001d045220 Late embryogenesis abundant protein group 2 Heat response gene The LEA proteins are a family of
hydrophilic proteins presumed to play a protective role during
exposure to different abiotic stresses

Amara et al., 2013;
Jagtap et al., 2020

Zm00001d046363 S-adenosyl-L-methionine-dependent methyltransferases
superfamily protein

Heat response gene Jagtap et al., 2020

Zm00001d002262 Uncharacterized LOC100502514 High grain yield QTL is related to heat stress Frey et al., 2016

Zm00001d005002 Carbohydrate transporter/sugar porter/transporter High grain yield QTL is related to heat stress Frey et al., 2016

Zm00001d004960 Uncharacterized LOC100281571 High grain yield QTL is related to heat stress Frey et al., 2016

Zm00001d043407 Uncharacterized LOC100282523 High grain yield QTL is related to heat stress Frey et al., 2016

Zm00001d013918 Thylakoid lumenal 17.4 kDa protein chloroplastic High grain yield QTL is related to heat stress Frey et al., 2016

Zm00001d047096 Beta-expansin 1a High grain yield QTL is related to heat stress Frey et al., 2016
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FIGURE 3 | A heat stresses responsive regulatory network in maize. Heat stress damages the cell membrane when exposed to heat stress and promotes the
release of apoplastic Ca2+. Heat stress disturbs the plasma membrane’s fluidity and permeability, resulting in a loss in function of chloroplasts and mitochondria,
higher cytosolic Ca2+, ROS, NO, and over-accumulation of misfolded or unfolded proteins. Increased cytosolic Ca2+, ROS, and NO are secondary messengers and
stimulate downstream regulatory networks. Heat stress disrupts protein homeostasis, inducing unfolded-protein response (UPR) and signaling pathways mediated
by IRE1-ZmZIP60 and ZmZIP28. The ZmZIP60 activates the expression of a type-A HSF and HSFTF13, which upregulates the expression of HSP genes, i.e.,
Hsp90. The Ca2+ signaling is essential in heat tolerance of seed-set in maize under field conditions, where calcium, a critical secondary messenger, converges
signals transmitted from high temperature, membrane fluidity, calcium efflux, and ABA (among others), amplifying them through the activation downstream of genes,
such as HSFA6b, ABF1, CYCD5;1, MutS2, and HSPs during reproductive stage via the MAPK pathway, and eventually enhance maize tolerance to heat stress for
seed-set. This figure was made using BioRender.

When maize was exposed to high temperature, the related
genes for protein processing in the endoplasmic reticulum (ER)
pathway were significantly enriched, which mainly induced heat
shock proteins expressions, such as Hsp40, Hsp70, Hsp90, Hsp100
(Table 2), and small HSP (Qian et al., 2019). In response,
heat stress response (HSR) genes, such as MYB, AP2/EREBP,
NAC, BRs, HSPs, Rubisco, antioxidants (APX and Glutathione
S-transferase), and kinases are activated to respond to ROS (Khan
et al., 2019; Jagtap et al., 2020). ROS, such as H2O2 produced by
RBOHD, acted as a signaling molecule that directly stimulates
mitogen-activated protein kinases, such as MAPK3 and MAPK6,
which activate Ca2+ or CDPK-mediated phosphorylation HSFA2
and HSFA4a (Luna et al., 2011; Frederickson Matika and Loake,
2014). H2O2 also directly activates HSFA1a, HSFA4a, and HSFA8
transcription factors, and NO signaling cascade, inducing the
binding of heat shock element (HSE) with promoters of HSPs
(Miller and Mittler, 2006; Li B. et al., 2018). Phytohormones,
such as IAA, CKs, ABA, ET, GA, SA, BRs, and JA, contribute
to the signal transduction pathways during heat stress (Eyidogan
et al., 2012; Li N. et al., 2021). Several studies indicated
calcineurin b-like protein-interacting protein kinase (CIPK) and
named sucrose non-fermenting 1-related kinase (SnRK) family
members as key players in pollen tube growth seed-set and

abiotic stress by perceiving and mediating Ca2+ signaling (Yang
et al., 2008; Zhou et al., 2015). The Ca2+ signaling plays an
essential role in the heat tolerance of seed-set in maize under
field conditions. In this, calcium, as the critical secondary
messenger converges signals transmitted from high temperature,
membrane fluidity, calcium efflux, and ABA (among others),
amplifies them through activation downstream of genes, such as
HSFA6b, ABF1, CYCD5;1, MutS2, and HSPs during reproductive
stage via the MAPK pathway (Figure 3 and Tables 1, 2), and
eventually enhancing maize tolerance to heat stress for seed-set
(Gao et al., 2019).

Heat Stress-Mediated Transcriptional
Regulation
Heat stress stimulates transcription of heat stress factors (HSFs)
(Table 1) which subsequently results in overexpression of HSPs
to mitigate the effect of heat stress (El-Sappah et al., 2012, 2017).
However, only HSF or HSP overexpression has no significant
role in heat tolerance, indicating that both gene families act
synergistically (Wang et al., 2004).

Maize contains 25 HSFs, further divided into A, B, and
C subclasses (Lin et al., 2011). Class A HSFs contribute to
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transcriptional activation, whereas the rest two classes have no
specific role in transcriptional activation due to the absence of
specific protein motifs (Reddy et al., 2014; Haider et al., 2021).
A master transcription activator HSFA1 stimulates immediate
expression of different heat shock responsive transcription
factors (TFs), including dehydration responsive element binding
protein 2A (DREB2A), HSFA2, HSFA7, HSFBs, and multiprotein-
bridging factor 1C (MBF1C) (Yan et al., 2020; Zhao J. et al.,
2021). Additionally, heat stress stimulates the transactivation
of HSFA1 upon the interaction between Hsp70 and Hsp90
(Ohama et al., 2017).

HSFA1 is comprised two alleles; HSFA1a and HSFA1b (El-
Shershaby et al., 2019). HSFA1 stimulates transcription of
ERF/AP2 and DREB2A (Mizoi et al., 2012), HSFA2 acts as a heat-
inducible trans-activator of different genes (Chauhan et al., 2013),
and HSFA3 regulates the expression of DREB2A and DREB2C
(Chen et al., 2010). ZmHsf-6 belongs to class A1, ZmHsf-1,
ZmHsf-4, ZmHsf-5, and ZmHsf-17 belong to subclass A2, ZmHsf-
3, ZmHsf-11, and ZmHsf-25 belong to class B, all contributing key
roles in heat tolerance in maize (Table 1; Lin et al., 2011; Zhang
et al., 2020b; Jiang et al., 2021). The expression of ZmHsf-6 was
localized in pollens, and its expression was upregulated under
heat stress (Jiang et al., 2021). Furthermore, Hsp70-2 and Hsp70-4
are downstream targets of ZmHsf-6 and contribute significantly
to abiotic stress response (Li H.-C. et al., 2015). The highest
expression of ZmHsf-1, ZmHsf-3, and ZmHsf-23 was observed in
maize plants exposed to heat stress proving their significant role
in maize during heat stress (Tables 1, 2; Lin et al., 2011).

In maize, ZmAP2/ERF is the most prominent TFs family
comprised of 292 potential members, out of which 153 belong
to the ERF subfamily (Zhou et al., 2012). Also, ZmDREB2A
plays an essential role in heat tolerance and during drought
tolerance in maize plants (Qin et al., 2007) when subjected to heat
stress, DREB2A regulates transcription of HSFA3 by stimulating
coactivation complex comprised of NUCLEAR FACTOR Y,
SUBUNIT A2 (NF-YA2), DNA POLYMERASE II SUBUNIT
B3-1 (DPB3-1)/NF-YC10, and NF-YB3 (Schramm et al., 2008).
Additionally, heat stress causes the over-accumulation of
secondary heat stress-responsive ROS, with HSFA4a and HSFA8
acting as sensors (Cimini et al., 2019; Xu et al., 2021). The maize
genome contains 72 MYB TFs, with only 46 playing a key role
in abiotic stress response (Du et al., 2012; Chen Y. et al., 2018).
Maize plants exposed to abiotic stress factors including heat,
salinity, drought, cold, and ABA resulted in overexpression of
ZmMYB-R (Table 2; Liu et al., 2012; Kimotho et al., 2019).

Protein Homeostasis Under Heat Stress
Heat stress interrupts the molecular mechanism of proper
protein folding in the ER, which is toxic to ER (Howell, 2013;
Fragkostefanakis et al., 2016). Unfolded-protein response (UPR)
is an adaptive change in ER that avoids the toxic effect of
misfolded proteins (Figure 3; Vitale and Boston, 2008); however,
prolonged toxicity resulted in programmed cell death (Iurlaro
and Muñoz-Pinedo, 2016). UPR also stimulates the signaling
cascade to send an ER message to the nucleus to initiate
the expression of toxicity-responsive genes (Neill et al., 2019).
ER stress activates UPR via splicing of ZmbZIP60 transcripts
with the help of kinase (IRE1) and membrane-localized TFs,

such as ZmbZIP17 and a type II membrane protein ZmbZIP28
(Figure 3; Nawkar et al., 2018; Pastor-Cantizano et al., 2020).
Both signaling factors bind, producing heterodimers resulting
from the upregulation of stress-responsive genes (Gayral et al.,
2020). N-terminal domain of bZIP28 transcription factor face
toward cytosol, whereas C-terminal domain face toward the
lumen of ER (Liu et al., 2007). From ER, bZIP28 was first
associated with Sar1 GTPase for packaging inside COPII vesicles
and then exported to Golgi bodies for modifications by the Golgi
site-1 and site-2 proteases (S1P and S2P) (Chung et al., 2018;
Pastor-Cantizano et al., 2020). Under heat stress, the N-terminus
of bZIP28 is cleaved by S2P, released inside the cytosol, and finally
transported to the nucleus. Similarly, IRE1 activates the bZIP60
transcription factor by splicing and transporting to the nucleus
(Reimold et al., 2000; Huang et al., 2017).

The second abiotic stress signaling pathway initiated
from ER is comprised of IRE1, a splicing protein, namely
kinase/ribonuclease, which activates the bZIP60 transcription
factor via proteolysis (Kørner et al., 2015; Pastor-Cantizano
et al., 2020). When maize seedlings are exposed to heat stress, the
transcript of ZmbZIP60 is activated by splicing and transferred
to the nucleus to induce the expression of HSPs (Li Z. et al.,
2018). Another ER-localized ZmbZIP17 transcription factor
is activated under heat and ABA stress and subsequently
transported into the nucleus to transactivate HSPs with the
help of UPR (Cacas, 2015). HSPs maintain cell metabolites
stability under heat stress (Efeoǧlu, 2009). Major HSPs which
play a key role during heat tolerance in maize are ZmHSP16.9,
ZmsHSP17, ZmsHSP17.8, ZmsHSP26, ZmHSP68, ZmHSP70,
ZmHSP90, and ZmHSP101 (Tables 1, 2; Sun et al., 2012; Klein
et al., 2014; Kumar et al., 2019; Zhao Y. et al., 2021). For
example, when maize plants are exposed to heat stress at the
reproductive stage, ZmHSP101 is overexpressed in pollens to
prevent their mortality, keep them viable and result in more
grains (Gurley, 2000). Generally, transcriptome studies of four
heat-tolerant and four heat-susceptible inbred lines, 607 heat-
responsive genes, and 39 heat-tolerance genes were identified
(Frey et al., 2015).

APPROACHES FOR IMPROVING
THERMOTOLERANCE

Agronomic Management
Several agronomic management practices, such as soil and
nutrients management, crop rotation, plantation rate, timing,
and irrigation, are beneficial in heat tolerance in maize (Sabagh
et al., 2020). For example, early sowing of longer season varieties
can overcome heat stress in spring maize (Liu et al., 2013).
Similarly, nighttime subsurface drip irrigation reduces the root-
zone causes in soil temperature, resulting in improved growth
and yield in maize (Dong et al., 2016). Additionally, optimized
irrigation enhances water use efficiency and aids heat tolerance
(Tao and Zhang, 2010). Maize crops exposed to drought and heat
stresses during vegetative growth are likely to have shortened
reproductive growth stage, resulting in yield loss; however, they
can be managed by maintaining soil moisture contents at 65%
via drip irrigation (Yuan et al., 2004).
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Heat stress negatively affects the absorption of adequate
concentrations of minerals and nutrients required for normal
metabolic and physiological processes (Fahad et al., 2017). For
example, nitrogen (N) and magnesium (Mg) are structural
parts of chlorophyll, phosphorus (P) is a structural part of
nucleic acids (DNA and RNA), and potassium is required for
osmotic regulation and activation of enzymes (Waraich et al.,
2012; Meena et al., 2020). Additionally, nitrogen plays a key
role in utilizing absorbed light, carbon assimilation, and heat
tolerance (Meena et al., 2019). Thus, nutrient management
can mitigate physiological disorders of maize plants exposed
to heat stress, such as applying potassium (K), improving
membranes’ stability, and maintaining turgor pressure in maize
(Tao and Zhang, 2010). Specifically, nutrient management at
the grain-filling stage contributes significantly to increased
yield. Additionally, applying bioregulators, such as Putrescine
and Thiourea, improved heat tolerance in maize seedlings
(Yadav et al., 2017).

Exogenous application of plant growth regulators, such
as ABA and CaCl2, play a key role in heat tolerance in
maize by improving the capability of PSII and stopping the
ROS, respectively (Gong et al., 1997; Tao and Zhang, 2010).
Artificial application of auxin also improves abiotic stresses,
including drought, salinity, waterlogging, heat and cold stress,
UV irradiation, and heavy metals tolerance (Vardhini and
Anjum, 2015). Similarly, the CK application helps mitigate the
denaturation of proteins metabolites due to over-accumulation of
ROS and improves the rate of photosynthesis in maize (Zulfiqar
and Ashraf, 2021). Additionally, the application of SA and ABA
ameliorate the effects of abiotic stress factors, improve seedling
growth, mitigate ROS, stimulate the cell-signaling pathway via
biosynthesis of NO, resulting in enhanced plant growth and crop
yield (Meena et al., 2015). Exogenous application of GA improves
the growth and development of plants via mitigating adverse
effects of abiotic stresses (Yamaguchi, 2008). The BRs are a newly
discovered group of plant hormones with promising potential in
abiotic stress tolerance, ROS tolerance, and heat stress tolerance
(Arif et al., 2020).

Conventional Breeding
Availability of genetic variations in a population and relationship
among traits is base for any successful plant breeding program
(Lorenz et al., 2011; Aruah et al., 2012). The exact knowledge of
genetic parameters, including population structure, heritability,
and genotypic variance among the traits under selection
pressure, helps develop efficient breeding lines (Farshadfar et al.,
2013). In traditional breeding, selection procedures have been
developed to identify and subsequently multiply maize verities
with improved heat tolerance (Gong et al., 2015; Gedil and
Menkir, 2019). Breeding heat-tolerant varieties is an effective
strategy for improving heat tolerance in the spring maize
grain-filling stage (Mishra et al., 2021). Many maize cultivars
have been screened for canopy structure, flag leaf stomata,
and rate of photosynthesis to obtain maximum yield and
heat tolerance (Sah et al., 2020). The application of genetic
markers accompanied by next-generation sequencing (NGS)
has accelerated various development in breeding techniques
(Le Nguyen et al., 2019).

Quantitative Trait Locus and
Marker-Assisted Breeding
Conventional breeding has significantly improved the
selection of heat-tolerant crop varieties (Fu et al., 2012; Bai
et al., 2018). During heat stress at the reproductive stage,
quantitative trait locus (QTLs) play a major role in pollen
production and preservation, receptivity and pollen tube
development, proper grain-filling, and post-anthesis leaf
senescence (Tiwari and Yadav, 2019). Therefore, the number
and origin of QTLs are pivotal to mitigating heat stress (Sharma
et al., 2017). Also, the number of QTLs and their roles studied
in heat stress-exposed maize seedlings were six during pollen
heat tolerance (Tiwari and Yadav, 2019), 11 at two different
loci (HSIDY and HSIDYA) during grain-filling located on
chromosomes 2, 3, 5, and 9 (Frey et al., 2016) and six during heat
susceptibility index (Van Inghelandt et al., 2019). Moreover, 6 and
5 QTLs have been detected associated with pollen tube growth
and pollen germination, respectively, using a recombinant inbred
population with 45 materials under abiotic stresses, including
high temperature (Frova and Sari-Gorla, 1994; Frova et al.,
1998). Therefore, these QTLs can be employed in conventional
breeding to improve heat tolerance in maize cultivars (Frey
et al., 2015). Previously explored maize QTLs can be assessed by
exploring the following datasets; http://www.maizegdb.org and
http://www.plantstress.com.

Quantitative trait locus are being widely employed in the
introgression of favorable alleles in elite maize cultivars via
backcrossing and confirmation in F1 (Frey et al., 2016; Cerrudo
et al., 2018). Molecular markers including simple sequence
repeats (SSR), single nucleotide polymorphisms (SNPs), random
amplified polymorphic DNA (RAPD), and amplified fragment
length polymorphism associated with heat tolerance are also
employed in MAS (El-Sappah et al., 2019; Younis et al., 2020).
The SNP and SSR are vast in identifying genotypes with
maximum heat tolerance (Sabagh et al., 2020). Genome-wide
association study (GWAS) is also a valuable tool in identifying
novel QTLs responsible for heat tolerance to improve the genetic
pool in maize breeding (Wen et al., 2014; Lafarge et al., 2017;
Lin et al., 2020). GWAS is also helpful in revealing the linkage
between SNPs and specific traits that confers heat tolerance at
the flowering stage (Lafarge et al., 2017). GWAS was performed
in sub-tropical maize, identifying significant SNPs and haplotype
blocks associated with yield contributing traits that help select
donor lines with favorable alleles for multiple characteristics,
providing insights into heat stress tolerance genetics (Longmei
et al., 2021; Seetharam et al., 2021).

Genetic and Metabolic Engineering
Recently, several gene families have been identified and
subsequently characterized in maize involved in heat stress
response, such as heat shock protein-70 and heat shock factor
(Casaretto et al., 2016; Jagtap et al., 2020; Jiang et al., 2021).
Additionally, transcriptomic profiling of maize seedlings exposed
to heat stress showed several differentially expressed genes
employed in developing improved heat-tolerant maize varieties
using robust genome editing techniques, such as RNAi and
CRISPR/Cas9 (El-Sappah et al., 2021; Razzaq et al., 2021;
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Singh et al., 2021). Integration of robust genetic engineering
techniques has accelerated conventional breeding of maize by
reducing the time of variety development with the application
of genetic markers in the early detection of desired traits in
F1 (Ahmar et al., 2020). Furthermore, fast growth in NGS has
enabled high throughput sequencing of desired traits which is
cost-effective, time-saving, reproducible, impossible to achieve
via conventional breeding (Kulski, 2016).

In maize, several genes have been identified to develop
genetically modified (GMO) or transgenic verities with improved
heat tolerance (Tiwari and Yadav, 2019; Malenica et al., 2021).
For example, overexpression of ZmVPP1 and OsMYB55 resulted
in increased heat and drought tolerance in maize (Casaretto
et al., 2016; Wang et al., 2016). Furthermore, the HSFs gene
family plays a pivotal role during heat stress (Haider et al.,
2021). Up to 25 HSFs have been reported in several cereal crops,
and their key role is confirmed in regulating Hsp genes (Guo
et al., 2008). This discovery of identifying and characterizing
HSFs and their role in regulating Hsp genes has provided a
fundamental basis for the development of GM maize with the
highest heat stress tolerance (Ahuja et al., 2010). Furthermore,
the overexpression of chloroplast localized 6-phosphogluconate
dehydrogenase (6PGDH) PGD3 displayed an over-accumulation
of starch in maize endosperm under heat stress improved grain
size and weight, whereas, WPGD1 and WPGD2 transgenes
can increase the number of kernels to mitigate losses in high
nighttime temperature conditions (Ribeiro et al., 2020). In the
metabolic studies of Joshi et al. (2021), a total of 5,136 genes
expression were affected in response to heat stress.

CONCLUSION

Plant growth, development, and productivity are significantly
affected by abiotic or biotic stresses because the plants, as
sessile organisms, cannot move to favorable environments.
Globally, high temperature has become a significant stressor
that has accelerated the increase in the air temperature in the
recent decades. Maize is a C4 crop species that belongs to the
Poaceae family and is moderately sensitive to abiotic stresses,
such as temperature. Maize plants are considered to be heat
tolerant, but an extended duration of a temperature >35◦C is
deemed to be unfavorable for the development and growth of
crops. In comparison, temperatures above 40◦C, mainly during
flowering and grain-filling season, will negatively affect the
grain productivity of grain in these plants.

Heat stress may alter several physiological processes, namely
membrane fluidity, net photosynthesis, respiration rate, hormone
levels, osmolytes accumulation, and so on. High temperatures are
related to several metabolic events at cellular and sub-cellular
levels, leading to the production of ROS and oxidative stress.

The anti-oxidative defense system is a prospective mechanism
to protect them from ROS damage in plants. Finally, several
agronomic management practices, such as the management of
soil and nutrients, crop rotation, plantation rate, timing, and
irrigation, are beneficial in developing heat tolerance in maize,
along with advanced genomic tools. This review summarizes heat
stress sensing, the induction of signaling cascade, symptoms, heat
stress-related genes, molecular feature of maize response, and
approaches to establishing heat-tolerant maize varieties.

FUTURE PERSPECTIVES

Environmental factors affecting maize growth and development
include rainfall, light intensity, temperature (heat and cold),
relative humidity, heavy metal stress, and wind speed. Drought
and heat stress have severe implications for sustainable crop
yield. Therefore, it is necessary to develop maize verities
having maximum tolerance against drought and heat stress
with breeding and genetic engineering. Although substantial
efforts had been made to develop heat-tolerant maize verities via
conventional breeding, it has limitations, such as being laborious,
time-consuming, and the possibility of only intra-species gene
transfer. However, modern genetic approaches, such as GWAS
and genotyping by sequencing, have facilitated inter-species gene
transfer to develop maize verities with the highest heat tolerance.
Additionally, the complementation of conventional breeding
with the development of modern and robust genetic engineering
techniques, such as RNAi, CRISPR/Cas9, and TILLING, has
accelerated the process of variety development.
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