AUTHOR=Zhang Zhen , Yu Zhenwen , Zhang Yongli , Shi Yu TITLE=Impacts of Fertilization Optimization on Soil Nitrogen Cycling and Wheat Nitrogen Utilization Under Water-Saving Irrigation JOURNAL=Frontiers in Plant Science VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.878424 DOI=10.3389/fpls.2022.878424 ISSN=1664-462X ABSTRACT=
Scholars have proposed the practice of split nitrogen fertilizer application (SNFA), which has proven to be an effective approach for enhancing nitrogen use efficiency. However, the combined effects of SNFA on wheat plant nitrogen use efficiency, ammonia (NH3) emission flux, as well as the rates of nitrification and denitrification in different ecosystems remain unclear. Meanwhile, few studies have sought to understand the effects of the split nitrogen fertilizer method under water-saving irrigation technology conditions on nitrogen loss. The current study assessed soil NH3 volatilization, nitrification, and denitrification intensities, as well as the abundance of nitrogen cycle-related functional genes following application of different treatments. Specifically, we applied a nitrogen rate of 240 kg⋅ha–1, and the following fertilizer ratios of the percent base to that of topdressing under water-saving irrigation: N1 (basal/dressing, 100/0%), N2 (basal/dressing, 70/30%), N3 (basal/dressing, 50/50%), N4 (basal/dressing, 30/70%), and N5 (basal/dressing, 0/100%). N3 treatment significantly reduced NH3 volatilization, nitrification, and denitrification intensities, primarily owing to the reduced reaction substrate concentration (NO3– and NH4+) and abundance of functional genes involved in the nitrogen cycle (